异步电机调速系统控制策略发展概况

异步电机调速系统控制策略发展概况
异步电机调速系统控制策略发展概况

所属课程名称

题目

分院

专业班级

学号

学生姓名

指导教师

2013 年 11 月 11 日

异步电机调速系统控制策略发展概况

异步电机相对于直流电机在结构简单、维护容易、对环境要求低以及节能和提高生产力等方面具有明显的优势,使它已经广泛运用于工农业生产、交通运输、国防以及日常生活之中。早期交流调压调速系统的主回路基本上都采用SCR开关器件,输出的电压或电流波形中含有较多的谐波,造成电机转矩脉动大,功率因数较差。随后发展的滑差频率速度闭环控制系统基本上解决了异步电机平滑调速的问题,同时也基本上具备了直流电机双闭环控制系统的优点,结构也不算太复杂,己能满足许多工业应用的要求,具有较广泛的应用价值。然而,当生产机械对调速系统的动静态性能提出更高要求时,上述系统还是比直流调速系统略差一些。原因在于,其控制规律是从异步电机稳态等效电路和稳态转矩公式出发推导出的平均值控制,完全不考虑过渡过程,因而在系统设计时,不得不做出较强的假设,忽略较多的因素,才能得出一个近似的传递函数,这就使得设计结果与实际相差较大,系统在稳定性、起动及动态响应等方面的性能尚不能令人满意。

1971年,德国学者F.Blaschke提出了交流电机的磁场定向矢量控制理论[1],标志着交流调速理论的重大突破。1985年,德国鲁尔大学的DePenbrock教授提出了一种新型交流调速理论一直接转矩控制。这种方法结构简单,在很大程度上克服了矢量控制中由于坐标变换引起的计算量大,控制结构复杂,系统性能受电机参数影响较大等缺点。直接转矩控制在定子坐标系下分析交流电动机的数学模型、控制电动机的磁链和转矩。它不需要将交流电动机与直流电动机做比较、等效、转化;既不需要模仿直流电动机的控制,也不需要为解祸而简化交流电动机的数学模型。直接转矩控制技术采用空间矢量的分析方法,直接在定子坐标系下计算与控制交流电机的转矩,采用电子磁场定向,借助于离散的两点式调节产生PWM信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省掉了复杂的矢量变化与电动机数学模型的简化处理,没有通常的PWM信号发生器,它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,该控制系统的转矩响应迅速,限制在一拍以内无超调,是一种具有高静动态性能的交流调速方法。

第一节 传统的直接转矩控制系统原理

传统的直接转矩控制的结构框图如图:1-1所示。其根据转矩滞环比较器和磁链滞环比较器输出的开关信号TQ 和?T ,以及定子磁链所在的扇区信号sector ,从已知的定子电压开关信号选择表中选择合适开关状态,控制逆变器输出空间电压矢量,以维持转矩和定子磁链的偏差在滞环比较器的容差范围内,从而实现对转矩和磁链的直接控制。定子磁链和电磁转矩的反馈值,可由磁链和转矩计算单元观测得到。之前已经介绍了电压型逆变器和异步电机的数学模型,下面再对传统直接转矩控制系统的其他组成部分得工作原理进行简要说明。

e T ψ图1-1 传统的直接转矩控制系统的结构框图

1.1 磁链和转矩计算单元

直接转矩控制中,定子磁链是不能直接检测的,需要通过定子磁链观测器观测得到。 用定子电压和定子电流来确定定子磁链的观测器模型叫电压—电流定子磁链模型,可得定子磁链的i u -模型的矢量表达式:

?-=dt i R u s s s s

?ψ (1-1)

s

i

s

u

s

?

图1-2 定子磁链的i u -模型框图

模型框图如图1-2所示。该模型结构简单,受参数影响小,适用范围在额定转速30%以上。由于s s s U I R -值较大,测量误差及积分漂移的影响就变得微不足道;采用此模型能比较准确地观测出定子磁链。但是当电机在低速运行时,s s s U I R -的值将变得很小,由于定子电阻s R 参数变化及测量所带来的误差会把实际值淹没掉,而且积分器漂移的影响也变得严重起来,从而就无法有效使用该模型。因此,当电机转速较低时定子磁链的观测就不能再采用电压一电流模型了,而是要采用电流—转速模型,即根据定子电流和转速来观测定子磁

链。

用定子电流和转速来确定定子磁链的观测器模型叫电流—转速定子磁链模型,在30%额定转速以下时,能准确比较观测定子磁链。

由以上得:

s s r r

m s i L L L ??????σψψ+= (1-2)

r r s m r r r T j i L dt

d T ψωψψ?????? +=+ (1-3)

式(1-2)(1-3)组合得到定子磁链的n i -模型,模型框图如图1-3所示。

从式(1-2)(1-3)可以看出,在计算过程中需要用到的电机参数有s L 、r T 、m L 和σ。需要采集的输入变量为定子电流s i

和电机转速r ω。较i u -模型,n i -模型的表达式较为复杂,计算量也相对增加。

i ωs

?

