SQ6S伸缩臂式随车起重机设计计算书

SQ6S伸缩臂式随车起重机设计计算书
SQ6S伸缩臂式随车起重机设计计算书

SQ6S伸缩臂式随车起重机设计计算书

第一章概述

SQ6S型随车起重机是以解放CA1165P1K2L2载重汽车为底盘,起重机直接安装在驾驶室和货箱之间的车架上,车架部分改装,动力以取力机构的形式从汽车发动机得到动力,各工作机构的动力皆来源于液压泵,在设计过程中,强调整车的性价比。

第二章整车稳定性的计算

一、装后起重机作业的主要参数和起重性能表:表一

二、底盘重心位置计算

1.根据底盘技术参数可知如下参数:表二

1.1各部件距回转中心的距离L(i)mm和各部件的重量G(i)Kg

1.1.1吊勾总成 L(1)=3940 G(1)=54.1

1.1.2 伸缩臂总成 L(2)=1800 G(2)=723.4

1.1.3 起升机构 L(3)=-55 G(3)=95

1.1.4 转台与齿轮柱焊接 L(4)=-30 G(4)=207 1.1.5 油箱安装总成 L(5)=-215 G(5)=36 1.1.6 固定支腿与活动支腿装配 L(6)=-270 G(6)=506.8 1.1.7 回转基座装配 L(7)=0 G(7)=120 1.1.8 基座与固定腿焊接 L(8)= 0 G(8)=165 1.1.9 操纵系统 L(9)=250 G(9)=40 1.1.10 液压系统 L(10)=200 G(10)=200 1.1.11 变幅油缸 L(11)=280 G(11)=120 1.1.12 其它 L(12)= 0 G(12)=70 1.2 吊机自重:G(S)=∑==12

1i i G(i)=2337 Kg

1.3 吊机重心距回转中心距离:

L1 =

==12

1

i i G(i)?L(i)/ G(S)=620 mm

2. 吊机在全伸状态时的重心计算 2.1 各部件距回转中心的距离L2(i)mm

经分析可知:只有吊勾和伸缩臂总成的重心发生变化

2.1.1 吊勾总成 L2(1)=9240 2.1.2 伸缩臂总成 L2(2)=4000 2.2 吊机重心距回转中心距离:

L1 =

==12

1

i i G(i)?L(i)/ G(S)=1421 mm

3. 吊机在行驶状态下的桥荷分布:

根据上述计算全缩时吊机重心距回转中心距离为620mm 。又根据设计图

倾翻力矩:M Q = 7012 X 1100 = 7713200 Kg.mm

稳定力矩: M W = 2337 X (2228-1500)+7040 X 1672 = 13472216 Kg.mm

其中G1 ---- 基本臂本身的重量 238Kg 其中G2 ---- 一节伸臂本身的重量 144Kg 其中G3 ---- 二节伸臂本身的重量 129Kg 其中L ---- 最大幅度时距截面的距离为8425mm 其中L1 ---- 基本臂重心到截面的距离为1050mm 其中L2 ---- 一节伸臂重心到截面的距离为4166mm 其中L3 ---- 二节伸臂重心到截面的距离为7035mm

M A =G.L+G1.L1+G2.L2+G3.L3=11024819Kg.mm

σ

= M A /W A =26.6 Kg/mm 2<[σ]

2.一节伸缩臂的强度校核

2.1 一节伸缩臂的最小截面模量W A =288027mm 3其结果是由计算软件得出。其材料为HQ60屈服极限为500Mpa,许用应力为[σ]=500/1.5=33

3.33 Mpa 2.2 基本臂的所受的最大弯矩M A =G.L +G2.L2+G3.L3 其中G ---- 最大幅度时所吊的重量为1100Kg 其中G2 ---- 一节伸臂本身的重量 144Kg 其中G3 ---- 二节伸臂本身的重量 129Kg 其中L ---- 最大幅度时距截面的距离为5584mm 其中L2 ---- 一节伸臂重心到截面的距离为1330mm 其中L3 ---- 二节伸臂重心到截面的距离为4254mm

M A =G.L+ +G2.L2+G3.L3=6882686Kg.mm

σ

= M A /W A =23.9 Kg/mm 2<[σ]

3.二节伸缩臂的强度校核

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

MQ100门式起重机总体计算书(附cad图)

