火焰原子吸收光谱法测定铜含量

火焰原子吸收光谱法测定铜含量
火焰原子吸收光谱法测定铜含量

火焰原子吸收光谱法测定铜含量

一、实验目的

1、掌握原子吸收光谱法的基本原理;

2、了解原子吸收分光光度计的主要结构及工作原理;

3、掌握用火焰法定量测定元素含量的方法

二、实验仪器

TAS-986原子吸收分光光度计计算机及其软件

铜标准液容量瓶取液枪烧杯等

该仪器主要包括:微型计算机和原子吸收分光光度计主机。主机是由光源、原子化系统、分光系统和检测系统组成,其内部结构如图1所示。仪器可分别实现火焰法测量和石墨炉法测量。由于两种测量方式有区别,因此在实验内容中详细介绍。

原子化器

单色仪空心阴极灯检测器切光器

燃气

原子化系统

助燃气雾化器废液

样品液

图1 原子吸收分光光度计主机内部结构图

各部分的主要功能:

(1)空心阴极灯:发射待测元素的特征光谱。

(2)原子化系统:提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。

(3)分光系统:将待测元素的共振线与邻近谱线分开。

(4)检测系统:包括光电元件和记录系统,前者可用光电倍增管将光信号转变为电信号,后者可用检流计和记录仪来进行记录,再利用电脑直接进行数据处理。

三、实验原理

1、基本原理

利用空心阴极元素灯光源发出的特征辐射光,为火焰原子化器产生的样品蒸气中的待测元素基态原子所吸收,通过测定特征辐射光被吸收的大小,来计算出待测元素的含量。

当有辐射通过自由原子(如镁、铜原子)蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。(如镁原子吸收

,铜原子吸收的光),能量与频率的关系为: 285.2nm和279.6nm324.8nm和327.4nm

c (1) ,E,hv,h,

共振吸收线:电子从基态跃迁到能量最低的激发态(第一激发态)为共振跃迁,所产生的谱线。共振发射线:当电子从第一激发态跃迁到基态时,则发射出同样频率的谱线(如图2所示)特征谱线:各种元素的原子结构和外层电子排布不同,不同元素的原子从基态第一,激发态时,吸收和发射的能量不同,其共振线不同,各有其特征性。

激发态 L II0

原子蒸气共振发射共振吸收

基态

图2 原子能级跃迁图图3 原子蒸气吸收图

在原子蒸气中(包括被测元素原子),可能会有基态与激发态存在。根据热力学的原理,在一定温度下达到热平衡时,基态与激发态的原子数的比例遵循分布定律。 Boltzman

NN,ggexp(,E/kT) (2) i0i0i

ggNN与分别为激发态与基态的原子数;为激发态与基态的统计权重,它表示

i0i0

E能级的简并度;为热力学温度;为常数;为激发能。 TkBoltzmani

NN从上式可知,温度越高,值越大,即激发态原子数随温度升高而增加,而且按i0

NN指数关系变化;在相同的温度条件下,激发能越小,吸收线波长越长,值越大。尽i0管如此变化,但是在原子吸收光谱中,原子化温度一般小于3000K,大多数元素的最强共振

,3NN线都低于600 nm,值绝大部分在以下,激发态和基态原子数之比小于千分之10i0

一,激发态原子数可以忽略。因此。在通常的原子吸收测定条件下,原子蒸气中基态原子数

N近似等于总原子数。基态原子数可以近似等于总原子数。 NO

I若将入射强度为的不同频率的光通过原子蒸气,吸收后其透过光的强度与原子蒸I0

汽的厚度L的关系,服从朗伯定律,如图3所示。

,KLvI,Ie (3) 0

Kv其中为基态原子对频率为的光的吸收系数。为吸收层厚度。 Lv

由于物质对不同频率的入射光的吸收具有选择性,因而透过光的强度将随着入射光的I

v频率而变化其中表明原子蒸气在处有吸收(如图4-a所示)。若将吸收系数对频率作图,所0

得曲线为吸收线轮廓(如图4-b所示)。原子吸收线轮廓以原子吸收谱线的中心频率(或中心波长)和半宽度表征。中心频率由原子能级决定。半宽度是中心频率位置,吸收系数极大值一半处,谱线轮廓上两点之间频率或波长的距离。

图4 吸收轮廓线

2、吸收系数的测定

(1)积分吸收

在吸收线轮廓内,吸收系数的积分称为积分吸收系数,简称为积分吸收,它表示吸收的全部能量。从理论上可以得出,积分吸收与原子蒸气中吸收辐射的原子数成正比。数学表达式为:

2eNf,0 (4) Kdv,v,mc

Nemc其中:为电子电荷;为电子质量;为光速; 为单位体积的基态原子数;f 振子0

强度,即能被入射辐射激发的每个原子的平均电子数(一定条件下,一定元素,可看作是定值)。这是原子吸收光谱分析法的重要理论依据。若能测定积分吸收,则可求出原子浓

,3度。但是,测定谱线宽度仅为的积分吸收,需要分辨率非常高的色散仪器。10nm

(2)峰值吸收

目前,一般采用测量峰值吸收系数的方法代替测量积分吸收系数的方法。如果采用发射线半宽度比吸收线半宽度小得多的锐线光源,并且发射线的中心与吸收线中心一致,如图5所示。这样就不需要用高分辨率的单色器,而只要将其与其它谱线分离,就能测出峰值