图1-3 定子磁链的n i -模型框图

计算定子磁链需要的定子两相电压αs u 和βs u 的是根据逆变器开关信号a S 、b S 、c S 和直流侧电压d U 的值计算得到的

d

c b s d

c

b a s U S S u U S S S u 3

3

2-=--=

β

α (1-4)

定子两相电流αs i 和βs i 通过3/2变换获得,再根据三相电流的关系式0=++c b a i i i 进行化简,得到计算式为:

b

a s a

s i i i i i 3

3233+==β

α (1-5)

定子磁链幅值计算表达式为

)(22βαψψψs s s -=

(1-6)

电磁转矩通过定子电流和定子磁链计算

)(2

3

βααβψψs s s s p e i i n T ?-?=

(1-7) 式中p n 为电机极对数。

1.2 磁链调节器

磁链调节器功能是根据定子磁链幅值实际值s ψ和幅值给定值*

s ψ的偏差确定磁链开关

信号ψT 。其工作原理是根据定子电压和定子磁链的矢量表达式

?-=dt i R u s s s s

ψ

(1-8)

由于定子电阻通常很小,在分析时若忽略定子电阻压降的影响,则有[8]

?≈dt u s s

ψ (1-9)

式(1-9)上式表明定子磁链空间矢量与定子电压空间矢量之间为积分关系,即增量关系,定子磁链矢量的变化方向跟随电压空间矢量的变化方向。因此,如要使定子磁链轨迹为

图2-4所示的半径为*

s ψ,容差范围为ψε2的圆形轨迹,磁链调节器可以采用滞环比较器实

现,滞环宽度从ψε-到ψε+,如图2-5所示。

α

4

V 5

6

图1-4 定子磁链圆形轨迹

其工作过程如下:当*

s s ψψψε-≥时,说明定子磁链幅值实际值s ψ少于幅值给定值*

s ψ,

并且超出了容差上限ψε,滞环比较器输出1-=ψT ,开关选择表输出合适的定子电压空间

矢量以增大s ψ;当*

s s ψψψε-≤-时,说明定子磁链幅值实际值s ψ大于幅值给定值*s ψ,并

且超出了容差下限ψε-,此时滞环比较器输出1=ψT ,开关选择表输出合适的定子电压空间矢量以减少s ψ;当*

s s ψψεψψε-<-<时,定子磁链幅值实际值s ψ与幅值给定值*

s ψ之差在容差范围ψε2内,此时滞环比较器输出保持不变,电压矢量也保持不变。

ψ

T ψ

图1-5 磁链调节器

1.3 开关选择单元

开关选择单元的功能是,综合磁链开关信号ψT 、转矩开关信号TQ 和定子磁链扇区信号,再根据转矩调节优先的原则,选择合适的定子电压矢量,以达到控制电机转矩和磁链的目的。开关选择表如表2-1所示

表2-1 定子电压开关信号选择表(逆时针旋转)

磁链信号

ψT

转矩信号TQ

扇区1 扇区2 扇区3 扇区4 扇区5 扇区6 -1

-1 V 2 V 3 V 4 V 5 V 6 V 1 1 V 7 V 0 V 7 V 0 V 7 V 0 1

-1 V 3 V 4 V 5 V 6 V 1 V 2 1

V 0

V 7

V 0

V 7

V 0

V 7

在电机运行过程中,电机参数随现场工况变化的影响在一定范围内变化,且这种变化规律事先难以获取,这将导致定子磁链观测器的精度降低。在定子磁链和电磁转矩闭环的异步电机直接转矩控制系统中,磁链观测器工作在反馈通道,如果磁链观测器的幅值大于实际值,将导致电动机的弱磁运行;反之,如果磁链观测器的幅值小于实际值,将导致电动机的过励运行。

为了弥补电机参数变化导致的定子磁链和电磁转矩观测失准问题,考虑到i u -模型和

n i -模型各自的特点,可以采用基于滤波器的定子磁链观测器。高速时定子磁链i u -模型

观测精度高;低速时定子磁链n i -模型观测精度相对较高,因此将定子磁链i u -模型和n i -模型综合在一起,

即在高速时让i u -模型起主要作用,通过低通滤波器将n i -模型的观测值滤除。在低速时让n i -模型起主要作用,通过高通滤波器将i u -模型的观测值滤除。并且使这两个滤波器的转折频率相同,即可实现模型之间的平滑过渡。

基于滤波器的定子磁链观测器原理框图如图3-1所示。定子磁链i u -模型的观测值

ui s _?ψ

通过高通滤波器,定子磁链n i -模型的观测值in s _?ψ

通过低通滤波器,再将这两个

值相加,即为定子磁链的观测值s

s _?ψ

s _?ψ

s

?

