数学 反比例函数的专项 培优练习题及答案解析

数学 反比例函数的专项 培优练习题及答案解析
数学 反比例函数的专项 培优练习题及答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣

x+10,交于C,D两点,并且OC=3BD.

(1)求出双曲线的解析式;

(2)连结CD,求四边形OCDB的面积.

【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,

∴∠AMO=∠CEO=∠DFB=90°,

∵直线OA:y=x和直线AB:y=﹣x+10,

∴∠AOB=∠ABO=45°,

∴△CEO∽△DEB

∴= =3,

设D(10﹣m,m),其中m>0,

∴C(3m,3m),

∵点C、D在双曲线上,

∴9m2=m(10﹣m),

解得:m=1或m=0(舍去)

∴C(3,3),

∴k=9,

∴双曲线y= (x>0)

(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,

∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB

= ×3×3+ ×(1+3)×6+ ×1×1=17,

∴四边形OCDB的面积是17

【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x

和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.

2.如图,已知一次函数y= x+b的图象与反比例函数y= (x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.

(1)当△ABC的周长最小时,求点C的坐标;

(2)当 x+b<时,请直接写出x的取值范围.

【答案】(1)解:作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求,如图所示.

∵反比例函数y= (x<0)的图象过点A(﹣1,2),

∴k=﹣1×2=﹣2,

∴反比例函数解析式为y=﹣(x<0);

∵一次函数y= x+b的图象过点A(﹣1,2),

∴2=﹣ +b,解得:b= ,

∴一次函数解析式为y= x+ .

联立一次函数解析式与反比例函数解析式成方程组:,

解得:,或,

∴点A的坐标为(﹣1,2)、点B的坐标为(﹣4,).

∵点A′与点A关于y轴对称,

∴点A′的坐标为(1,2),

设直线A′B的解析式为y=mx+n,

则有,解得:,

∴直线A′B的解析式为y= x+ .

令y= x+ 中x=0,则y= ,

∴点C的坐标为(0,)

(2)解:观察函数图象,发现:

当x<﹣4或﹣1<x<0时,一次函数图象在反比例函数图象下方,

∴当 x+ <﹣时,x的取值范围为x<﹣4或﹣1<x<0

【解析】【分析】(1)作点A关于y轴的对称点A′,连接A′B交y轴于点C,此时点C即是所求.由点A为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、B的坐标,再根据点A′与点A关于y轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线A′B解析式中x为0,求出y的值,即可得出结论;(2)根据两函数图象的上下关系结合点A、B的坐标,即可得出不等式的解集.

3.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.

(1)当k=1时,求A、B两点的坐标;

(2)当k=2时,求△AOB的面积;

(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.

【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,

解得,,

∴A(1,2),B(﹣2,﹣1)

(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,

解得,,

∴A(1,3),B(﹣3,﹣1)

设直线AB的解析式为:y=mx+n,

∴,

∴直线AB的解析式为:y=x+2

∴直线AB与y轴的交点(0,2),

∴S△AOB= ×2×1+ ×2×3=4;

(3)解:当k=1时,S1= ×1×(1+2)= ,

当k=2时,S2= ×2×(1+3)=4,

当k=n时,S n= n(1+n+1)= n2+n,

∵S1+S2+…+S n= ,

∴ ×(…+n2)+(1+2+3+…n)= ,

整理得:,

解得:n=6.

【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.

4.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.

(1)求双曲线和抛物线的解析式;

(2)计算△ABC的面积;

(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.

所以双曲线的解析式为y=﹣.

设点B的坐标为(m,﹣m).

∵点B在双曲线上,

∴﹣m2=﹣4,解得m=2或m=﹣2.

∵点B在第四象限,

∴m=2.

∴B(2,﹣2).

将点A、B、C的坐标代入得:,

解得:.

∴抛物线的解析式为y=x2﹣3x.

(2)解:如图1,连接AC、BC.

令y=0,则x2﹣3x=0,

∴x=0或x=3,

∴C(3,0),

∵A(﹣1,4),B(2,﹣2),

∴直线AB的解析式为y=﹣2x+2,

∵点D是直线AB与x轴的交点,

∴D(1,0),

∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;

(3)解:存在,理由:如图2,

由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,

∴原抛物线的顶点坐标为(,﹣),

∴抛物线向左平移个单位,再向上平移个单位,

而平移前A(﹣1,4),B(2,﹣2),

∴平移后点A(﹣,),B(,),

∴点A关于y轴的对称点A'(,),

连接A'B并延长交y轴于点P,连接AP,

由对称性知,∠APE=∠BPE,

∴△APB的内切圆的圆心在y轴上,

∵B(,),A'(,),

∴直线A'B的解析式为y=3x﹣,

∴P(0,﹣).

【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;

(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;

(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.

5.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为

s,且s=1+ .

(1)当n=1时,求点A的坐标;

(2)若OP=AP,求k的值;

(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,

当n=1时,s= ,

∴a= = .

(2)解:解法一:∵OP=AP,PA⊥OP,

∴△OPA是等腰直角三角形.

∴m=n= .

∴1+ = ?an.