,vDoppler吸收系数。在一般原子吸收测量条件下,原子吸收轮廓取决于宽度(由于原D子在空间作做无规则的热运动产生多普勒效应而引起的,又称热变宽)。

T7,vv (5) ,,7.162,10D0Ar

vA- 谱线中心频率; - 热力学温度;-相对原子质量 T0r

通过运算可得峰值吸收系数:

2e2,ln2 (6) KNf,,00vmc,D

KN可以看出,峰值吸收系数与原子浓度成正比,只要能测出就可得出。 00 发射线 A A 吸收线

I

C C

, ,0

图5 发射线与吸收线图6 校准曲线图 (3)锐线光源

锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓

K可看作一个很窄的矩形,即峰值吸收系数在此轮廓内不随频率而改变,吸收只限于发射v

K线轮廓内。这样,一定的即可测出一定的原子浓度。 0

利用峰值吸收系数来代替积分吸收系数的条件:a、光谱源发射线的中心频率与吸收线中心频率一致(波长应是待测元素的特征谱线);b、发射谱线的半宽度必须比吸收线的半宽度小得多(光源应发出锐线光谱)。

在实际测量过程中,有一个非常重要的参量为吸光度,用表示: A

I0A,lg,0.4343KL,KNL (7) 00Iv

N在实际分析过程中,当实验条件一定时,正比于待测元素的浓度。 0

3、分析方法—校准曲线法

配制一组含有不同浓度被测元素的标准溶液,在与试样测定完全相同的条件下,按浓度由低到高的顺序测定吸光度值。绘制吸光度对浓度的校准曲线(如图6所示)。测定试样的吸光度,在校准曲线上用内插法求出被测元素的含量。

四、实验内容(以铜元素的测定为例)

1、确定待测样品需要检测的元素(铜元素),配制铜元素的标准溶液,准备相应元素灯。

2、检查乙炔气瓶是否能够维持正常使用,打开水路,条件不齐备测试不能继续进行。

3、仪器初始化

开启计算机,使计算机进入Windows操作系统,双击桌面上AAWin图标,启动仪器分析测试程序。此时计算机进入以下界面(如图7所示),接下来,将弹出进行模式对话框,如图9所示,在运行模式下拉框中选择联机,点击确定按钮,仪器进入初始化阶段……

图7 开启界面图8 初始化界面

初始化成功的标记为“?”,否则标记为“×”,如果有一项失败,则系统的初始化没有成功。 3、选择元素灯

初始化成功后,系统将出现元素灯选择窗口,此窗口提供对元素灯及元素相关参数的设置。通过以下界面(如图9所示)选择工作灯的位置及类型。

图9 元素灯选择界面

4、元素参数的设定(默认的测量方式为火焰法)

元素选择完毕后,将出现元素参数设定界面(如图10所示),调整完毕后,点击“下一步”,将会对参数进行调整,然后再对选定元素灯的特征波长进行寻峰操作,在下拉菜单中选择元素的特征波长,单击“寻峰”,即可进入寻峰画面(如图11),

图10 元素参数设定界面图11 寻峰画面

完成寻峰后,即进入系统测试状态(如图12所示)。

5、样品参数设定

选择主菜单“设置”?“样品设置向导”(或单击工具按钮“”),即可打开样品设置向导,依次点击“下一步”分别对样品进行设置(如图13)。

图12 系统测试界面图13 样品设置界面 6、火焰法测量

(1)选择主菜单“仪器”?“点火”(或单击工具按钮“”)将火焰点燃。

(2)选择主菜单“测量”?“开始”(或单击工具按钮“”)即可打开测量窗口,测量谱图中将开始绘制测量曲线。

(4)单击测量窗口“开始”按钮进行采样。(在测量参数中可以设置测量方式?手动或自动)。

依次对标准样品和未知样品进行采样,样品与样品之间喷入空白样品,单击“校零”按钮进行校零。采样结束后,系统回将测量结果显示在测量窗口中,并在第三次重复采样时,开始显示SD和RSD值。测量窗口中除了显示吸光度外,还显示“AA”值与“BG”(背景)值,同时在测量谱图中出现AA曲线和吸光度曲线。

(5)当完成了全部样品的测量,即可关闭测量窗口。如需要保存测量结果,可单击主菜单“文件”?“保存”(或单击工具按钮“”)即可。如需要打印测量数据,可单击“文件”?“打印数据” 或单击工具按钮“”即可。

3、石墨炉法测量(选作)

(1)初始化过程及参数设定过程完成后,点击主菜单“仪器”?“测量方法”,在出现的对话框中选择“石墨炉”即可,系统将自动完成从“火焰法”向“石墨炉”的转换。(注意:在转换之前,应将隔板拿开,以免损坏石墨炉。)

(2)如果是第一次测量,需要对加热程序进行设置。(包括对温度—保持时间—原子化器参数—内气流量)完成后点击“确定”。

(3)选择主菜单“测量”?“开始”,系统将进入测量窗口。

(4)用微量进样器将样品准确加入到石墨管中,单击“开始”,系统开始对石墨炉加热。此时测量曲线出现在谱图中,并在测量窗口中显示当前的石墨炉温度、加热步以及单步的倒计时。