MQ100 门式起重机总体 设 计 计 算 书 (共16页,含封面) XXX机械工程研究所 2004年4月

一. 总体计算 计算原则:MQ100门式起重机设计计算完全按《起重机设计规范》GB3811执行,并参照下列标准进行设计计算: 《塔式起重机设计规范》GB/T13752-92 《法国塔式起重机设计规范》NFE52081 工作级别 A 5 利用等级 U 5 起升机构 M 5 变幅机构 M 4 回转机构 M 4 行走机构 M 4 最大幅度 13m 最大起重量 8000Kg (一) 基本参数: 回转速度 0.7r/min 回转制动时间 5s 行走速度 12.5/25m/min 行走制动时间 6s 回转惯性力 ()Kg RM M g t R n F 002242.0.60..25.1=?? =π回 其中 g=9.81 n=0.7r/min t=5s 行走惯性力: ()Kg M M g t v F 0106184.0.605.1=?? =行 其中 g=9.81 V=25m/min t=6s

(二) 载荷组合: 自重力矩、惯性力及扭矩 上表中的回转惯性力到轨顶面的力矩总计为:-1971kg.m 上表中的行走惯性力到轨顶面的力矩总计为:5378kg.m

(三)起重小车、吊钩和吊重载荷 起重小车265kg 绳60kg 吊钩230kg 起升动载系数(起升机构用40RD20): =1.136, q=8t V=16m/min时, 2 吊重q=8000kg, 幅度R=13m (1) 吊载 Q=(8000+230+60/2)×1.136+(265+60/2)×1.1 =9708kg M=9708×13=126204kg.m (2) 风载(包括起重小车、吊钩和吊重) 迎风面积A=5.52+1.6×82/3=11.92m2 风力:F=11.92×25=298kg =298×13=3874kg.m 风扭矩:T n 风力到轨道上平面的力矩:M=298×12=3576kg.m (3) 回转惯性力 F=0.002242×(8000+230+265+60)×13=249kg =249×13=3237kg.m 回转惯性扭矩: T n 回转惯性力到轨道上平面的力矩:M=249×12=2988kg.m (4)行走惯性力 F=0.0106184×(8000+230+265+60)=91kg

180t桥式起重机计算

140/32T*22M铸造起重机增容改造计算书1、主起升机构计算 起重量180t 吊具20t 起升速度7m/min 起升高度22m 工作级别M7 1.1钢丝绳的选择 起升载荷Q=180+20t(包括吊梁重量) 滑轮倍率m=6 滑轮效率η≈0.95 钢丝绳安全系数n=7.0 钢丝绳最大静拉力S S=Q=(180+20)×9.85=86.4KN 2×2×2×m×η2×2×6×0.95 选择钢丝绳 30NAT 6*19W+IWR-1870 钢丝绳直径φ30 钢丝绳最小破断拉力599KN 安全系数校 η=599 =7≥7 86.4 2、电动机选择 2.1计算电动机静功率Pj 起升载荷Q=180+20t 起升速度V=7m/min 机构总效率η=0.85 电动机台数2台 P j= QV = (180+20)×9.85×7×103 =135KW 2×1000×η2×1000×60×0.85 (共9页第1页) 1.2.2选择电动机 选用YZR400L2-10电机 额定功率200KW,同步转速588r/min S3 60% 功率170KW 同步转速591r/min 1.3减速器传动比计算 起升速度7m/min 卷筒直径Do=φ1400 单层双联缠绕,倍率m=6 钢丝绳直径do=30 电动机转速n电=591r/min 钢丝绳平均中径(计算直径)D=1430mm i=π×D×n电=π×1.43×591=63.1

m×v6×7 选减速器传动比I=63.02 1.4选择制动器 1.4.1高速级制动器选择 起升载荷Q=180+20t 减速器传动比I=63.02 卷筒计算直径D=1.43m 钢丝绳直径do=30 滑轮倍率m=6 机构总效率η=0.85 制动器数量n=4 制动安全系数K=1.25 制动力矩 T E=K×Q×D×η = (180+20)×9.85×103×1.43×0.85×1.25×2 =3947Nm 2×n×m×I4×6×63.02 选择制动器 选用YWZD-630/300制动器,制动力矩4500Nm(共9页第2页)2、副起升机构计算 起重量40t 吊具2t 起升速度9.33m/min 起升高度24m 工作级别M6 2.1钢丝绳的选择 起升载荷Q=40+2t(包括吊钩重量) 滑轮倍率m=4 滑轮效率η≈0.97 钢丝绳安全系数n=6 钢丝绳最大静拉力S S=Q=(40+2)×9.85=53.3KN 2×2×2×m×η2×4×0.97 选择钢丝绳 22NAT 6*19W+IWR-1870 钢丝绳直径φ22 钢丝绳最小破断拉力322KN 安全系数校 η=322 =6>6 53.3 2.2、电动机选择 2..2.1计算电动机静功率Pj 起升载荷Q=40+2t 起升速度V=9.33m/min 机构总效率η=0.9 电动机台数1台