即n4﹣4n2+4=0,

∴k2﹣4k+4=0,

∴k=2.

解法二:∵OP=AP,PA⊥OP,

∴△OPA是等腰直角三角形.

∴m=n.

设△OPQ的面积为s1

则:s1= ∴?mn= (1+ ),

即:n4﹣4n2+4=0,

∴k2﹣4k+4=0,

∴k=2.

(3)解:解法一:∵PA⊥OP,PQ⊥OA,

∴△OPQ∽△OAP.

设:△OPQ的面积为s1,则 =

即: = 化简得:

化简得:

2n4+2k2﹣kn4﹣4k=0

(k﹣2)(2k﹣n4)=0,

∴k=2或k= (舍去),

∴当n是小于20的整数时,k=2.

∵OP2=n2+m2=n2+ 又m>0,k=2,

∴n是大于0且小于20的整数.

当n=1时,OP2=5,

当n=2时,OP2=5,

当n=3时,OP2=32+ =9+ = ,

当n是大于3且小于20的整数时,

即当n=4、5、6…19时,OP2的值分别是:

42+ 、52+ 、62+ …192+ ,

∵192+ >182+ >32+ >5,

∴OP2的最小值是5.

【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.

6.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.

(1)求m的值;

(2)求过A、B、D三点的抛物线的解析式;

(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边

形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.

【答案】(1)解:∵反比例函数的图象都经过点A(3,3),

∴经过点A的反比例函数解析式为:y= ,

而直线OA向下平移后,与反比例函数的图象交于点B(6,m),

∴m=

(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),

与x轴、y轴分别交于C、D两点,

而这些OA的解析式为y=x,

设直线CD的解析式为y=x+b

代入B的坐标得: =6+b,

∴b=﹣4.5,

∴直线OC的解析式为y=x﹣4.5,

∴C、D的坐标分别为(4.5,0),(0,﹣4.5),

设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,

分别把A、B、D的坐标代入其中得:

解之得:a=﹣0.5,b=4,c=﹣4.5

∴y=﹣0.5x2+4x﹣4.5

(3)解:如图,

设E的横坐标为x,

∴其纵坐标为﹣0.5x2+4x﹣4.5,

∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,

= (﹣0.5x2+4x﹣4.5+4.5)×4.5,

= (﹣0.5x2+4x)×4.5,

而S= (3+OD)×OC= (3+4.5)×4.5= ,

∴(﹣0.5x2+4x)×4.5= ,

解之得x=4± ,

∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).

【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.

7.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.

(1)若点A的坐标为(a,3),求a的值;

(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;

(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.

【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;

(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,

则∠ADO=∠CEO=90°,

∴∠DAO+∠AOD=90°,

∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,

当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,

∵∠AOD=∠BOE,∴∠DAO=∠EOC,

∴△ADO≌△OEC,

又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),

由△ADO≌△OEC得,CE=OD=3,EO=DA=2,

所以C(-3,-2);

(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,

则∠ADO=∠CEO=90°,

∴∠DAO+∠AOD=90°,

∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,

∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,

∵∠AOD=∠BOE,∴∠DAO=∠EOC,

∴△ADO∽△OEC,

∴,

∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,

∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,

∴A( n,- m),代入y=-中,

得mn=18.

【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;

(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;

(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出

,根据锐角三角函数的定义,及特殊锐角三角函数值得出

,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.

8.如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).

(1)利用图中条件,求反比例函数的解析式和m的值;

(2)求△DOC的面积.

(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.

【答案】(1)解:将C(1,4)代入反比例函数解析式可得:k=4,则反比例函数解析式为:

将D(4,m)代入反比例函数解析式可得:m=1

(2)解:根据点C和点D的坐标得出一次函数的解析式为:y=-x+5

则点A的坐标为(0,5),点B的坐标为(5,0)

∴S△DOC=5×5÷2-5×1÷2-5×1÷2=7.5

(3)解:双曲线上存在点P(2,2),使得S△POC=S△POD,理由如下:

∵C点坐标为:(1,4),D点坐标为:(4,1),

∴OD=OC=,

∴当点P在∠COD的平分线上时,∠COP=∠POD,又OP=OP,

∴△POC≌△POD,

∴S△POC=S△POD.

∵C点坐标为:(1,4),D点坐标为:(4,1),

可得∠COB=∠DOA,

又∵这个点是∠COD的平分线与双曲线的y=交点,

∴∠BOP=∠POA,

∴P点横纵坐标坐标相等,

即xy=4,x2=4,

∴x=±2,

∵x>0,

∴x=2,y=2,

故P点坐标为(2,2),使得△POC和△POD的面积相等

利用点CD关于直线y=x对称,P(2,2)或P(?2,?2).

答:存在,P(2,2)或P(-2,-2)

【解析】【分析】(1)观察图像,根据点C的坐标可求出函数解析式及m的值。

(2)利用待定系数法,由点D、C的坐标求出直线CD的函数解析式,再求出直线CD与两坐标轴的交点A、B的坐标,然后利用S△DOC=S△AOB-S△BOC-S△AOD,利用三角形的面积公式计算可解答。

(3)双曲线上存在点P,使得S△POC=S△POD,这个点就是∠COD的平分线与双曲线的y=交点,易证△POC≌△POD,则S△POC=S△POD,可得出点P点横纵坐标坐标相等,利用反比例函数解析式,建立关于x的方程,就可得出点P的坐标,利用对称性,可得出点P的另一个坐标,即可得出答案。

9.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.