(5)测量完毕后,将弹出冷却倒计时窗口,显示石墨炉冷却时间。此时,不能进行其它操作,必须等到冷却结束,才可继续测量。

4、关闭系统

依次选择主菜单“文件” ?“退出”,将AAWin系统关闭,在关闭之前,系统将弹出提示,请严格按照正确的关机顺序进行系统的关闭。关闭软件后,请立即将仪器关闭,并将相应的水、气及电路关闭,防止出现意外。

思考题:

1、原子吸收分光光度计测定不同元素时,对光源有什么要求,

2、试样原子化的方法有哪几种,

3、如果标准样品配制不准确,对测量结果有何影响,应如何判断标准溶液配制是否准确,

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

火焰原子吸收光谱法对钠离子的测定

火焰原子吸收光谱法对钠离子的测定 一、方法提要: 水样经雾化喷入空气—乙快火焰中原子化,在原子蒸气中钠原子处于基态状态。以钠特征线(共振线)330.2nm或589.6nm为分析线,测定其吸光度。 二、试剂和材料: ①盐酸。 ②钠标准溶液;称取在105~110℃烘至质量恒定的光谱纯氯化钠2.5481g,精确至0.0002g,放置100mL烧杯中,加水溶解,转移至1000mL容量瓶中用水稀释至刻度,摇匀,此标准溶液1.00mL含1.00mg钠。 三、仪器和设备: 原子吸收光谱仪和一般实验室用仪器。 原子吸收光谱仪应配有钠空心阴极灯,空气-乙炔预混合燃烧器,背景扣除校正器(推荐使用连续光谱氖灯扣除背景)、打印机或记录仪等。 所用原子吸收光谱仪均应达到下列指标: ①检出限;在测量循环冷却水样品中,钠的检出限应小于0.4mg/L; ②工作曲线线性:工作曲线上部20%浓度范围内的斜率与下部30%浓度范围内斜率之比不应小于0.7; ②最低精密度要求:工作曲线中浓度最高的标准溶液的10次吸光度的标准偏差,应不超过其平均吸光度的1.5%,浓度最低的标准溶液(不是零浓度溶液)的10次吸光度的标准偏差,应不超过浓度最高的标准溶液平均吸光度的0.5%。 四、工作条件的选择:

按照仪器说明书所提供的最佳条件,调节波长330.2nm或589.6nm,调试灯电流、通带、积分时间、火焰条件、背景扣除等。仪器开机点火后需稳定5~10min 方能进行测定。 五、分析步骡: 1.试样溶液的制备 取现场循环冷却水样品约500mL,加入浓盐酸酸化至p H为1左右(每升水样加入8.0mL浓盐酸)。当水祥中悬浮物较多时,需用中速定量滤纸过滤,滤液贮于聚乙烯塑料瓶中。该试样品可放置2周。 2.工作曲线的制作 准确移取钠标准溶液0.00mL,2.50mL,5.00mL,7.50mL,10.0mL,分别置于50.0mL容量瓶中,加水稀释至刻度,摇匀。此标准系列浓度为0.00mg/L,50.0mg/L,100.0mg/L,150.0mg/L,200.0mg/L,在波长为330.2nm处,调节仪器为最佳工作状态,以水调零测定吸光度,以测定的吸光度为纵坐标,相对应的钠含量mg/L为横坐标,绘制出工作曲线。 3.试祥的测定 按工作曲线的制作中同等仪器条件,以水为空白调零,测定试样溶液的吸光度,若水样中钠含量大于200 mg/L,可稀释后测定。 六、分析结果的衰述: 以钠离子质量浓度表示的钠含量ρ1(mg/L)按下式计算: ρ1=ρ×f 式中ρ——从标准曲线中查得钠的浓度,mg/L;

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

火焰原子吸收光谱法实验报告

原子吸收光谱实验报告 一、实验目的 1. 学习原子吸收光谱分析法的基本原理; 2.了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法; 3.掌握以标准曲线法测定自来水中钙、镁含量的方法。 二、实验原理 1.原子吸收光谱分析基本原理 原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。 火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。 2.标准曲线法基本原理 在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer定律:I=I0×(10-abc)(式中a为被测组分对某一波长光的吸收系数,b为光经过的火焰的长度)。根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。 三、仪器与试剂 1. 仪器、设备: TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。 2.试剂 碳酸镁、无水碳酸钙、1mol?L-1盐酸溶液、蒸馏水 3.标准溶液配制 (1)钙标准贮备液(1000μg?mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.6250g于100mL烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1mol?L-1盐酸溶液,至完全溶解,

