PCB阻抗设计指南

PCB阻抗设计指南
PCB阻抗设计指南

高速PCB设计指南

高速PCB设计指南 第一篇 PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个

今天终于弄懂了PCB高速电路板设计的方法和技巧

[讨论]今天终于弄懂了PCB高速电路板设计的方法和技巧受益匪浅啊 电容, 最大功率, 技巧 高速电路设计技术阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,并且得到最大功率输出的一种工作状态。高速PCB布线时,为了防止信号的反射,要求线路的阻抗为50Ω。这是个大约的数字,一般规定同轴电缆基带50Ω,频带75Ω,对绞线则为100Ω,只是取整数而已,为了匹配方便。根据具体的电路分析采用并行AC端接,使用电阻和电容网络作为端接阻抗,端接电阻R要小于等于传输线阻抗Z0,电容C必须大于100pF,推荐使用0.1UF的多层陶瓷电容。电容有阻低频、通高频的作用,因此电阻R不是驱动源的直流负载,故这种端接方式无任何直流功耗。 串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。耦合分为容性耦合和感性耦合,过大的串扰可能引起电路的误触发,导致系统无法正常工作。根据串扰的一些特性,可以归纳出几种减小串扰的方法: 1、加大线间距,减小平行长度,必要时采用jog 方式布线。 2、高速信号线在满足条件的情况下,加入端接匹配可以减小或消除反射,从而减小串扰。 3、对于微带传输线和带状传输线,将走线高度限制在高于地线平面范围要求以内,可以显著减小串扰。 4、在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线,可以起到隔离的作用,从而减小串扰。传统的PCB设计由于缺乏高速分析和仿真指导,信号的质量无法得到保证,而且大部分问题必须等到制版测试后才能发现。这大大降低了设计的效率,提高了成本,在激烈的市场竞争下显然是不利的。于是针对高速PCB设计,业界人士提出了一种新的设计思路,成为“自上而下”的设计方法,经过多方面的方针分析和优化,避免了绝大部分可能产生的问题,节省了大量的时间,确保满足工程预算,产生高质量的印制板,避免繁琐而高耗的测试检错等。利用差分线传输数字信号就是高速数字电路中控制破坏信号完整性因素的一项有效措施。在印制电路板(PCB抄板)上的差分线,等效于工作在准TEM模的差分的微波集成传输线对。其中,位于PCB顶层或底层的差分线等效于耦合微带线,位于多层PCB内层的差分线,等效于宽边耦合带状线。数字信号在差分线上传输时是奇模传输方式,即正负两路信号的相位差是180,而噪声以共模的方式在一对差分线上耦合出现,在接受器中正负两路的电压或电流相减,从而可以获得信号消除共模噪声。而差分线对的低压幅或电流驱动输出实现了高速集成低功耗的要求。

PCB的阻抗控制

浅谈PCB的阻抗控制 随着电路设计日趋复杂和高速,如何保证各种信号(特别是高速信号)完整性,也就是保证信号质量,成为难题。此时,需要借助传输线理论进行分析,控制信号线的特征阻抗匹配成为关键,不严格的阻抗控制,将引发相当大的信号反射和信号失真,导致设计失败。常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB厂的沟通,并结合EDA软件的使用,我对这个问题有了一些粗浅的认识,愿和大家分享。 多层板的结构: 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um 或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异,通过与上海嘉捷通电路板厂技术支持的沟通,得到该厂的一些参数数据: 表层铜箔:

PCB设计原理及规范处理

PCB 设计规范二O 一O 年八月

目录 一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词解释- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34