图3-1 基于滤波器的定子磁链观测器

电机参数变化导致定子磁链观测器的精度降低,其s R 、s L 和r T 这三个参数的变化对定子磁链观测器的影响较大。通过增加低通和高通滤波器,提高了定子磁链观测器的精度。

1.4改进的磁链调节器和开关选择表

电机低速时,工作电压矢量作用时间很短,零电压矢量作用的时间却很长,定子电阻压降对时间的积分值较大,其对定子磁链的影响也就不能忽略,而导致定子磁链轨迹内陷非常明显。因此在原来磁链调节器两级容差的基础上扩展一级容差[9]

,磁链开关信号在“1”和“-1”基础上再增加“-2”,磁链调节器如图3-2所示。并且引入相应的定子磁链补偿电压,补偿低速时定子压降引起的内陷,得到改进的定子电压开关信号选择表3-1

[10]

ψψ

T

图3-2 增加“-2”级的磁链调节器

表3-1 增加“-2”级的定子电压开关信号选择表

磁链信号ψT

转矩信号TQ

扇区1 扇区2 扇区3 扇区4 扇区5 扇区6 -2

-1 V 3 V 4 V 5 V 6 V 1 V 2 1 V 1 V 2 V 3 V 4 V 5 V 6 -1

-1 V 2 V 3 V 4 V 5 V 6 V 1 1 V 7 V 0 V 7 V 0 V 7 V 0 1

-1 V 3 V 4 V 5 V 6 V 1 V 2 1

V 0

V 7

V 0

V 7

V 0

V 7

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 学院班级信电工程学院13自动化 专业名称电气工程及其自动化 指导教师肖理庆 2016年6月14日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (2) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (3) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) .. 7 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13) 附录2 (13)

转差频率控制的异步电动机

转差频率控制的异步电 动机 Revised as of 23 November 2020

转差频率控制的异步电动机 矢量控制系统仿真实训报告 二级学院 专业电气工程及其自动化 班级 指导教师 2014年6月 摘要 矢量变换控制技术的诞生和发展奠定了现代交流调速系统高性能化的基础。交流电动机是个多变量、非线性、强耦合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到了显着的改善和提高,从而使交流调速取代直流调速成为可能。目前对调速性能要求较高的生产工艺已较多地采用了矢量控制型的变频调速装置。实践证明,采用矢量控制的交流调速系统的优越性高于直流调速系统。 本文基于MATLAB?对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方

法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。 关键词:异步电动机矢量控制转差角频率 MATLAB 目录

一、转差频率控制的异步电动机矢量控制调速系统 1.矢量控制概述 矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制(VC)方式:矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1和Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

电机调速控制系统设计

一、问题描述 针对电机调速控制系统,设计计算机可实现的PID 控制器,利用simulink 平台实验研究,确定最佳的离散周期并给出实验结果分析和与连续PID 控制器的比较。离散控制器输出连续的受控过程时加零阶保持器。 有余力的同学可尝试设计最小拍无波纹控制器。 二、理论方法分析 离散控制系统所特有的一个参数就是采样周期。可以说离散控制系统的采样周期的选择的基本原则是活的最高的体统性能性价比。 由于采样周期的选择是众多因素的折中考虑,所以一般中有一些近似的计算公式和经验数值可以利用。 在PID 整定完的系统中,对于输入阶跃响应信号可以用两种方法计算出采样周期; ⑴考虑系统阶跃响应的上升时间r t ,则有采样周期24 r s r t T t ≤≤;r t 表示系统的反映速度。 ⑵知道系统是有自平衡的过程,采用过程时间常数 95T ,95T 定义为阶跃响应)(t y 从0变到95%)(∞y 的时间,它综合反映了过程的自平衡能力,其经验公式为 95 9517.007.0T T T s ≤≤。 三、实验设计与实现 搭建Simulink 图后,观测输出波形,发现,上升至95%所需时间约为0.268s

因为959517.007.0T T T s ≤≤。故取Ts 为0.02. 再搭建离散控制系统Simulink 图 四、实验结果与分析 PID 控制器与离散控制比较。见下图:

比较后发现:利用离散控制系统设计的系统性能指标能够达到PID所要求的水平。 五、结论与讨论 利用离散控制系统设计方法设计的离散控制系统与PID整定法设计的连续控制系统性能基本接近。 但在某些场合,特别是现代的工业过程控制中,利用数字电子元件设计的系统有诸多优势:例如方便与计算机相连,便于历史、实时数据存储和传输等 事后感: 由于这部分理论知识学习的不扎实,实验过程中似有“云里雾里”之感…… 参考文献: [1] 杨平等编著,自动控制原理实验与实践. 北京:中国电力出版社,2005 [2] 杨平等编著,自动控制原理理论篇. 北京:中国电力出版社,2009