第09节 火焰原子吸收分光光度法

第九节火焰原子吸收分光光度法 (一)基础知识 分类号:W9-0 一、填空题 1.原子吸收光谱仪由光源、、和检测系统四部分组成。 答案:原子化器分光系统 2.原子吸收光谱仪的火焰原子化装置包括和。 答案:雾化器燃烧器 3.火焰原子吸收光谱仪的原子化器的作用是,用以吸收来自锐线源的。答案:产生基态原子共振辐射 4.火焰原子吸收光度法常用的锐线光源有、和蒸气放电灯3种。 答案:空心阴极灯无极放电灯 5.火焰原子吸收光度法分析过程中主要干扰有:物理干扰、化学干扰、和 等。 答案:电离干扰光谱干扰 6.原子吸收仪的空心阴极灯如果长期闲置不用,应该经常开机预热,否则会使谱线,甚至不再是光源。 答案:不纯锐线 7.火焰原子吸收光度法分析样品时,灯电流太高会导致和。使灵敏度下降。 答案:谱线变宽谱线自吸收 8.火焰原子吸收光度法中扣除背景干扰的主要方法有:双波长法、、和自吸收法。 答案:氘灯法塞曼效应法 9.火焰原子吸收光度法塞曼效应校正背景的光来自同一谱线的,而且在光路上通过原子化器。 答案:分裂同一 10.火焰原子化器装置中燃烧器类型有型和型。 答案:预混合全消耗 11.火焰原子吸收光度法分析样品时,确定空心阴极灯达到预热效果的标志是观察是否稳定、是否稳定和灵敏度是否稳定。 答案:发射能量仪器的基线 12.原子吸收光度法分析样品时,物理干扰是指试样在转移和过程中,由于试样的任何物理特性的变化而引起的吸收强度下降的效应。 答案:蒸发原子化 13.火焰原子吸收光度法中光谱干扰是指待测元素的光谱与干扰物的不能完全分离所引起的干扰。 答案:发射或吸收辐射光谱

1.火焰原子吸收光谱仪中,大多数空心阴极灯一般是工作电流越小,分析灵敏度越低。()答案:错误 正确答案为:大多数空心阴极灯一都是工作电流越小,分析灵敏度越高 2.火焰原子吸收光谱仪中,分光系统单色器所起的作用是将待分析元素的共振线与与光源中的其他发射线分开。() 答案:正确 3.火焰原子吸收光度法分析中,用HNO3-HF-HClO4消解试样,在驱赶HClO4时,如将试样蒸干会使测定结果偏高。() 答案:错误 正确答案为:在驱赶HClO4时,如将试样蒸干会使测定结果偏低。 4.火焰原子吸收光度法中,空气-乙炔火焰适于低温金属的测定。() 答案:正确 5.火焰原子吸收光度法分析样品时,提高火焰温度使分析灵敏度提高。() 答案:错误 正确答案为:火焰原子吸收光度法分析样品时,在一定范围周内提高火焰温度,可以使分析灵敏度提高。 6.火焰原子吸收光谱仪原子化器的效率对分析灵敏度具有重要的影响。() 答案:正确 7.火焰原子吸收光谱仪燃烧器上混合气的行程速度稍大于其燃烧速度时,火焰才会稳定。() 答案:正确 8.火焰原子吸收光度法分析样品时,为避免稀释误差,在测定含量较高的水样时,可选用次灵敏线测量。() 答案:正确 三、选择题 1.原子吸收光度法用的空心阴极灯是一种特殊的辉光放电管,阴极是由制成。( ) A. 待测元素的纯金属或合金 B. 金属铜或合金 C. 任意纯金属或合金 答案:A 2.火焰原子吸收光度法测定时,当空气与乙炔比大于化学计量时,称为火焰。() A. 贫燃型 B. 富燃型 C. 氧化型 D. 还原型 答案:A. 3.火焰原子吸收光度法测定时,光谱干扰是指待测元素发射或吸收的光谱与干扰物的 光谱不能完全分离所引起的干扰。() A. 电离 B. 散射 C. 辐射 D.折射 答案:C. 4.火焰原子吸收光度法测定时,氘灯背景校正适合的校正波长范围为nm。 A. 100-200 B. 220 -350 C. 200-500 D. 400-800 答案:B 5.火焰原子吸收光度法测定时,增敏效应是指试样基体使待测元素吸收信号的现象。() A. 减弱 B. 增强 C. 降低 D.改变

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

火焰原子吸收分光光度法

实验二火焰原子吸收光谱法测定CuSO4溶液的浓度 1、实验目的 1.1 掌握火焰原子吸收光谱仪的操作技术; 1.2 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 1.3 熟悉原子吸收光谱法的应用。 2、实验原理 原子吸收光谱法是一种广泛使用的测定元素的方法,是基于在蒸气状态下对待测元素基态原子共振辐射吸收进行定量分析的方法。为了能够测定吸收值,试样需要转变为一种在合适介质中存在的自由原子。化学火焰是产生基态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中,产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响测定方法的准确性。干扰一般分为三种:物理干扰、化学干扰和光谱干扰。物理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确性。干扰可以通过选择适当的实验条件和对试样进行适当处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 3、实验仪器及试剂 仪器:AA320原子吸收分光光度计,上海精密科学仪器有限公司生产 CuSO4标准溶液:使用已有的浓度为100 ppm的CuSO4标准溶液,通过加去离子纯水稀释的方法配制浓度分别为0.80、1.60、2.40、3.20和4.00 ppm的标准溶液。 试样:未知浓度的含铜离子水溶液。