电源pcb设计指南包括PCB安规emc布局布线PCB热设计PCB工艺

电源pcb设计指南包括:PCB安规、emc、布局布线、PCB热设计、PCB工艺 导读 1.安规距离要求部分 2.抗干扰、EMC部分 3.整体布局及走线部分 4.热设计部分 5.工艺处理部分 1.安规距离要求部分 安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。 1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。 2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。 一、爬电距离和电气间隙距离要求,可参考NE61347-1-2-13/GB19510.14. (1)、爬电距离:输入电压50V-250V时,保险丝前L—N≥2.5mm,输入电压250V-500V时,保险丝前L—N≥5.0mm;电气间隙:输入电压50V-250V时,保险丝前L—N≥1.7mm,输入电压250V-500V时,保险丝前L—N≥3.0mm;保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。 (2)、一次侧交流对直流部分≥2.0mm (3)、一次侧直流地对地≥4.0mm如一次侧地对大地 (4)、一次侧对二次侧≥6.4mm,如光耦、Y 电容等元器零件脚间距≤6.4mm 要开槽。 (5)、变压器两级间≥6.4mm 以上,≥8mm加强绝缘。 2.抗干扰、EMC部分 在图二中,PCB 布局时,驱动电阻R3应靠近Q1(MOS管),电流取样电阻R4、C2应靠近IC1的第4 Pin,如图一所说的R应尽量靠近运算放大器缩短高阻抗线路。因运算放大器输入端阻抗很高,易受干扰。输出端阻抗较低,不易受干扰。一条长线相当于一根接收天线,容易引入外界干扰。 在图三的A中排版时,R1、R2要靠近三极管Q1放置,因Q1的输入阻抗很高,基极线路过长,易受干扰,则R1、R2不能远离Q1。 在图三的B中排版时,C2要靠近D2,因为Q2三极管输入阻抗很高,如Q2至D2的线路太长,易受干扰,C2应移至D2附近。 二、小信号走线尽量远离大电流走线,忌平行,D>=2.0mm。 三、小信号线处理:电路板布线尽量集中,减少布板面积提高抗干扰能力。 四、一个电流回路走线尽可能减少包围面积。 如:电流取样信号线和来自光耦的信号线

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.360docs.net/doc/9b12465288.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

高速PCB设计指南

高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

高速PCB设计心得

一:前言 随着PCB系统的向着高密度和高速度的趋势不断的发展,电源的完整性问题,信号的完整性问题(SI),以及EMI,EMC的问题越来越突出,严重的影响了系统的性能甚至功能的实现。所谓高速并没有确切的定义,当然并不单单指时钟的速度,还包括数字系统上升沿及下降沿的跳变的速度,跳变的速度越快,上升和下降的时间越短,信号的高次谐波分量越丰富,当然就越容易引起SI,EMC,EMI的问题。本文根据以往的一些经验在以下几个方面对高速PCB的设计提出一些看法,希望对各位同事能有所帮助。 ●电源在系统设计中的重要性 ●不同传输线路的设计规则 ●电磁干扰的产生以及避免措施 二:电源的完整性 1.供电电压的压降问题。 随着芯片工艺的提高,芯片的内核电压及IO电压越来越小,但功耗还是很大,所以电流有上升的趋势。在内核及电压比较高,功耗不是很大的系统中,电压压降问题也许不是很突出,但如果内核电压比较小,功耗又比较大的情况下,电源路径上的哪怕是0.1V 的压降都是不允许的,比如说ADI公司的TS201内核电压只有 1.2V,内核供电电流要 2.68A,如果路径上有0.1欧姆的电阻,电 压将会有0.268V的压降,这么大的压降会使芯片工作不正常。如何尽量减小路径上的压降呢?主要通过以下几种方法。

a:尽量保证电源路径的畅通,减小路径上的阻抗,包括热焊盘的连接方式,应该尽量的保持电流的畅通,如下图1和图2的比较,很明显图2中选择的热焊盘要强于图1。 b:尽量增加大电流层的铜厚,最好能铺设两层同一网络的电源,以保证大电流能顺利的流过,避免产生过大的压降,关于电流大小和所流经铜厚的关系如表1所示。 (表1) 1 oz.铜即35微M厚, 2 oz.70微M, 类推 举例说,线宽0.025英寸,采用2 oz.盎斯的铜,而允许温升30度,

PCB阻抗计算参数说明

阻抗计算: 1.介电常数E r E r(介电常数)就目前而言通常情况下选用的材料为 F R-4,该种材料的E r 特性为随着加载频率的不同而变化,一般情况下E r的分水岭默认为1 G H Z(高频)。目前材料厂商能够承诺的指标<5.4(1M H z),根据我们实际加工的经验,在使用频率为1G H Z以下的其E r认为4.2左右。1.5—2.0G H Z的使用频率其仍有下降的空间。故设计时如有阻抗的要求则须考虑该产品的当时的使用频率。 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。 ●7628----4.5(全部为1G H z状态下) ●2116----4.2 ●1080----3.6 2. 介质层厚度H H(介质层厚度)该因素对阻抗控制的影响最大故设计中如对阻抗的宽容度很小的话,则该部分的设计应力求准确,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),一般情况下常用的半固化片为: ●1080 厚度0.075MM、 ●7628 厚度0.175MM、 ●2116厚度 0.105MM。 3.线宽W 对于W1、W2的说明:

5.铜箔厚度 外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1 OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um,大致相当于铜厚1 OZ、1.5 OZ、2 OZ。注意:在用阻抗计算软件进行阻抗控制时,外层的铜厚没有0.5 OZ的值。 走线厚度T与该层的铜厚有对应关系,具体如下: 铜箔厚度单位转换: Oz 本来是重量的单位Oz(盎司ang si )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下

pcb设计指南

mp3的设计原理及制作 高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程 限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布 线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生 反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般 先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要 断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技 术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过 程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影 响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~ 0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个 地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用 一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑 它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人 PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们 之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有 在PCB上不共地的,这由系统设计来决定。 3 信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量, 成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是 保留地层的完整性。 4 大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘 与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气 性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散 热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。 5 布线中网络系统的作用 在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对 设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的 焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来 支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数, 如:0.05英寸、0.025英寸、0.02英寸等。 6 设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的 需求,一般检查有如下几个方面: (1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要 求。 (2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地 方。 (3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 (4)、模拟电路和数字电路部分,是否有各自独立的地线。 (5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。 (6)对一些不理想的线形进行修改。 (7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影 响电装质量。 (8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。 Copyright by BroadTechs Electronics Co.,Ltd 2001-2002

ADI的高速PCB设计

The World Leader in High Performance Signal Processing Solutions A Practical Guide to High-Speed Printed Circuit Board Layout

Agenda Overview Schematic Location location location Location, location, location Power supply bypassing Parasitics Ground and power planes Packaging RF Signal routing and shielding Summary

Overview PCB layout is one of the last steps in the design process and often one of the most critical High-speed circuit performance is heavily dependant on High speed circuit performance is heavily dependant on layout A high-performance design can be rendered useless due to a poor or sloppy layout poor or sloppy layout Today’s presentation will help: p y p z Improve the layout process z Ensure expected circuit performance is achieved z Reduce design time L t z Lower cost z Lower stress for you and the PCB designer

高速pcb设计指南之五

高速PCB设计指南之五 第一篇DSP系统的降噪技术 随着高速DSP(数字信号处理器)和外设的出现,新产品设计人员面临着电磁干扰(EMI)日益严重的威胁。早期,把发射和干扰问题称之为EMI或RFI(射频干扰)。现在用更确定的词“干扰兼容性”替代。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。假若干扰不能完全消除,但也要使干扰减少到最小。如果一个DSP系统符合下面三个条件,则该系统是电磁兼容的。 1.对其它系统不产生干扰。 2.对其它系统的发射不敏感。 3.对系统本身不产生干扰。 干扰定义 当干扰的能量使接收器处在不希望的状态时引起干扰。干扰的产生不是直接的(通过导体、公共阻抗耦合等)就是间接的(通过串扰或辐射耦合)。电磁干扰的产生是通过导体和通过辐射。很多电磁发射源,如光照、继电器、DC电机和日光灯都可引起干扰。AC电源线、互连电缆、金属电缆和子系统的内部电路也都可能产生辐射或接收到不希望的信号。在高速数字电路中,时钟电路通常是宽带噪声的最大产生源。在快速DSP中,这些电路可产生高达300MHz的谐波失真,在系统中应该把它们去掉。在数字电路中,最容易受影响的是复位线、中断线和控制线。 传导性EMI 一种最明显而往往被忽略的能引起电路中噪声的路径是经过导体。一条穿过噪声环境的导线可检拾噪声并把噪声送到另外电路引起干扰。设计人员必须避免导线捡拾噪声和在噪声产生引起干扰前,用去耦办法除去噪声。最普通的例子是噪声通过电源线进入电路。若电源本身或连接到电源的其它电路是干扰源,则在电源线进入电路之前必须对其去耦。 共阻抗耦合 当来自两个不同电路的电流流经一个公共阻抗时就会产生共阻抗耦合。阻抗上的压降由两个电路决定。来自两个电路的地电流流经共地阻抗。电路1的地电位被地电流2调制。噪声信号或DC补偿经共地阻抗从电路2耦合到电路1。 辐射耦合 经辐射的耦合通称串扰,串扰发生在电流流经导体时产生电磁场,而电磁场在邻近的导体中感应瞬态电流。 辐射发射 辐射发射有两种基本类型:差分模式(DM)和共模(CM)。共模辐射或单极天线辐射