(1)求一次函数的函数表达式;

(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面

积.

【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,

代入反比例函数解析式,=y,

解得y=6,

∴点A的坐标为(1,6),

又∵点A在一次函数图象上,

∴1+m=6,

解得m=5,

∴一次函数的解析式为y1=x+5

(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,

∴2= ,解得x=3,

∴点C的坐标为(3,2),

过点C作CD∥x轴交直线AB于D,

则点D的纵坐标为2,

∴x+5=2,

解得x=﹣3,

∴点D的坐标为(﹣3,2),

∴CD=3﹣(﹣3)=3+3=6,

点A到CD的距离为6﹣2=4,

联立,

解得(舍去),,

∴点B的坐标为(﹣6,﹣1),

∴点B到CD的距离为2﹣(﹣1)=2+1=3,

S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.

【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.

10.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.

(1)证明四边形ABCD为菱形;

(2)求此反比例函数的解析式;

(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.

【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),

∴OA=4,OB=3,OC=2,

∴AB= =5,BC=5,

∴AB=BC,

∵D为B点关于AC的对称点,

∴AB=AD,CB=CD,

∴AB=AD=CD=CB,

∴四边形ABCD为菱形

(2)解:∵四边形ABCD为菱形,

∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,

∴4= ,

∴k=20,

∴反比例函数的解析式为:y=

(3)解:∵四边形ABMN是平行四边形,

∴AN∥BM,AN=BM,

∴AN是BM经过平移得到的,

∴首先BM向右平移了3个单位长度,

∴N点的横坐标为3,

代入y= ,

得y= ,

∴M点的纵坐标为:﹣4= ,

∴M点的坐标为:(0,)

【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.

11.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y= 的图象上.

(1)求反比例函数y= 的表达式;

(2)在x轴的负半轴上存在一点P,使得S△AOP= S△AOB,求点P的坐标;

(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上.

【答案】(1)解:∵点A(,1)在反比例函数y= 的图象上,

∴k= ×1= ,

∴反比例函数表达式为y= .

(2)解:∵A(,1),AB⊥x轴于点C,

∴OC= ,AC=1,

∵OA⊥OB,OC⊥AB,

∴∠A=∠COB,

∴tan∠A= =tan∠COB= ,

∴OC2=AC?BC,即BC=3,

∴AB=4,

∴S△AOB= × ×4=2 ,

∴S△AOP= S△AOB= ,

设点P的坐标为(m,0),

∴ ×|m|×1= ,解得|m|=2 ,

∵P是x轴的负半轴上的点,

∴m=﹣2 ,

∴点P的坐标为(﹣2 ,0)

(3)解:由(2)可知tan∠COB= = = ,

∴∠COB=60°,

∴∠ABO=30°,

∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,

∴∠OBD=60°,

∴∠ABD=90°,

∴BD∥x轴,

在Rt△AOB中,AB=4,∠ABO=30°,

∴AO=DE=2,OB=DB=2 ,且BC=3,OC= ,

∴OD=DB﹣OC= ,BC﹣DE=1,

∴E(﹣,﹣1),

∵﹣ ×(﹣1)= ,

∴点E在该反比例函数图象上

【解析】【分析】(1)由点A的坐标,利用待定系数法可求得反比例函数表达式;(2)由条件可求得∠A=∠COB,利用三角函数的定义可得到OC2=AC?BC,可求得BC的长,可求得△AOB的面积,设P点坐标为(m,0),由题意可得到关于m的方程,可求得m的值;(3)由条件可求得∠ABD=90°,则BD∥x轴,由BD、DE的长,可求得E点坐标,代入反比例函数解析式进行判断即可.

12.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.

(1)当∠BAC=30o时,求△ABC的面积;

(2)当DE=8时,求线段EF的长;

(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.

【答案】(1)解:∵AB是⊙O的直径,

∴∠ACB=90°,

在Rt△ABC中,AB=10,∠BAC=30°,

∴BC= AB=5,

∴AC= ,

∴S△ABC= AC?BC=

(2)解:连接AD,

∵∠ACB=90°,CD=BC,

∴AD=AB=10,

∵DE⊥AB,

∴AE= =6,

∴BE=AB?AE=4,

∴DE=2BE,

∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,

∴∠AFE=∠DBE,

∵∠AEF=∠DEB=90°,

∴△AEF∽△DEB,

∴ =2,

∴EF= AE= ×6=3

(3)解:连接EC,设E(x,0),

当的度数为60°时,点E恰好与原点O重合;

①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,

又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,

∴,

∵EC是Rt△BDE斜边的中线,

∴CE=CB,

∴∠CEB=∠CBE,

∴∠EOF=∠CEB,

∴OF∥CE,

相关主题
相关文档
最新文档