4、实验步骤 预先调整好狭缝的宽度和空心阴极灯的位置,在波长为324.7 nm处测定标准溶液的吸收。 1. 火焰的选择:火焰组成对原子吸收分光光度法的测定有影响。通过溶液雾化方式引入 2.0 ppm的CuSO4标准溶液到空气-乙炔火焰中,小幅调节乙炔的流速,每次读数前用去离子纯水重新调零,以吸光度对流速作图。 2. 标准曲线和试样测定:选择最佳的流速和燃烧高度。在一系列测定前,用去离子纯水调零,同时如果在测量过程中有延误,需要重新调零。在连续的一系列测定中,记录每种溶液的吸收值,每次每份试样重复3次后转入下一个测定: ●标准曲线系列:标准空白和标准溶液 ●试样空白和试样溶液 ●重复 3. 精密度:用低浓度和高浓度溶液测定精密度,每样读数3次。 4. 检出限:对空白溶液进行3次测试,计算均值。 5、结果与讨论 1. 标准曲线:记录实验中所得的标准溶液读数,并与对应的浓度值进行线性回归,得到标准曲线。用此标准曲线来测定试样中铜离子浓度(以CuSO4计),并通过重复测试取平均值的方法,得到测定值。 2. 精密度:用低浓度和高浓度溶液测定精密度,每样读数3次,计算每个浓度的RSD(%)。 3. 检出限:检出限以能够区分背景的RSD的最小浓度来表示,计算公式为 DL(检出限)=3×S b(背景值SD)/S(标准曲线斜率) 6、思考 1. 火焰原子吸收光谱法具有什么样的特点,其主要测定对象是什么? 2. 火焰原子吸收分光光度法测量灵敏度的主要影响因素有哪些?一般要做哪些条件实验?

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

火焰原子吸收

第九节火焰原子吸收分光光度法 (一)基础知识 分类号:W9-0 一、填空题 1.原子吸收光谱仪由光源、、和检测系统四部分组成。 答案:原子化器分光系统 2.原子吸收光谱仪的火焰原子化装置包括和。 答案:雾化器燃烧器 3.火焰原子吸收光谱仪的原子化器的作用是,用以吸收来自锐线源 的。 答案:产生基态原子共振辐射 4.火焰原子吸收光度法常用的锐线光源有、和蒸气放电灯3种。 答案:空心阴极灯无极放电灯 5.火焰原子吸收光度法分析过程中主要干扰有:物理干扰、化学干扰、和等。 答案:电离干扰光谱干扰 6.原子吸收仪的空心阴极灯如果长期闲置不用,应该经常开机预热,否则会使谱 线,甚至不再是光源。 答案:不纯锐线 7.火焰原子吸收光度法分析样品时,灯电流太高会导致和,使灵敏度下降。答案:谱线变宽谱线自吸收 8.火焰原子吸收光度法中扣除背景干扰的主要方法有:双波长法、、 和自吸收法。 答案:氘灯法塞曼效应法 9.火焰原子吸收光度法塞曼效应校正背景的光来自同一谱线的,而且在 光路上通过原子化器。 答案:分裂同一 10.火焰原子化器装置中燃烧器类型有型和型。 答案:预混合全消耗 11.火焰原子吸收光度法分析样品时,确定空心阴极灯达到预热效果的标志是观察 是否稳定、是否稳定和灵敏度是否稳定。 答案:发射能量仪器的基线 12.原子吸收光度法分析样品时,物理干扰是指试样在转移、和过程

中,由于试样的任何物理特性的变化而引起的吸收强度下降的效应。 答案:蒸发原子化 13.火焰原子吸收光度法中光谱干扰是指待测元素的光谱与干扰物的 不能完全分离所引起的干扰。 答案:发射或吸收辐射光谱 二、判断题 1.火焰原子吸收光谱仪中,大多数空心阴极灯一般都是工作电流越小,分析灵敏度越低。( ) 答案:错误 正确答案为:大多数空心阴极灯一般都是工作电流越小,分析灵敏度越高。 2.火焰原子吸收光谱仪中,分光系统单色器所起的作用是将待分析元素的共振线与光源中的其他发射线分开。( ) 答案:正确 3.火焰原子吸收光度法分析中,用10HNO3-HF—HClO4消解试样,在驱赶HClO4时,如将试样蒸干会使测定结果偏高。( ) 答案:错误 正确答案为:在驱赶HClO4时,如将试样蒸干会使测定结果偏低。 4.火焰原子吸收光度法中,空气-乙炔火焰适于低温金属的测定。() 答案:正确 5.火焰原子吸收光度法分析样品时,提高火焰温度使分析灵敏度提高。( ) 答案:错误 正确答案为:火焰原子吸收光度法分析样品时,在一定范围内提高火焰温度,可以使分析灵敏度提高。 6.火焰原子吸收光谱仪原子化器的效率对分析灵敏度具有重要的影响。( ) 答案:正确 7.火焰原子吸收光谱仪燃烧器上混合气的行程速度稍大于其燃烧速度时,火焰才会稳定。( ) 答案:正确 8.火焰原子吸收光度法分析样品时,为避免稀释误差,在测定含量较高的水样时,可选用次灵敏线测量。( ) 答案:正确 三、选择题 1.原子吸收光度法用的空心阴极灯是一种特殊的辉光放电管,它的阴极是由 制