水电站厂房参数设计计算书

水电站厂房 第一节几种水头的计算(1) H max=Z蓄—Z单机满出力时下游水位 H r= Z蓄—Z全机满出力时下游水位 H min=Z底—Z全机满出力时下游水位 一、H max的计算。 1 假设H max=84m 由公式Nr=K Q H 公式中 Nr为单机出力50000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03H0) Q 为该出力下的流量。 故解出Q=70.028m3/s 查下游流量高程表得下游水位为198.8m 上游水位为284m ΔH=0.03 (284—198.8)=2.6m 又因为284—84—2.6= 197.4 2 重新假设Hmax=83m 由公式Nr=K Q H 解出Q=70.87m3/s 查下游流量高程表得下游水位为199.3m 上游水位为284m ΔH=0.03 (284—199.3)=2.5m

又因为284—83—2.5=198.5 故H max=83m 二、H min的计算。 1 假设H min=60m 由公式Nr=K Q H 公式中 Nr为全机出力200000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03Ho) Q 为该出力下的流量。 故解出Q=392.16m3/s 查下游流量高程表得下游水位为203.50m 上游水位为264m ΔH=0.03 (264—203.50)=1.80m 又因为264—60—1.80=202.20< 203.50 2 重新假设Hmin=59m 由公式Nr=K Q H 解出Q=398.80m3/s 查下游流量高程表得下游水位为203.58m 上游水位为264m ΔH=0.03 (264—203.58)=1.77m 又因为264—59—1.77=203.23 = 203.58 故H min=59m 三、H r的计算。

汽车吊车计算书-修订稿

庆鼎精密电子(淮安)有限公司 吊 装 计

现场预备吊装构建重量计算图表如下: GJ-01、GJ-02均由五榀钢梁连接成一整体:重量分别L1:5420.27kg、L2:5618.37kg、 L3:6241.16kg、 L4:5613.79kg、L5:5275.76kg 现场钢梁在地面组拼进行3+2吊装法:L1+L2+=11.03T、L3=6.241T、L4+L5=10.89T分三组进 行吊装。 2

GJ吊车自F轴向A轴吊装,100吨汽车吊性能表如下所示: 100吨汽车吊 可以看出100吨汽车吊在主臂32.468m,作业半径为9m时候可以吊装27.87T吨,满足吊装工况要求。

液压汽车起重机工况核算计算书 计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 、基本参数 、计算示意图 4

、起重机核算 5 1 = 一一.

建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中 心的竖直线为Y轴, A点坐标: X A=R+b3=9+2.67=11.67m y A=Om B点坐标: X B=S/2=2/2=1m y B=h3-h b=24.8-3.3=21.5m C点坐标: x c=Om y c=h 什h2+h3-h b=2+6.798+24.8-3.3=30.298m 直线AC的倾角: a1=arctg(y c/x A)= arctg(30.298/11.67)=68.935 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角: a=arctg(y B/(X A-X B))+arcsi n( (f+d/2)/ (y B2+(x A-x B)2)0.5)=arctg(21.5/(11.67-1))+arcsi n((1+1/2)/(21.52+(11.67-1)2)0.5)=67.189 起重臂仰角:a =1=68.935 ° 最小臂长:L= X A /cos a =32.468 m 幅度:R=9m 6 J ■ 「

MH10t计算书

MH型 10tx18mx9m 电动葫芦门式起重机 计 算 书 xxxxx有限公司

一.型号规格 型号:MH型电动葫芦门式起重机 起重量Gn:10t 跨度S:18m 起升高度H:9m 工作级别:A3 控制方式:地面按钮控制 起升速度:7m/min 葫芦运行速度:20m/min 起重机运行速度:20m/min 二.设计制造安装标准 GB/T3811-1983 起重机设计规范 GB/T6067-1985 起重机械安全规程 JB/T5663.1-1991 电动葫芦门式起重机型式和基本参数 JB/T5663.2-1991 电动葫芦门式起重机技术条件 GB10183-1988 桥式和门式起重机制造及轨道安装公差 GB50278-1998 起重设备安装工程施工及验收规范 三.计算(验算) 1.葫芦:采用“豫源”牌CD1型10tx9m葫芦作为起升机构。“豫 源”牌CD1型10t葫芦小车作为运行机构。葫芦总重量:1010kg 2.祥见葫芦说明书:主要配套件 名称型号规格数量备注

