【必考题】高三数学下期末第一次模拟试题带答案(3)

【必考题】高三数学下期末第一次模拟试题带答案(3)
【必考题】高三数学下期末第一次模拟试题带答案(3)

【必考题】高三数学下期末第一次模拟试题带答案(3)

一、选择题

1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )

A . 1.2308?.0y

x =+ B .0.0813?.2y

x =+ C . 1.234?y

x =+ D . 1.235?y

x =+ 2.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .

110

B .

310

C .

35

D .

25

3.如果

4

2

π

π

α<<

,那么下列不等式成立的是( )

A .sin cos tan ααα<<

B .tan sin cos ααα<<

C .cos sin tan ααα<<

D .cos tan sin ααα<<

4.函数()1

ln 1y x x

=

-+的图象大致为( ) A . B .

C .

D .

5.已知函数()25,1,,1,x ax x f x a x x

?---≤?

=?>??是R 上的增函数,则a 的取值范围是( )

A .30a -≤<

B .0a <

C .2a ≤-

D .32a --≤≤

6.函数()ln f x x x =的大致图像为 ( )

A .

B .

C .

D .

7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220

B .2755

C .

2125

D .

27

220

8.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1

B .﹣2

C .6

D .2

9.已知抛物线2

2(0)y px p =>交双曲线22

221(0,0)x y a b a b

-=>>的渐近线于A ,B 两点

(异于坐标原点O ),若双曲线的离心率为5,AOB ?的面积为32,则抛物线的焦点为( ) A .(2,0)

B .(4,0)

C .(6,0)

D .(8,0)

10.将函数()sin 2y x ?=+的图象沿轴向左平移8

π

个单位后,得到一个偶函数的图象,则?的一个可能取值为( ) A .

B .

C .0

D .4

π-

11.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )

A .{3}

B .{7}

C .{3,7}

D .{1,3,5}

12.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )

A .()()()()02332f f f f ''<<<-

B .()()()()03322f f f f ''<<-<

C .()()()()03232f f f f ''<<<-

D .()()()()03223f f f f ''<-<<

二、填空题

13.设正数,a b 满足21a b +=,则

11

a b

+的最小值为__________. 14.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 15.在平行四边形ABCD 中,3

A π

∠=

,边AB ,AD 的长分别为2和1,若M ,N 分别是

边BC ,CD 上的点,且满足CN CD

BM BC =u u u u v u u u v u u u v u u u v ,则AM AN ?u u u u v u u u v 的取值范围是_________. 16.双曲线22

221x y a b

-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直

线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 17.设a R ∈,直线20ax y -+=和圆22cos ,

12sin x y θθ=+??=+?

(θ为参数)相切,则a 的值为

____.

18.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)

19.若x ,y 满足约束条件220

100x y x y y --≤??

-+≥??≤?

,则32z x y =+的最大值为_____________.

20.(

)sin 5013=o

o

________________.

三、解答题

21.在直角坐标系xOy 中,曲线C 的参数方程为2

2

21141t

x t t y t ?-=??+??=?+?

,(t 为参数),以坐标原点O

为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为

2cos 3sin 110ρθρθ++=.

(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.

22.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;

(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.

23.如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,ABE 60∠=?,G 为BE 的中点.

(Ⅰ)求证:AG ⊥平面ADF ;

(Ⅱ) 求AB 3=,BC 1=,求二面角D CA G --的余弦值. 24.已知函数()ln f x x x =. (1)若函数2()1

()f x g x x x

=

-,求()g x 的极值; (2)证明:2

()1x

f x e x +<-.

(参考数据:ln20.69≈ ln3 1.10≈ 3

2 4.48e ≈ 27.39e ≈)

25.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED V ,

DCF V 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .

(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.

26.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点

A ,

B 的极坐标分别为()

π42,,5π4?? ???

,,曲线C 的方程为r ρ=(0r >).