火焰原子吸收法操作步骤

火焰原子吸收法操作步骤: 打开电脑主机-----回车-----安分析的元素选择不同的元素灯-----分析参数【1】时间参数(2或3)【2】延迟时间(零)【3】积分时间(2或3)终止时间9999【4】稀释倍数(1)【5】测量单位mg/L-----计算方法(峰高)-----工作模式(校准)-----统计方法(全选)-----背景扣除、浓度直读不选-----确认 校准曲线-----浓度(配好的标液)eg:铅、0.5ml 、1.0ml、3.0ml、5.0ml、(按回车确认,打对勾)-----曲线选择(一次曲线不过零点)-----确认-----右键 采样分析-----打开主机电源----调灯流(1.5ma *2 3ma )调负高压(2.5 *100 250)-----先微调波长旋钮涨到最大值(A通道红色涨到最大值)-----调负高压到100 (预热半小时) 对光路-----调高度(圆与光路板相切)逆时针调小、顺时针调大(先调中间,再调左右)数值在40到60之间 点火-----打开空油压机(0.3)-----检查杯里水,要比管高-----打开乙炔(0.05到0.1 0.07)-----红色按钮点火(贫燃空气多乙炔少、中性燃烧空气少5、左边流量器 冲洗采样管,用蒸馏水10到15分钟-----绘制曲线-----采样分析-----启动(零、B -----曲线空格 3次)出数后按空格-----+【标液】(峰起空格出数空格 3次)-----做完后蒸馏水冲洗-----点结束-----打印校准曲线-----曲线打印 分析样品----分析参数-----工作模式(分析)-----浓度直读选中-----采样分析(零、B-----样品空格 3次)出数后按空格-----+(峰气空格出数空格 3次)-----做完后蒸馏水冲洗 关乙炔-----等火灭按绿色按钮-----空压机放水关闭-----高压、灯电流调零、关主机-----文件管理----退回DOS-----退回-----关电源 备注:存数据.p 存曲线.f

火焰原子吸收光谱法操作步骤和注意事项7.doc

火焰原子吸收光谱法操作步骤和注意事项7 火焰原子吸收光谱法 (一)仪器操作步骤: 1、接通电源,打开电脑; 2、安装空心阴极灯; 3、打开主机电源; 4、打开操作软件,初始化; 5、设置实验条件,寻峰; 6、检查排水装置; 7、开空气压缩机,调节出口压力为0.22MPa; 8、开乙炔钢瓶,调出口压力为0.05MPa; 9、点火;样品测定; 10、结束工作,按相反顺序关机,并填写仪器使用记录。 (二)注意事项: 1、点火时排风装置必须打开,操作人员应位于仪器正面左侧执行点 火操作,且仪器右侧及后方不能有人.点火之后千万别关空压机。

2、火焰法关火时一定要最先关乙炔,待火焰自然熄灭后再关空压机。 3、经常检查雾化器和燃烧头是否有堵塞现象。 4、乙炔气瓶的温度需抑制在40℃以下,同时3米内不得有明火。 乙炔气瓶需设置在通风条件好,没有阳光照射的地方,禁止气瓶与仪器同处一个地方。 5、实验室要保持清洁卫生,尽可能做到无尘,无大磁场,电场,无 阳光直射和强光照射,无腐蚀性气体,仪器抽风设备良好,室内空气相对湿度应<70%,温度15~30℃。 6、实验室必须与化学处理室及发射光谱实验室分开,以防止腐蚀 性气体侵蚀和强电磁场干扰。 7、离开实验室前,要关闭所有的电源开关和水气阀门。 8、仪器较长时间不使用时,应保证每周1~2次打开仪器电源开关 通电30min左右。 化学实验教学示范中心

医药公司销售部部长个人年终总结 相关推荐:|||||| 2013已经到来,回首2012,是播种希望的一年,也是收获硕果的一年,在上级领导正确带领下,在公司各部门通力配合下,在我们销售三部全体同仁的共同努力下,取得了还算可喜的成绩,今年1.98亿的任务完成了1.83亿相对于去年的1.47亿同比增长了三千六百万。销售任务指标达成率92.3%,回款达成率91%,毛利达成率90% ;综合指标考核达成率91.13%基本达到公司考核要求。 作为一名组长我深感责任重大,且与有荣焉。几年来的工作经验,让我明白了这样一个道理:作为一个终端销售与商业开票员来说,首先要有一个良好的心里素质:其次是要具备专业的职业技能知识作为后盾,再次是要有一套良好的管理制度,成本核算是最为重要的,终端客户和商业客户的销售控制,尽量的减少成本,如何获得利润的化?最重要的一个是要用心观察,用心与顾客交流,留住老客户并发展新客户,尽可能的做到,具体归纳为以下几点: 第一,终端客户及商业客户的疏通 (1)富有吸引力的销售证策: 1.永远站在客户的立场来谈论一切, 2.充分阐述并仔细计算出给他带来不同寻常的利益, 3.沟通现在和未来的远大目标。