三相异步电动机的结构与工作原理

三相异步电动机的结构与工作原理 5.1 三相异步电动机 实现电能与机械能相互转换的电工设备总称为电机。电机是利用电磁感应原理实现电能与机械能的相互转换。把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。 在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。 对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。 5.1.1 三相异步电动机的结构与工作原理 1.三相异步电动机的构造 三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。此外还有端盖、风扇等附属部分,如图5-1所示。 图5-1 三相电动机的结构示意图 1).定子 三相异步电动机的定子由三部分组成:

2).转子 三相异步电动机的转子由三部分组成: 鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用 得最广泛的一种电动机。 为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm 之间。 2.三相异步电动机的转动原理 1).基本原理 为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。 图 5-2 三相异步电动机工作原理

(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。 (2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。 转子转动的方向和磁极旋转的方向相同。 (3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。 2).旋转磁场 (1).产生 图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。并接成星形与三相电源U 、V 、W 相联。则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。 00sin sin(120)sin(120)U m V m W m i I t i I t i I t ωωω=??=-??=+? 图 5-3 三相异步电动机定子接线 当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流 出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。 当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。 当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。 可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间 旋转一周。随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地 B

交流异步电动机调速系统控制策略

交流异步电动机调速系统控制策略 发表时间:2018-10-01T12:18:49.203Z 来源:《基层建设》2018年第27期作者:刘英敏 [导读] 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。 齐鲁石化运维中心炼油电气山东淄博 255434 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。 关键词:交流异步电动机;调速系统;策略;方向 交流异步电动机是一种将电能转化为机械能的电力拖动装置,其主要成分包括定子、转子和气隙。定子绕阻在接通三相交流电之后能够产生磁场,而且还切割了转子,进而获得转矩。交流异步电动机具有结构简单、运行稳定、价格实惠、安装和维护方便等优点,使其得到了广泛的应用。 交流异步电动机常见的调速方法有降压调速、转子串电阻调速和变极对数调速等,其中的变压变频调速的调速范围宽、灵活性较强,应用较为广泛。变压变频调速时的转差功率能够保持稳定,在配以一定的技术后能够保持高性能,能够与直流调速系统想媲美。本文以现代控制理论为基础分析了对异步电动机的变压变频调控策略的分析。 一、基于静态模型的控制策略 对异步电动机的调速的本质在于对电磁转矩的控制。传统的异步电动机交流调速系统以T型稳态等电路建立了数学模型,但对电磁转矩的控制率低。但其也有结构简单、工作场合要求低等特点,在风机和水泵中得到了广泛的应用。 1.对转速开环、恒压频比的控制 对转速开环和恒压频比控制的核心在于对电压和频率的控制,确保电压频率比保持稳定不变的情况下,以改变异步电动机的同步转速进行调速。在这一过程中,当电磁转矩不变时,转差频率不变,负载时的转速不变,通过改变电子电压频率来稳步改变转速。由于转速开环、恒压频比不能控制电磁转矩,其动态性能较差,调速范围也十分有限。 2.转速闭环、转差频率控制 能够控制电磁转矩就能够提高系统的动态性能。在转速开环、恒压频比上进行转速闭环控制,当电压频率陡然增加时,电机转速较为迟疑,造成转差额较大,电机转速提高,进而实现了对转速的控制。 二、基于动态模型的传统控制策略 上述的一种控制策略从稳态的电路出发,在稳态的情况下气隙恒定,动态性较差。要向实现动态性的调速,就要控制异步电动机的磁通和电磁转矩,常见的控制策略是矢量控制、直接转矩控制等。 1.矢量控制 矢量控制起源于感应电机磁场定向控制,并在感应电机定子电压上逐渐形成了矢量控制理论。矢量控制能够将定子电流分解成励磁分量和转矩分量,并在各自控制器的独立控制下实现了控制。矢量控制的关键在于保持转子磁链的恒定,因此就需要随时掌握转子磁链的信号。在初始阶段,人们尝试使用磁链传感器检测转子磁链,但其工艺和技术不太理想,而且转速低时的脉动分量大大超出了平常。当前的矢量控制系统多使用软测量的方法,例如电压、电流信号等。 2.直接转矩控制 矢量控制在理论上实现了磁链和转矩的解耦控制,但其坐标变换和转子磁链的准确性限制了矢量控制范围的准确性。而直接转矩控制系统通过双位控制器控制电磁转矩,选择合适的电压矢量控制电机,转矩响应速度快,稳定性也更高。 三、现代控制策略 传统控制策略会收到电机参数和扰动的影响,因此,现代控制理论与矢量控制、直接控制理论相结合,并且通过设计参数辨识器、观测器等修正模型,提高系统的鲁棒性。 1.滑模变结构控制 滑模变结构控制是通过变革结构控制实现控制,其实质是通过不连续的控制率使其按照要求的轨迹运动,常与矢量控制和直接转矩控制相结合使用。传统的滑模控制器只有滑动到面上时才具备不确定的干扰抑制力,常见的简单的办法是提高增益性使系统能够快速收敛到滑动面,但随之抖动也家具,使系统变得不稳定。全滑模控制具有全程性,在通过滑动模块控制的基础上,需要设计一个非线性的动态滑模来消除滑模控制,使系统具备全过程的鲁棒性,克服了原有的缺点。滑模变结构控制还有另外一个缺点,即当达到滑动后,滑动面向平衡点运动的轨迹难以得到控制,容易产生抖动。 2.自适应控制 由于异步电动机的参数与电机工作状态联系紧密,而矢量控制和直接转矩控制的动态性能也容易受到参数的变化,其自适应控制受到了广泛关注。自适应控制系统中常见的调速系统包括自适应控制和自适应观测器。模型自适应控制器以参考模型的输出为理想输出,以控制被控制对象的动态性和参考模型的动态性一致,其中涉及到的问题有负载转矩的矫正、速度控制器等。为了解决这些问题,需要掌握状态变量,如定子电流、转速等,但还需要定转子磁链自适应观测器,其以磁链为工具,以实际输出量和预估输出量为基准进行矫正,能够实现对转子电阻和转速的有效辨识。另外,还有一种自适应观测器——卡尔曼滤波器,它具有观测和滤波功能,能够消除系统噪音,提高了观测器的精度,使其鲁棒性更强。但交流调速系统以非现行系统为主,人们多以交流调速系统方程建立卡尔曼滤波方程,并加入了参数辨识、转速观测等,使观测器更加简化。 3.模糊控制 在矢量控制系统中,以转速和电流控制器为设计对象均能够将其设计成模糊控制器,进而掌握电极参数的变化和负载扰动的抑制能力。模糊控制常用在直接转矩控制中,更好地实现了定子电阻的控制,有效地实现了对异步电动机定子电阻的检测。 4.神经网络控制 神经网络控制的非线性模型包括神经网络辨识器和神经网络控制器的设计。神经网络能够矫正定、转子电阻,能够有效消除其对转子