高速PCB设计的基本知识及概念

高速PCB设计的基本知识及概念 1、“层(Layer)”的概念 与字处理或其它许多软件中为实现图、文、色彩等的嵌套与合成而引入的“层”的概念有所同,Protel的“层”不是虚拟的,而是印刷板材料本身实实在在的各铜箔层。现今,由于电子线路的元件密集安装。防干扰和布线等特殊要求,一些较新的电子产品中所用的印刷板不仅有上下两面供走线,在板的中间还设有能被特殊加工的夹层铜箔,例如,现在的计算机主板所用的印板材料多在4层以上。这些层因加工相对较难而大多用于设置走线较为简单的电源布线层(如软件中的Ground Dever和Power Dever),并常用大面积填充的办法来布线(如软件中的ExternaI P1a11e和Fill)。上下位置的表面层与中间各层需要连通的地方用软件中提到的所谓“过孔(Via)”来沟通。有了以上解释,就不难理解“多层焊盘”和“布线层设置”的有关概念了。举个简单的例子,不少人布线完成,到打印出来时方才发现很多连线的终端都没有焊盘,其实这是自己添加器件库时忽略了“层”的概念,没把自己绘制封装的焊盘特性定义为”多层(Mulii一Layer)的缘故。要提醒的是,一旦选定了所用印板的层数,务必关闭那些未被使用的层,免得惹事生非走弯路。 2、过孔(Via) 为连通各层之间的线路,在各层需要连通的导线的文汇处钻上一个公共孔,这就是过孔。工艺上在过孔的孔壁圆柱面上用化学沉积的方法镀上一层金属,用以连通中间各层需要连通的铜箔,而过孔的上下两面做成普通的焊盘形状,可直接与上下两面的线路相通,也可不连。一般而言,设计线路时对过孔的处理有以下原则: (1)尽量少用过孔,一旦选用了过孔,务必处理好它与周边各实体的间隙,特别是容易被忽视的中间各层与过孔不相连的线与过孔的间隙,如果是自动布线,可在“过孔数量最小化”(Via Minimiz8tion)子菜单里选择“on”项来自动解决。 (2)需要的载流量越大,所需的过孔尺寸越大,如电源层和地层与其它层联接所用的过孔就要大一些。 3、焊盘(Pad)

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板得阻抗计算方式有很多种,相关得软件也能够直接帮您计算阻抗值,今天通过polar si9000来与大家说明下阻抗就是怎么计算得。 在阻抗计算说明之前让我们先了解一下阻抗得由来与意义: 传输线阻抗就是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线得分布参数等效电路: 从此图可以推导出电报方程 取传输线上得电压电流得正弦形式 得 推出通解 ? 定义出特性阻抗? 无耗线下r=0,g=0 得??注意,此特性阻抗与波阻抗得概念上得差异(具体查瞧平面波得波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出、

Ok,理解特性阻抗理论上就是怎么回事情,瞧瞧实际上得意义,当电压电流在传输线传播得时候,如果特性阻抗不一致所求出得电报方程得解不一致,就造成所谓得反射现象等等、在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配得重要性在此展现出来、 叠层(stackup)得定义 我们来瞧如下一种stackup,主板常用得8 层板(4 层power/ground以及4 层走线层,sggssggs,分别定义为L1,L2…L8)因此要计算得阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面得一些基本概念,与厂家打交道经常会使用得 Oz 得概念 Oz本来就是重量得单位Oz(盎司)=28、3 g(克) 在叠层里面就是这么定义得,在一平方英尺得面积上铺一盎司得铜得厚度为1Oz,对应得单位如下

介电常数(DK)得概念 电容器极板间有电介质存在时得电容量Cx与同样形状与尺寸得真空电容量Co之比为介电常数:?ε =Cx/Co=ε'-ε”? Prepreg/Core 得概念 pp就是种介质材料,由玻璃纤维与环氧树脂组成,core其实也就是pp类型介质,只不过她两面都覆有铜箔,而pp没有、 传输线特性阻抗得计算 首先,我们来瞧下传输线得基本类型,在计算阻抗得时候通常有如下类型:微带线与带状线,对于她们得区分,最简单得理解就是,微带线只有1个参考地,而带状线有2个参考地,如下图所示 对照上面常用得8 层主板,只有top 与bottom走线层才就是微带线类型,其她得走线层都就是带状线类型 在计算传输线特性阻抗得时候, 主板阻抗要求基本上就是:单线阻抗要求55 或者60O hm,差分线阻抗要求就是70~110Ohm,厚度要求一般就是1~2mm,根据板厚要求来分层得到各厚度高度、 在此假设板厚为1、6mm,也就就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下得叠层来走线。