火焰原子吸收操作规程

WFX100 原子吸收的使用 A、元素分析方法的建立 一、打开软件,选择“操作”——“编辑分析方法” 1、在弹出对话框中,选择要建立的分析方式,我们一般用“火焰原子吸收”。在“操作”界面默认为“创建新方法”。已经有方法的时候可对已有的方法进行“修改”或“删除”。 2、在“创建新方法”中,点击“....”弹出元素周期表,选择要分析的元素点击“确定”即可。在“方法说明”中,对编辑的元素进行说明,可以只日期、浓度等,自己设定即可。完成后点击“确定”。 二、“确定”后,出现“方法编辑器”对话框 1、“仪器条件”中看看“分析波长”是否正确;元素灯为空心阴极灯“HCL”;输入所需要的“灯电流”,默认为3mA,最大不能超过6mA;选择“元素灯位置”,与自己所放置的位置相对应。其它均为默认值。 2、“测量条件”中,“阻尼常数”应该改为2,使仪器的数据不随电流的波动而变化;“测量方式”选择“工作曲线法”。 3、“工作曲线参数”,在“浓度”栏中,输入所配制的标准系列的浓度值,例如所配制的标准系列浓度为0ug/ml、1ug/ml、3ug/ml、5ug/ml。将这组数据输入“浓度”对话框中即可。在“标准空白”一栏中,若“打钩”表示测定标准空白,此时下面的标准测定才有效。一般可以不打钩,直接在“浓度”栏中第一项输入空白值“0”即可,否则就不输入“0”。“浓度单位”栏中,选择配制的浓度单位ug/ml或ng/ml。 以上元素分析条件和方法编辑好以后,点击“确定”——“完成”即可。如果还想编辑其它元素,则点击“继续”重复上述过程即可。 B、仪器具体操作 一、开机及相关参数设置: 1、依次打开电脑——仪器电源开关——仪器软件。 2、打开“文件”——“新建”,在“分析光源”菜单中选择“火焰原子吸收”方式。

原子吸收火焰法操作规程

岛津AA-7000型原子吸收分光光度计火焰法操作规程 一准备工作 1.1 检查电源。打开乙炔气,逆时针旋转乙炔钢瓶打开主阀1~1.5圈。并使次级压力表为0.09MPa。打开空气压缩机电源,调节输出压力0.35MPa 1.2打开排风开关和风向阀。 1.3安装空心阴极灯将灯插入灯座,记录灯的位置。 二开机系统与系统初始化 2.1先打开ASC-7000A与GFA-7000A的电源开关,然后打开AA-7000主机电源开关。关闭GFA-7000A的加热开关,在石墨炉测量开始前,准备就绪时再打开。2.2 打开PC电源,启动Windows。双击WizAArd图标。选择WizAArd的【测量】后双击AA-7000图标。登陆ID为admin,点击确定,进入主界面。显示【向导选择】画面时单击【取消】。 2.3确定主机燃烧室中不存在妨碍光路的物体,单击【仪器】→【连接】。按屏幕提示的各项安全检查项目一一检查确认后仪器开始初始化。仪器初始化时,会自动标记各个项目。仪器初始化完成。 安全提示(操作人员检查)乙炔主表不低于0.5MPa、燃气出口压力0.09MPa (不超过0.12)助燃0.35MPa(不超过0.4)。、检查燃烧头不堵塞、确定燃烧头到位、确定雾化器金属片已固定住、每次开机时检查气管、废液管是否漏气漏水、检查废液罐是否装满水、检查废液管末端不要插到液面以下、设置燃气流量(仪器默认值)。检查完毕,点击:【确定】。废液灌的补水,打开废液灌盖,取出废液传感器(仪器此时会发出PiPi-PiPi的蜂鸣声并显示提示信息),从废液灌口向内补水,直到水溢出为止。放好废液传感器,盖好废液灌盖。 三设定分析条件和确定灯的位置 3.1 单击菜单中的【参数】→【元素选择向导】→【选择元素】,按屏幕提示选择或输入要测定的元素,单击选中选择【火焰连续法】、【普通灯】,出现和灯有关的信息时,会出现提示框,点击【是】,继续出现的提示框中单击【确定】,出现【编辑参数】页得【光学参数】画面。在此画面中单击【灯位设定】,输入与各灯座号相应的灯【元素】和【灯类型】(选择普通),单击【确定】,返回【编辑参数】里的【光学参数】,设定【灯座号】,单击【确定】。连续测量多个元素时,重新返回【元素选择】画面,重复上述操作。测量参数:一般选(SM-M-M-),Pre-spray-time(预喷雾时间)Integration time(积分时间即测量时间)默认。 3.2 参数编辑完成后,点击【下一步】,进入制备参数屏,开始校准曲线及样品组设定。点击【校准曲线设定】,输入标准溶液浓度、重复测定条件、工作曲线参数、标准溶液进样体积及标准溶液位置等参数,点击【确定】,点击【样品组设定】,输入测定样品的信息(操作同校准曲线设定),点击【确定】→【下一步】

原子吸收光谱分析实验

原子吸收光谱分析实验 二、【实验目的】 1、了解原子吸收分光光度计的结构及其使用方法 2、掌握以原子吸收分光光度法进行定量测定的方法 3、了解对某一种元素的测定,怎样选择出最佳测试条件 三、【实验要求】 1、要求同学掌握原子吸收分光光度的结构及分析原理,利用所学原子吸收知识,设计出用火焰原子化法对某一种元素的测定,怎样选择出最佳测试条件,即符合比尔定律,又要有较好的灵敏度、精密度、稳定性和抗干扰性。 2、设计出合理的实验方法(两种)测定出饮用水中钙的含 量。 四、【实验原理】 1、基本原理 在原子吸收分光光度法中,一般由空心阴极灯提供特定波长的辐射,即待测元素的共振线。由喷雾-火焰燃烧器或石墨炉等原子化装置使试样中的待则元素分解为气相状态的基态原子。当空心阴极灯的辐射通过原子蒸气时,特定波长的辐射部分地被基态原子所吸收,经单色器分光后,通过检测器测得其吸收前后的强度变化,从而求得试样中待测元素的 含量。如下图