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路 输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

同步电机与异步电机的概念、区别及应用前景

异步电机与同步电机的控制原理,应用领域 和研究热点 班级: 学号: 姓名:

同步电机,和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场 运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。 1.转速闭环恒压频比控制 转速闭环恒压频比控制是一种最常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首选的方法。 2.转差频率控制 转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩 3.矢量控制 矢量控制框图如图2 所示。 1971 年,西门子工程师Balschke 首次提出矢量控制理论,使交流电机控制理论获得了一次质的飞跃。其基本思想为:以转子磁链旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与磁链同方向,代表定子电流励磁分量,另一个与磁链方向正交,代表定子电流转矩分量,分别对它们进行控制,获得像直流电动机一样良好的动态特性。因其控制结构简单,控制软件实现较容易,已被广泛应用到调速系统中。但矢量控制方法在实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使控制效果大打折扣。

基于PLC的电机调速控制系统

控制系统课程设计 项目名称:以西门子S7-200为核心的电机速度监控 系统 学生姓名 / 学号: 卢泽涛 1307300108 吴钟森 1307300105 夏杰东 1307300107 指导老师:黄峥 班级电气133 专业名称电气工程及其自动化 提交日期 2016 年 12月 15 日 答辩日期 2016 年 12月 15日

一、系统整体功能说明及软硬件选型 1、通过PLC控制变频器,实现远程方式控制控制鼠笼式异步电动机的正反转及速度。 2、将编码器中与转速相对应的输出电压采集到PLC中。 3、通过PLC编写PID控制程序,控制电机的转速。 4、应用触摸屏组态软件设计控制系统的界面,与PLC进行动态连接,可在界面中控制电机的转速,显示变频器的频率、电机的正反转状态、实际转速等。 5、设置电机的正常转速范围(上、下限),当电机转速超出正常范围时,停机并报警,并可复位报警信号。 6、软硬件选型说明表如下: 二、 I/O点与输入输出设备对应关系表 PLC与变频器对应接线表

组态软件与PLC通信关系表 另外,变频器U、V、W端口分别接电机A、B、C三相,如图: 三、系统的原理图,包括主电路和控制电路。

四、软硬件相关设置的说明 1、软件相关设置:MCGS组态软件与西门子s7-200PLC连接相关设置如下: 2、欧姆龙变频器参数设置:n01=08;n02=01;n03=02;n32=0.4