电动机ZD151-4 / 13kw 1 起升 吊钩组10t 1 钢丝绳6x37-15-200 1 电动机ZDY121-4 / 0.8kw 2 运行 3.主梁:此起重机为单梁结构,由452x675x675x6的U型槽+32# 工字钢+10x110钢板组成,总宽度为452mm,总高度为1212mm,材料为Q235,主梁重量为6700kg,主梁的惯性矩I=645685cm4主梁的垂直静刚度验算: f=QS3/48EI≤[f]=S/800=2.25cm Q=Gn×1.25+1010=13510kg f=13510×18003/(48×2.1×106×645685)=1.21cm<[f] 结论:此主梁结构满足要求。 4.支腿:支腿为变截面结构,30#槽钢组焊而成,在门架平面内, 支腿上平面宽度为1800mm,下平面宽度为300mm,在支腿平面内,为上下平面宽度相同,垂直宽度为300mm,上下平面中心距为3000mm。支腿高度为h1=10110mm。 每条支腿重量为1200kg。 支腿平面内的支腿刚度验算: 小车轮压P=11010kg 截面的最小回转半径r=15cm 支腿的长细比 λ=h1/r=1011/15=67.4<[λ]=150

(完整word版)半挂车设计计算书

概述 半挂车,具有机动灵活、倒车方便和适应性好的特点,这种车可以提高装载量,降低运输成本,提高运输效率。由于装载量的不同要求,对于车架的承受载荷也有不同,该半挂车的轴距较大,因而对车架的强度与刚度的要求也较高。对车架的强度与刚度进行了分析计算。 半挂车参数表 车架结构设计 本车架采用采平板式,为了具有足够的强度和刚度,所设计车架材料选用Q235钢板,采用焊接式结构。 2.1 总体布置

图1 车架总体布置图 2.2 纵梁 纵梁是车架的主要承载部件,在半挂车行驶中受弯曲应力。为了满足半挂车公路运输、道路条件差等使用性能的要求,纵梁采用具有很好抗弯性能的箱形结构,纵梁断面如图2所示。上翼板是一块覆盖整个车架的大板,图中只截取一部分。 图2 纵梁截面示意图 为了保证纵梁具有足够的强度,在牵引销座近增加了加强板;为减小局部应力集中,在一些拐角处采用圆弧过渡。在轮轴座附近也增加了加强板(图1中轮轴座附近)。由于半挂车较宽,为防止中间局部变形过大,车架的中间增加了倒T形的纵梁加强板。

图3 部分加强板示意图 2.3 横梁 横梁是车架中用来连接左右纵梁,构成车架的主要构件。横梁本身的抗扭性能及其分布直接影响着纵梁的内应力大小及其分布。本车架的19根横梁,主要结构形状为槽形。 2.4纵梁和横梁的连接 车架结构的整体刚度,除和纵梁、横梁自身的刚度有关外,还直接受节点连接刚度的影响,节点的刚度越大,车架的整体刚度也越大。因此,正确选择和合理设计横梁和纵梁的节点结构,是车架设计的重要问题,下面介绍几种节点结构。 一、 横梁和纵梁上下翼缘连接(见图4(a ))这种结构有利于提高车架的扭转刚度,但在受扭严重的情况下,易产生约束扭转,因而在纵梁翼缘处会出现较大内应力。该结构形式一般用在半挂车鹅劲区、支承装置处和后悬架支承处。 二、横梁和纵梁的腹板连接(见图4(b ))这种结构刚度较差,允许纵梁截面产生自由翘 曲,不形成约束扭转。这种结构形式多用在扭转变形较小的车架中部横梁上。 三、横梁与纵梁上翼缘和腹板连接(见图4(c ))这种结构兼有以上两种结构的特点,故应用较多。 四、横梁贯穿纵梁腹板连接(见图4(d ))这 种结构称为贯穿连接结构,是目前国内外广泛采 用的半挂车车架结构。它在贯穿出只焊接横梁腹 板,其上下翼板不焊接,并在穿孔之间留有间隙。 当纵梁产生弯曲变形时,允许纵梁相对横梁产生 微量位移,从而消除应力集中现象。但车架整体 扭转刚度较差,需要在靠近纵梁两端处加横梁来提高扭转刚度。 贯穿式横梁结构,由于采用了整体横梁,减少了焊缝,使焊接变形减少。同时还具有 (a ) (b ) (c ) 图4(d )贯穿式横梁结构 图4 半挂车纵梁和横梁的连接