当试样原子化,火焰的绝对温度低于3000k时,可以认为原子蒸气中基态原子的数目实际上接近于原子总数。在固定的实验条件下原子总数与试样浓度C的比例是恒定的,可记为 A=K′C 这就是原子吸收分光光度法定量的基础。 2、主要特点 (1)具有灵敏度高,选择性好,抗干扰能力强,稳定性好。 (2)适用范围广,可测定七十多种金属元素。 (3)仪器结构简单,操作方便。 3、定量方法 (1)标准曲线法 配制一组合适的标准溶液,由低浓度到高浓度,依次喷入火焰,分别测定其吸光度A,以测得的吸光度为纵坐标,待测元素的含量或浓度C为横坐标,绘制A-C标准曲线。在相同的实检条件下,喷入待测试样溶液,根据测得的吸光度,由标准曲线求出试样中待测元素的含量,标准曲线法简便、快速,但仅使用于组成简单的试样。 (2)标准加入法 若试样基体组成较复杂,又没有纯净的基体空白,很难配制相类似的标准溶液时,使用标准加入法是合适的。分取几份等量的被测试样,其中一份不加入被测元素,其余各份试样中分别加入不同已知量C1、C2、C3……Cn的被测元素,然后,在标准测定条件下分别测定它们的吸光度A,绘制吸光度A对被测元素加入量CI的曲线。如果被测试样中不含被测元

实验五火焰原子吸收光谱法测定铜的含量

实验五火焰原子吸收光谱法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 解火焰原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=Kc 式中K为常数;c为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。常用标准曲线法、标准加入法进行定量分析。 本实验采用标准曲线法测定溶液中铜的含量。 三、仪器与试剂 A3F原子吸收光谱仪;铜空心阴极灯;空气压缩机;乙炔钢瓶;吸量管;容量瓶。 铜标准溶液25.0μg/mL;铜未知液。

四、实验步骤 1. 铜标准系列及未知液的配制 用吸量管分别吸取25.0 μg/mL的铜标准溶液0.00 mL、0.50 mL、1.00 mL、1.50 mL、2.00 mL、3.00 mL于6个50 mL的容量瓶中,用水稀释至刻度,摇匀,配制每毫升分别含有0.00 μg、0.25 μg、0.50 μg、0.75 μg、1.00 μg、 1.50 μg的铜标准系列。 另配制铜未知液1个样。 2. 按最佳测定实验条件调整原子吸收光谱仪,按照浓度从低到高依次喷入铜 标准系列,记录吸光度。 3. 喷入待测液,记录吸光度。 五、实验数据及结果 1. 绘制标准曲线。 2. 根据函数关系,计算待测液浓度。 六、注意事项 1. 实验时要打开通风设备,使金属蒸气及时排出室外。 2. 点火时,先开空气,后开乙炔气。熄火时,先关乙炔气,后关空气。 七、思考题 1. 简述原子吸收分光光度计的基本原理。

原子吸收光谱分析原理和火焰类型

原子吸收光谱分析原理和火焰类型 原子吸收光谱分析(又称原于吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基志原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。 l 原子吸收光谱的理论基础 1.1 原子吸收光谱的产生 在原子中,电子按一定的轨道绕原子核旋转,各个电子的运动状态是由4个量子数来描述。不同量子数的电子,具有不同的能量,原于的能量为其所含电子能量的总和。原子处于完全游离状态时,具有最低的能量,称为基态(E。)。在热能、电能或光能的作用下,基态原于吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。激发态原于(民)很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。其辐射能量大小,用下列公式示: 式中h——普朗克常数,其数值为6.626X10-23J·S; ΔE=Eq-E0=hv=hc/λ C——光速(3X105km/s); V、入—一分别为发射光的频率和波长; EO、eq—一分别代表基态和激发态原子的能量,它们与原子的结构有关。由于不同元素的原子结构不同,所以一种元素的原子只能发射由其已与Eq决定的特定频率的光。这样,每一种元素都有其特征的光谱线。即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。 原子吸收光谱是原于发射光谱的逆过程。基态原子只能吸收频率为υ=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素有其特征的吸收光谱线。 原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。这种振跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。元素的共振吸收线一般有好多条,其测定灵敏度也不同。在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线。 1.2 吸收强度与分析物质浓度的关系 原子蒸气对不同频率的光具有不同的吸收率,因此,原子蒸气对光的吸收是频率的函数。但是对固定频率的光,原子蒸气对它的吸收是与单位体积中的原子的浓度成正比并符合朗格一比尔定律。当一条频率为υ,强度为I0的单色光透过长度为L的原子蒸气层后,透射光的强度为Iv,令比例常数为Kv,则吸光度A与试样中基态原子的浓度N。有如下关系: A=lg(I0/I)=KLN 在原子吸收光谱法中,原子池中激发态的原子和离子数很少,因此蒸气中的基态原子数目实际上接近于被测元素总的原子数目,与式样中被测元素的浓度C成正比。因此吸光度A与试样中被测元素浓度C的关系如下;

相关文档
最新文档