五、程序功能的详细说明 1、MCGS组态设计,设计的界面以及功能如下: (1)电机运转前必须先输入转速(例如800 r/min)然后点击正转或反转按钮,为了安全,在电机转向切换时,先按停止,待电机停下再进行转向变换。 (2)该组态设置了电机转速报警,大于上限值(例如|1200| r/min)时停机报警。 (3)该组态可精准转换编码器转速对应频率。 (4)PID控制参数于PLC程序中编好,采用效果最好的一组。 (5)各参数设置详见上文第四硬件设置部分。 2、西门子s7-200PLC原程序详细说明如下:(见下页)

双速异步电机的调速控制线路

双速异步电机的调速控制线路 根据异步电动机转速公式:,当电源频率f 一定时,若改变电动机定子绕组的磁极对数P,就可使电动机转速改变。采用双速电机可改善机床的调速性能,简化变速机构,因此在车、铣、镗床中都有应用。常见的双速电动机的绕组有两种接线方式:Δ/YY 及Y/YY。 1.Δ/YY接法 图a)为双速电动机Δ/YY接法电路图。当绕组的1、2、3号出线端接电源,而使4、5、6号出线端悬空时,电机绕组接成三角形,每相绕组中有两个线圈串联,成四个极,电动机低速运转;当把1、2、3号端子短接,4、5、6号端子接电源时,则绕组为双星形,每相绕组中两个线圈并联,成两个极,电机作高速运转。 在三角形与双星形转换时,电动机输出功率分别为: 由于,所以。 由此可知,电机从Δ接法的低速运转变成YY接法的高速运转时,转速升高一倍,而功率只增加15%,所以这种调速方法可近似地看成恒功率调速。它很适合一般金届切削机床对调速的要求。 2.Y/YY接法 图b)为Y/YY接法,当电机转速增加一倍(YY接法)时,输出功率也增加一倍,属于恒转矩调速。它适用于电梯、起重饥、皮带运输机等要求恒转矩调速的场合。 3. 控制电路 图2.25为常用的双速电动机Δ/YY调速控制电路图,其中:KM1得电为低速,KM2得电为高速,KM3为短接接触器。

图a)用两个复合按钮SB2及SB3分别控制KM1及KM2、KM3,实现低速与高速的直接转换而无需经过停止状态。 图b)是用转换开关SA来选择低速或高速方式后,由按钮SB2发令启动电动机的控制电路。 图c)转换开关SA选择高、停、低速。当选择高速时,采用时间继电器KT,按时间原则自动控制电动机低速起动、经延时后转换到高速运行。 上述三个控制电路中,低速与高速之间都用接触器动断触头互锁,以防短路故障。 功率较小的双速电动机可采用图a)和图b)的控制方式;容量较大的双速电动机,宜可采用图c)的控制方式。

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

(技术文档2)异步电机目前几种主要控制方法的对比分析

异步电机几种主要控制方法的对比分析 近些年来,随着电力电子、计算机控制以及矢量控制等技术的不断发展,交流调速获得了巨大的技术支持,交流调速系统已经取代了直流调速系统。交流异步电机调速控制系统大致可分为两大类,一类是标量控制系统,主要是变频调速系统,包括恒压频比控制(V/F 控制)和转差频率控制。另一类是矢量控制系统,包括转子磁场定向矢量控制(VC )、转差频率矢量控制、直接转矩控制(DTC )和无速度传感器矢量控制。 1 标量控制 1.1 恒压频比控制( V/F) 交流异步电机调速时,总是希望保持每极磁通量m Φ为额定值不变,这样铁芯才能工作在最经济状态。电源频率和电机极对数决定异步电动机的同步转速,即在改变电源频率时,可以改变电机的同步转速,这时只有控制电源电压与变化的频率的比值为恒定( V/F 恒定) ,才能确保电动机的磁通m Φ基本恒定。电动机定子的感应电动势: m N 111K 44.4Φ=N f E g (1) 式中Eg —气隙磁通在定子每相绕组中感应电动势有效值; 1f —电源频率; 1N —定子每相绕组串联匝数; 1N K —基波绕组系数; m Φ—每极气隙磁通量。 由式(1)可知,在控制电动机频率时,保持1/f E g 1恒定,就可以维持磁通恒定。有三种不同方式的电压—频率协调控制。 (1) 恒压频比=11/f U 控制,1U 为定子端电压,这种方式最容易实现,能够满足一般调速要求,其缺点是低速带载能力差,需要对定子压降进行补偿。 (2) 恒1/f E g 控制,g E 是气隙磁通在定子每相绕组中感应电动势,它以对恒压频比实行电压补偿为目标,稳态调速性能优于恒压频比11/f U 控制。这种控制方式的缺点是机械特性非线性,产生转矩的能力不强。 (3) 恒1/f E r 控制,r E 是气隙磁通在转子每相绕组中感应电动势,这种控制方式可以得到和直流励电动机一样的机械特性,从而使高性能调速得以实现。但是它的控制系统比较复杂。