QZ16t-18m 抓斗桥式起重机计算书

QZ16t —18m A6 抓斗桥式起重机计算书 一、主要技术参数: 额定起重量:16t 跨度:18m 工作级别:A6 起升高度:18m 起升开闭速度:40.26m/min 小车运行速度:45.6m/min (车轮直径φ350) 大车运行速度:112.5m/min (车轮直径φ600) 小车自重:GX=12770kg 起重机总重:G=33100kg 二、主梁计算 1、主梁截面几何特性: 主梁选用截面尺寸如图: 截面面积: F =50×2.4+115×1.2=258cm 2 惯性矩: I x =122.15023??+2×50×1.2×58.12+4)2.17.58(6.043 -??+12 )2.17.58(6.043-?? =12+405073.2+114065.6+38022=557172.8cm 4 I y =12502.123??+12 6.011523 ??+2×0.6×115×22.32=93630cm 4 截面模数: W x =1 Z Ix =7.58557173=9492cm 3 W y = 2 b Iy =2593630=3745cm 3 2、主梁载荷的计算

1)传动侧主梁固定载荷及其最大弯矩的计算 M G =M 均+M 固=13628+5550=19178kg ·m M 均= 136288185.3368·2 2 =?=S q 传kg ·m q 传=5.33618 6057 == S G 传总kg/m G 传总=G G G 轨传走主+++G G G 其它电管栏++ =4175+910+461+131+230+150=6057kg M 固=G 运·l 1+G 操· 22l +G 电·2 3l =1315×1.27+1200×23.2+500×210 =5550kg ·m M G 计=?4M G =1.2×19178=23014kg ·m 2)活动载荷及弯矩计算: 小车静轮压:P = P 小车+PQ P 小车= 4 12770 =3193kg P 1Q=290021650 16000??=4554kg P 2Q=2900 21250 16000??=3448kg 小车计算轮压: P 计= P 小车+ ?2 P Q ? 2—— 动力系数、根据抓斗起重机的工作状况,经计算?2=1.7 P 1计= P 小车+1.7 P 1Q =3193+1.7×4554=10935k g P 2计= P 小车+1.7 P 2Q =3193+1.7×3448=9055k g 小车总静轮压: P 1= P 小车+ P 1Q=3193+4554=7747kg P 2= P 小车+ P 2Q=3193+3448=6641kg

水轮机选型设计计算书 原稿

第一章 水轮机的选型设计 第一节 水轮机型号选定 一.水轮机型式的选择 根据原始资料,该水电站的水头范围为18-34m , 二.比转速的选择 水轮机的设计水头为m H r 5.28= 适合此水头范围的有HL240和ZZ450/32a 三.单机容量 第二节 原型水轮机主要参数的选择 根据电站建成后,在电力系统的作用和供电方式, 初步拟定为2台,3台,4台三种方案进行比较。 首先选择HL240 n11=72r/min 一.二台 1、计算转轮直径 水轮机额定出力:kw N P G G r 67.66669 .0106.04 =?== η 上式中: G η-----发电机效率,取0.9 G N -----机组的单机容量(KW ) 由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.155m 3 /s,对应的模型效率ηm =85.5%,暂取效率修正值 Δη=0.03,η

=0.855+0.03=0.885。模型最高效率为88.5%。 m H Q P D r r 09.2885 .05.28155.181.967 .666681.95 .15.1111=???== η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值2m 和2.25m 之间,且接近2m ,暂取D 1=2m 。 2、计算原型水轮机的效率 914.02 46 .0)885.01(1)1(155 110max =--=--=D D M M ηη Δη=η max -ηM0=0.914-0.885=0.0.029 η=ηm +Δη=0.855+0.029=0.884 3、同步转速的选择 min /18.1972 95 .0/5.2872av 1110r D H n n =?== min /223.11855 .0884 .07210 M 0 T 11011r n n =-?=-=?)( )( ηηmin /223.73223.172n 1111r 11r n n m =+=?+= 4、水轮机设计单位流量Q11r 的计算 r Q 11= r r r H D η5 .12181.9P =884.05.28281.967.66665.12???=1.2633 m /s 5、飞逸转速的计算 r n = 1 11max D H n r =73.223×28.33=212.851r/min 6、计算水轮机的运行范围 最大水头、平均水头和最小水头对应的单位转速 min)/609.66223.18.332 180.19711max 1min 11r n H nD n =-?=?-= min)/(777.70223.195 .0/5.282180.19711av 111r n H nD n a =-?=?-=