高速pcb设计指南之六

高速p c b设计指南之六 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

高速PCB设计指南之六 第一篇混合信号电路板的设计准则 模拟电路的工作依赖连续变化的电流和电压。数字电路的工作依赖在接收端根据预先定义的电压电平或门限对高电平或低电平的检测,它相当于判断逻辑状态的“真”或“假”。在数字电路的高电平和低电平之间,存在“灰色”区域,在此区域数字电路有时表现出模拟效应,例如当从低电平向高电平(状态)跳变时,如果数字信号跳变的速度足够快,则将产生过冲和回铃反射现象。 对于现代板极设计来说,混合信号PCB的概念比较模糊,这是因为即使在纯粹的“数字”器件中,仍然存在模拟电路和模拟效应。因此,在设计初期,为了可靠实现严格的时序分配,必须对模拟效应进行仿真。实际上,除了通信产品必须具备无故障持续工作数年的可靠性之外,大量生产的低成本/高性能消费类产品中特别需要对模拟效应进行仿真。 现代混合信号PCB设计的另一个难点是不同数字逻辑的器件越来越多,比如GTL、LVTTL、LVCMOS及LVDS逻辑,每种逻辑电路的逻辑门限和电压摆幅都不同,但是,这些不同逻辑门限和电压摆幅的电路必须共同设计在一块PCB上。在此,通过

透彻分析高密度、高性能、混合信号PCB的布局和布线设计,你可以掌握成功策略和技术。 一、混合信号电路布线基础 当数字和模拟电路在同一块板卡上共享相同的元件时,电路的布局及布线必须讲究方法。图1所示的矩阵对混合信号PCB的设计规划有帮助。只有揭示数字和模拟电路的特性,才能在实际布局和布线中达到要求的PCB设计目标。 图1:模拟和数字电路:混合信号设计的两个方面 在混合信号PCB设计中,对电源走线有特别的要求并且要求模拟噪声和数字电路噪声相互隔离以避免噪声耦合,这样一来布局和布线的复杂性就增加了。对电源传输线的特殊需求以及隔离模拟和数字电路之间噪声耦合的要求,使混合信号PCB 的布局和布线的复杂性进一步增加。 如果将A/D转换器中模拟放大器的电源和A/D转换器的数字电源接在一起,则很有可能造成模拟部分和数字部分电路的相互影响。或许,由于输入/输出连接器位置的缘故,布局方案必须把数字和模拟电路的布线混合在一起。 在布局和布线之前,工程师要弄清楚布局和布线方案的基本弱点。即使存在虚假判断,大部分工程师倾向利用布局和布线信息来识别潜在的电气影响。

PCB叠层及阻抗计算(精典)

关于PCB叠层及阻抗计算 为了很好地对PCB进行阻抗控制,首先要了解PCB的结构: 通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。 通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。 多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。 当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构: PCB的参数: 不同的印制板厂,PCB的参数会有细微的差异。 表层铜箔: 可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um。 芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜 半固化片: 规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0.095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两面用半固化片粘连,这样可以实现较厚的浸润层。 阻焊层: 铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um。 导线横截面: 以前我一直以为导线的横截面是一个矩形,但实际上却是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。 介电常数:半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数: 板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。 介质损耗因数:电介质材料在交变电场作用下,由于发热而消耗的能量称之谓介质损耗,通常以介质损耗因数tanδ表示。S1141A的典型值为0.015。 能确保加工的最小线宽和线距:4mil/4mil。 阻抗计算的工具简介: 当我们了解了多层板的结构并掌握了所需要的参数后,就可以通过EDA软件来计算阻抗。可以使用Allegro来计算,推荐另一个工具Polar SI9000,这是一个很好的计算特征阻抗的工具,现在很多印制板厂都在用这个软件。 无论是差分线还是单端线,当计算内层信号的特征阻抗时,你会发现Polar SI9000的计算结果与Allegro仅存在着微小的差距,这跟一些细节上的处理有关,比如说导线横截面的形状。但如果是计算表层信号的特征阻抗,我建议你选择Coated模型,而不是Surface模型,因为这类模型考虑了阻焊层的存在,所以结果会更准确。下图是用Polar SI9000计算在考虑阻焊层的情况下表层差分线阻抗的部分截图: 由于阻焊层的厚度不易控制,所以也可以根据板厂的建议,使用一个近似的办法:在Surface模型计算的结果上减去一个特定的值,我建议差分阻抗减去8欧姆,单端阻抗减去2欧姆

相关文档
最新文档