电机调速控制设计

系统设计专题之电机调速控制设计 学院:自动化与电气工程学院 班级:******** 姓名:***** 学号:******* 日期:*******

1CPLD系统简介 1.1CPLD简介 CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL 和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。 1.2CPLD系统的基本构架 主要包括有处理器、外围电路及接口和外部设备三大部分其中外围电路一般包括有时钟、复位电路、。程序存储器、数据存储器和电源模块等部件组成。外部设备一般应配有USB、显示器、键盘和其他等设备及接口电路。在一片CPLD 微处理器基础上增加电源电路、时钟电路和存储器电路,就构成了一个CPLD核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1.3CPLD系统的特点 采用32位EPM3032A微处理器和实时操作系统组成的CPLD控制系统,与传统基于单片机的控制系统和基于PC的控制方式相比,具有以下突出优点:性能方面:采用32位RISC结构微处理器,主频从30MHz到1200MHz以上,接近PC机的水平,但体积更小,能够真正地“嵌入”到设备中。 实时性方面:CPLD机控制器内嵌实时操作系统(RTOS),能够完全保证控制系统的强实时性。 人机交互方面:CPLD控制器可支持大屏幕的液晶显示器,提供功能强大的图形用户界面,这些方面的性能也接近于PC,优于单片机。 系统升级方面:CPLD控制器可为控制系统专门设计,其功能专一,成本较低,而且开放的用户程序接口(API)保证了系统能够快速升级和更新。 1.4CPLD技术的应用领域 CPLD技术可应用在:工业控制;交通管理;信息家电;家庭智能管理;网络及电子商务;环境监测;机器人等领域。 在工业和服务领域中,大量CPLD技术也已经应用于工业控制、数控机床、智能工具、工业机器人、服务机器人等各个行业,正在逐渐改变着传统的工业生产和服务方式。例如,飞机的电子设备、城市地铁购票系统等都可应用CPLD系统来实现。

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

直流电机PWM调速控制系统

直流电机PWM调速控制系统

摘要:为了验证控制策略和电机参数设计的合理性,基于matlab/simulink平台,从无刷直流电机的基本原理出发,详细介绍电机各个模块的组成,构建了无刷直流电机pwm调速控制系统的建模与仿真模型,给出仿真曲线并验证该模型的正确性。 关键词:无刷直流电机模型仿真 1、引言 随着无刷直流电机(bldcm)应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。本文主要研究反电势近似梯形波的永磁无刷直流电机模型的建立与仿真,根据电机的参数和实际运行状况,通过matlab软件的simulink和psb 模块,快捷地创建一些电机控制系统模型,并与simulink结合,实现电机控制算法的仿真。文章介绍了如何创建无刷直流电动机的动态数学模型和pwm调速控制系统模型,并利用该模型,进行了pwm 调速控制系统的仿真试验。 2、无刷直流电机的数学模型 以两相导通三相六状态的无刷直流电机为例。方波无刷直流电动机的主要特征是反电动势为梯形波,包含有较多的高次谐波,这意味着定子和转子的互感是非正弦的,并且无刷直流电动机的电感为非线性[1]。采用直、交变换理论己经不是有效的分析方法,因此应该利用电机本身的相变量来建立数学模型。为简化数学模型的建立,在电动机模型建立时,认为电动机气隙是均匀的。并作以下假设[2]:

(1)电动机的气隙磁感应强度在空间呈梯形(近似为方波分布); (2)定子齿槽的影响忽略不计; (3)电枢反应对气隙磁通的影响忽略不计; (4)忽略电动机中的磁滞和涡流损耗; (5)三相绕组完全对称。 无刷直流电动机在运行过程中,每相绕组通过的不是持续不变的电流,该电流和转子作用产生的转矩,以及绕组上的感应电动势也都不是持续的。因此转矩和反电动势都采用平均值的概念。由以上假设,根据无刷直流电动机的特性,可建立其电压方程、转矩方程、状态方程以及等效电路结构。 对于三相无刷直流电机,其电压平衡方程可表示为[3] 式中:为定子相绕组电压(v);为定子相绕组电流(a);为定子相绕组反电动势(v);r为每相绕组的电阻(); l为每相绕组的电感(h);m 为每相绕组间的互感(h)。 在通电期间,无刷直流电机的带电导体处于相同的磁场下,各相绕组的反电动势为理想梯形波,其幅值为 式中:为反电动势系数;为转子的机械角速度。 无刷直流电动机的电磁转矩方程为: 式中:为电磁转矩;转子的机械角速度。 无刷直流电动机的运动方程为:(4) 式中:为负载转矩;f为粘滞阻尼系数;j为转子与负载的转动惯量。