液压汽车起重机工况核算计算书

液压汽车起重机工况核算计算书计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 一、基本参数 起重机种类液压汽车起重机起重机型号QY-50 起重臂顶端至吊钩底面最小距离h1(m) 2.5 起重臂宽度d(m) 1.2 起重臂铰链中心至地面距离h b(m) 3 起重机外轮廓线至起重机回转中心距 离b2(m) 2.8 起重臂铰链中心至起重机回转中心距离b3(m) 2 吊钩底面至吊装构件顶部距离h 2(m) 1 吊装构件顶部至地面距离h3(m) 5 吊装构件中心至起重机外轮廓线最小 距离b1(m) 2 吊装构件直径S(m) 6.2 吊装构件与起重臂的间隙f(m) 0.4 幅度R(m) 6 二、计算示意图

参数示意图

起重臂坐标示意图 三、起重机核算 建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中心的竖直线为Y轴, A点坐标: x A=R+b3=6+2=8m y A=0m B点坐标: x B=S/2=6.2/2=3.1m y B=h3-h b=5-3=2m C点坐标: x C=0m

y C=h1+h2+h3-h b=2.5+1+5-3=5.5m 直线AC的倾角: α1=arctg(y C/x A)= arctg(5.5/8)=34.509° 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角:α2=arctg(y B/(x A-x B))+arcsin((f+d/2)/ (y B2+(x A-x B)2)0.5)=arctg(2/(8-3.1))+arcsin((0.4+1.2/2)/(22+(8-3.1)2)0.5)=33.095°起重臂仰角:α=α1=34.509° 最小臂长:L= x A/cosα=9.708 m 幅度:R=6m

双梁门式起重机设计计算书(—)150吨20米

第一章设计出始参数 第一节基本参数: 起重量PQ=150.000 ( t ) 跨度S = 20.000 (m ) 左有效悬臂长ZS1=0.000 (m) 左悬臂总长ZS2=1.500 (m) 右有效悬臂长YS1=1.500 (m ) 右悬臂总长YS2=0.770 (m) 起升高度H0=20.000 (m) 结构工作级别ABJ=5级 主起升工作级别ABZ=0级 副起升工作级别ABF=5级 小车运行工作级别ABX=5级 大车运行工作级别ABD=5级 主起升速度VZQ=3.4000 (m/min) 副起升速度VFQ=3.4000 (m/min) 小车运行速度VXY=2.4000 (m/min) 大车运行速度VDY=2.4000 (m/min) 第二节选用设计参数 起升动力系数02=1.20 运动冲击系数04=1.10 钢材比重R=7.85 t/m'3 钢材弹性模量E=2.1*10'5MPa 钢丝绳弹性模量Eg=0.85*10'5MPa 第三节相关设计参数 大车车轮数(个)AH=8 大车驱动车轮数(个)QN=4 大车车轮直径RM=0.7000(mm) 大车轮距L2=11.000 (m) 连接螺栓直径MD=0.0360 (m) 工作最大风压q1=0/*250*/(N/m'2) 非工作风压q2=0/*600*/(N/m'2) 第四节设计许用值 钢结构材料Q235----B 许用正应力[ σ ] I=156Mpa [ σ ] II=175Mpa 许用剪应力[ ? ]=124Mpa 龙门架许用刚度:

主梁垂直许用静刚度: 跨中(Y)x~1=S/800=30.00mm 悬臂(Y)1=ZS1/700=2.00mm 主梁水平许用静刚度: 跨中(Y)y~1=S/2000=12.00mm 悬臂(Y)1=ZS1/700=2.00mm 龙门架纵向静刚度: 主梁严小车轨道方向(Y)XG=H/800=16.4mm 许用动刚度(f )=1.7H z 连接螺栓材料8.8级螺栓 许用正应力[ σ ] 1s=210.0Mpa 疲劳强度及板屈曲强度依GB3811-83计算许用值选取。 第二章起重小车设计 第一节小车设计参数 小车质量(t) GX=50.000(t) 小车车距(m) B=3.500(m) 轨道至主梁内边(m) L5=0.030(m) 小车轨距( m ) L6=2.500(m) 小车左外伸(m) L7=0.500(m) 小车右外伸(m) L8=0.500(m) 主梁与马鞍间距(m) L11=0(m) 吊钩下探量(m) H6=2.000(m) 小车轨道截面高(m) H7=0.120(m) 小车高H8=1.650(m) 小车顶至马鞍(m) 小车罩沿大车轨道方向 迎风面积(m'2) XDS=12.000(m'2) 小车罩垂直于大车轨道方向 迎风面积(m'2) XXS=12.000(m'2) 钢丝绳金属丝截面积(m'2) DO=6.550700e-004(m'2) 滑轮组钢丝绳分支数半NO=5 小车轨道型号QU70 小车外罩至导电架距离(m)L9=0.97(m) 小车外罩至栏杆距离(m) L10=0.970(m) 法兰至主梁上盖板距离(m)HD=1.800(m) 第二节设计计算 为工厂便于组织生产,提高标准件的通用性,设计中不进行起重小车设计,而采用5t--50t 通用桥式起重机小车。此,起重机小车设计详见5t--50t通用桥式起重机小车计算说明书。

厢式车总体设计计算书

厢式车总体设计计算书 车型(一):SY006XL、SK006XL、SD006XL 车型(二):SY006X、SK006X、SD006X 一、外形参数确定 车型(一):SY006XL、SK006XL、SD006XL 1、轴距L: L=Lh+Lj+S-Lr S=250Lj=775Lh=7500取L/Lr=0.42 L+0.42L=7500+775+250L=7500+775+250/1.42=6003.5 轴距L:1800+4203取1800+4200 2、轮距:(1)、前轮距:1750(2)、后轮距:1750/1725 3、外形尺寸:L=1205+7500+250+775=9730 B=2300 H=3500 4、前悬:Lf=1205;后悬:Lr=9730-1205-1800-4200=2525 车型(二): 1、轴距L:为了同车型(一)统一轴距取相同 轴距L:取1800+4200 2、轮距:(1)、前轮距:1750(2)、后轮距:1750/1725 3、外形尺寸:L=1205+775+7100+250=9330 B=2200 H=3500 4、前悬:Lf=1205;后悬:Lr=9330-1205-1800-4200=2125 二、质量参数确定 车型(一): 1、汽车载质量:5000Kg 根据国家计重收费法规:MG=(7+7+10)+(7+7+10)×0.3-8=23.2T;允许装 载量MG=23.2T。 2、汽车整备质量:根据产品开发目标Mo≤8000Kg 3、汽车总质量:5000+8000=13000Kg 实际汽车总质量:23200+8000=31200Kg 4、汽车满载时轴荷分配:

机械毕业设计1310T桥式起重机设计(箱型梁设计及受力计算)

设计题目:10t桥式起重机设计 设计项目计算与说明结果 第1章前言 桥式起重机是一种重要的物料搬运机械。桥式起重 机的桥架沿铺设在两侧高架上的轨道纵向运行,起重小 车沿铺设在桥架上的轨道横向运行,构成一矩形的工作 范围﹐就可以充分利用桥架下面的空间吊运物料,不受 地面设备的阻碍。桥式起重机可分为普通桥式起重机﹑ 简易梁桥式起重机和冶金专用桥式起重机3种。 物料搬运成了人类生产活动的重要组成部分,距今 已有五千多年的发展历史。随着生产规模的扩大,自动 化程度的提高,作为物料搬运重要设备的起重机在现代 化生产过程中应用越来越广,作用愈来愈大,对起重机 的要求也越来越高。起重机正经历着一场巨大的变革。 大型化和专业化、模块化和组合化、轻型化和多元化、 自动化和智能化、成套化和系统化以及新型化和实用化 是这场变革得主题。 经过几十年的发展,我国桥式起重机行业已经形成 了一定的规模,市场竞争也越发激烈。桥式起重机行业 在国内需求旺盛和出口快速增长的带动下,依然保持高 速发展,产品几近供不应求。尽管我国起重机行业发展 迅速,但是国内起重机仍缺乏竞争力。从技术实力看, 与欧美日等发达地区相比,中国的技术实力还有一定差 距。目前,过内大型起重机尚不具备大量生产能力。从 产品结构看,由于技术能力所限,中国起重机在产品结 构上也不完善,难以同国外匹敌。 桥式起重机可分为以下几类: 1.通用桥式起重机 1)抓斗桥式起重机 抓斗桥式起重机的装置为抓斗,以钢丝绳分别联系 抓斗起升、起升机构、开闭机构。主要用于散货、废旧 钢铁、木材等的装卸、吊运作业。这种起重机除了起升 闭合机构以外,其结构部件等与通用吊钩桥式起重机相

半挂车设计计算书样本

概述 半挂车, 具有机动灵活、倒车方便和适应性好的特点, 这种车能够提高装载量, 降低运输成本, 提高运输效率。由于装载量的不同要求, 对于车架的承受载荷也有不同, 该半挂车的轴距较大, 因而对车架的强度与刚度的要求也较高。对车架的强度与刚度进行了分析计算。 半挂车参数表 车架结构设计 本车架采用采平板式, 为了具有足够的强度和刚度,所设计车架材料选用Q235钢板,采用焊接式结构。 2.1 总体布置