《驱动电机及控制技术》教学大纲

《驱动电机及控制技术》教学大纲 一、授课对象 本课程适用于汽车服务系新能源汽车制造与装配专业(中、高级)班三年制 二、课程学时 总学时108课时,6课时/周,1学期授完。 三、课程的任务和目的 本课程是中等职业学校电子技术应用与维修专业教材,是一门机电类专业课程。其任务是:使学生掌握常用电动机的结构及其控制方法,培养学生对常用电动机的维护、保养与检修的技能和解决实际问题的能力;对学生进行职业意识培养和职业道德教育,提高学生的综合素质与职业能力,增强学生适应职业变化的能力,为学生职业生涯的发展奠定基础。 本课程目的是:使学生能掌握电动类、制冷类日用电器中主要使用的三种电动机——单相异步电动机、直流电动机和单相串励电动机的结构、原理及应用,以及电动类、制冷空调类电器专用电动机的结构及其控制方法。熟悉对上述电动机进行维护、保养与检修。结合生产生活实际,培养学生对所学专业知识的兴趣和爱好,养成自主学习与探究学习的良好习惯,从而能够解决专业技术实际问题,养成良好的工作方法、工作作风和职业道德。 四、课程内容和要求 第一章:直流电动机 8课时 1.教学内容: 第一节:直流电动机的结构和分类 第二节:直流电动机的工作原理与运行特性 第三节:直流电动机的起动、反转和调速。 2.教学要求与建议:了解直流电动机的基本结构和分类,掌握直流电动机 的基本工作原理,理解直流电动机的起动、反转、调速的原理和方法,初步了解 直流电动机常见故障的检修方法。 第二章:单相异步电动机 10课时 1.教学内容: 第一节:异步电动机的结构和工作原理 第二节:单相异步电动机的分类 第三节:单相异步电动机的反转和调速 2.教学要求与建议:了解单相异步电动机的基本结构,掌握单相异步电动 机的基本工作原理,理解异步电动机的分类和起动方式,了解单相异步电动机的 反转、调速的原理和方法,初步了解单相异步电动机常见故障及其检修方法。

异步电机控制文献综述

文献综述 毕业设计题目:基于freescaleDSC 的电机控制设计

基于freescaleDSC的电机控制设计 滕昭跃 (08电子信息科学与技术(1)班E08640119) 一、前言 电机行业是一个传统的行业。经过多年的发展,它已经成为现代生产、生活中不可或缺的核心、基础,是国民经济中重要的一环。电动机主要分同步电动机、异步电动机与直流电动机三种,分别应用于不同的场合,而其中又以三相异步电动机的使用最为广泛。到目前为止,我国的电机制造业已经具有一定规模。在现代电动机控制中,长期以来存在着交流调速和直流调速方案之争,早在19世纪末,电力系统中就有过交流供电和直流供电之争,结果经过半个世纪的争论,由于三相交流电的发明,使电力系统的交流化取得了胜利[1]。由于电力电子器件的不断发展,这对交流电机的控制和调速奠定了物质基础。电力电子器件是实现弱电控制强电的关键所在。以普通晶闸管构成的方波形逆变器被全控型高频率开关器件组成的脉宽调制(PWM)逆变器取代,正弦波脉宽调制(SPWM)逆变器及其专用芯片得到了普遍应用。在现代电机控制理论中,交流变压变频技术是一种转差功率不变高效型调速技术,它是现代交流调速的主要控制方法,自20世纪60年代获得突破性进展以来,一直受到人们的高度重视。交流变压变频技术按其控制方式可简单分为:V/F恒定正弦脉宽调制(SPWM)、电压空间矢量(SVPWM)、矢量控制和直接转矩控制三代控制方式[2]。在20世纪80年代初期出现了数字信号处理器,DSP(Digital Signal Processors)以运算速度快为显著特征而单片机则以数字控制功能强为特点。电动机的数字控制既要求控制器有强大的 I/O 控制功能,又要求控制器有高速的信号处理能力以实现实时控制。因此世界上各大DSP生产商将DSP的高速运算速度与单片机的高控制能力相结合,开发出电机控制的专用DSC。其中由飞思卡尔公司生产的56f8300系列DSC就是为电机控制所研发。这种 DSC是目前用于电机控制中功能最强大的控制器。它足以满足以上几种控制方式的需求[3] [4]。 二、电机的交流调速 从世界上第一台电动机诞生以来,交流电机变频调速技术的发展一直没有得到大

相关文档
最新文档