图1 车架总体布置图 2.2 纵梁 纵梁是车架的主要承载部件, 在半挂车行驶中受弯曲应力。为了满足半挂车公路运输、道路条件差等使用性能的要求, 纵梁采用具有很好抗弯性能的箱形结构, 纵梁断面如图2所示。上翼板是一块覆盖整个车架的大板, 图中只截取一部分。 图2 纵梁截面示意图 为了保证纵梁具有足够的强度, 在牵引销座近增加了加强板; 为减小局部应力集中, 在一些拐角处采用圆弧过渡。在轮轴座附近也增加了加强板(图1中轮轴座附近)。由于半挂车较宽, 为防止中间局部变形过大, 车架的中间增加了倒T形的纵梁加强板。

图3 部分加强板示意图 2.3 横梁 横梁是车架中用来连接左右纵梁, 构成车架的主要构件。横梁本身的抗扭性能及其分布直接影响着纵梁的内应力大小及其分布。本车架的19根横梁, 主要结构形状为槽形。 2.4纵梁和横梁的连接 车架结构的整体刚度, 除和纵梁、横梁自身的刚度有关外, 还直接受节点连接刚度的影响, 节点的刚度越大, 车架的整体刚度也越大。因此, 正确选择和合理设计横梁和纵梁的节点结构, 是车架设计的重要问题, 下面介绍几种节点结构。 一、横梁和纵梁上下翼缘连接( 见图4( a) ) 这种结构有利于提高车架 的扭转刚度, 但在受扭严重的情况下, 易产生约束扭转, 因而在纵梁翼缘处会出现较大内应力。该结构形式一般用在半挂车鹅劲区、支承装置处和后悬架支承处。

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

6米厢式运输车设计规范修改

厢式运输车设计规范 编号: 编制: 审核: 批准: 2018年X月

厢式运输车设计规范 1、术语和定义 GB/T 3730.3规定的术语和定义适用于本规范。 2、规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。 GB 1589 道路车辆外廓尺寸、轴荷及质量限值 GB/T 3730.3 汽车和挂车的术语及其定义 GB 3847 车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法 GB 4094 汽车操纵件、指示器及信号装置的标志 GB 4785 汽车及挂车外部照明和信号装置的安装规定 GB 7258 机动车运行安全技术条件 GB 11564 机动车回复反射器 GB 11567.1 汽车和挂车侧面防护要求 GB 11567.2 汽车和挂车后下部防护要求 GB 12676 汽车制动系统结构、性能和试验方法 GB 15084 机动车辆后视镜的性能和安装要求 GB 17691 车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) GB/T 18411 道路车辆产品标牌 GB 23254 货车及挂车车身反光标识 JB/T 5943 工程机械焊接件通用技术条件 QC/T 252 专用汽车定型试验规程 QC/T 453 厢式运输车 QC/T 484 汽车油漆涂层 QC/T 518 汽车用螺纹紧固件紧固扭矩 QC/T 625 汽车用涂镀层和化学处理层 QC/T 900 汽车整车产品质量检验评定方法 QC/T 29058 载货汽车车箱技术条件

水轮机计算

水电站作业 水轮机型号及主要参数的选择: 已知某水电站最大水头H max=245m,加权平均水头H av=242.5m,设计水头H r=240m,最小水头H min=235m,水轮机的额定出力为12500kw,水电站的海拔高程为2030m,最大允许吸出高Hs≥-4.0m。 要求: 1、选择两种机型(HL120-38,HL100-40)进行选择。 2、对选择的机型进一步绘制其运转特性曲线,

` (一)水轮机型号的选择 根据题目条件已知要用HL120-38和HL100-40型水轮机进行选择,对比计算分别如下: (二)水轮机主要参数的计算 HL120-38型水轮机方案主要参数的计算 1、转轮直径的计算 1D = 式中: '3112500;240; 380/0.38/r r N kW H m Q L s m s ==== 同时在附表1中查得水轮机模型在限制工况的效率=88.4%M η,由此可初步假定水轮机在该工况的效率为90.4% 将以上各值代入上式得 10.999D m = = 选用与之接近而偏大的标准直径1 1.00D m =。 2、效率修正值的计算 由附表一查得水轮机模型在最优工况下的max =90.5%M η,模型转轮直径10.38M D m =,则原型水轮机的最高效率max η可依下式计算,即 max max =1M ηη-(1- 1(10.93593.5%=--== 考虑到制造工艺水平的情况取11%ε=;由于水轮机所应用的蜗壳和尾水管的型式与模型基本相似,故认为20ε=,则效率修正值η?为: max max 10.9350.9050.010.02M ηηηε?=--=--=

相关文档
最新文档