(1)求直线AB 的直角坐标方程;

(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.A 解析:A 【解析】 【分析】

由题意得在线性回归方程$?y bx

a =+$中 1.23

b =$,然后根据回归方程过样本点的中心得到$a

的值,进而可得所求方程. 【详解】

设线性回归方程$?y bx

a =+$中,由题意得 1.23

b =$, ∴$1.23?y x a

=+. 又回归直线过样本点的中心()4,5,

∴$5 1.234a

=?+, ∴$0.08a

=, ∴回归直线方程为 1.2308?.0y

x =+. 故选A . 【点睛】

本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.

2.C

解析:C 【解析】 【分析】

设第一张卡片上的数字为x ,第二张卡片的数字为y ,问题求的是()P x y ≤, 首先考虑分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,有多少种可能,再求出x y ≤的可能性有多少种,然后求出()P x y ≤. 【详解】

设第一张卡片上的数字为x ,第二张卡片的数字为y , 分别写有数字1,2,3,4,5的5

张卡片中随机抽取1张,放回后再随机抽取1张,共有5525?=种情况, 当x y ≤时,可能的情况如下表:

x

y

个数 1 1,2,3,4,5 5 2 2,3,4,5 4 3 3,4,5 3 4 4,5 2 5

5

1

()255

P x y ≤=

=,故本题选C .

【点睛】

本题考查用列举法求概率,本问题可以看成有放回取球问题.

3.C

解析:C 【解析】 【分析】

分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】

如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.

【点睛】

本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.

4.A

解析:A 【解析】 【分析】

确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项. 【详解】

0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,

1ln 20y =->,排除C ,只有A 可满足.

故选:A. 【点睛】

本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.

5.D

解析:D 【解析】 【分析】

根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】

要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,

所以21,20,115,

1a a a a ?-≥??

,解得32a --≤≤.

故选D. 【点睛】

本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.

6.A

解析:A 【解析】 【分析】 【详解】

∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案

又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方 ∴可以排除B 答案 考点:函数图像.

7.D

解析:D 【解析】

旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】

因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一

个,所以取出的三个球中必有一个新球,两个旧球,所以12933

1227

(4)220

C C P X C ===,故选

D . 【点睛】

本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.

8.C

解析:C 【解析】

试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .

点评:本题考查元素与集合的关系,基本知识的考查.

9.B

解析:B 【解析】 【分析】

由题意可得

2b

a

=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】

2222

2

222

15c a b b e a a a

+===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:

22322n

m mn n pm ?=??

=??=??

,解得:8p =,∴抛物线的焦点为()4,0,故选B . 【点睛】

本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.

解析:B 【解析】

得到的偶函数解析式为sin 2sin 284y x x ππ????????

??=+

+=++ ? ??????

??????

?,显然.4π?= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,

sin 24x π?????++ ???????选择合适的?值通过诱导公式把sin 24x π???

??++ ??????

?转化为余弦函数

是考查的最终目的. 11.B

解析:B 【解析】 【分析】

先求出A B ?,阴影区域表示的集合为()U A B ?e,由此能求出结果. 【详解】

Q 全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,

{1,A B ∴?=3,5},

∴如图所示阴影区域表示的集合为:

(){}7U A B ?=e.

故选B . 【点睛】

本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.

12.B

解析:B 【解析】 【分析】

根据导数的几何意义可对比切线斜率得到()()032f f ''<<,将()()32f f -看作过

()()22f ,和()()3,3f 的割线的斜率,由图象可得斜率的大小关系,进而得到结果.

【详解】

由()f x 图象可知,()f x 在2x =处的切线斜率大于在3x =处的切线斜率,且斜率为正,

()()032f f ''∴<<,

()()()()

323232

f f f f --=

-Q ,()()32f f ∴-可看作过()()22f ,和()()3,3f 的割线

的斜率,由图象可知()()()()3322f f f f ''<-<,

()()()()03322f f f f ''∴<<-<.

故选:B . 【点睛】

本题考查导数几何意义的应用,关键是能够将问题转化为切线和割线斜率大小关系的比较,进而根据图象得到结果.

二、填空题

13.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个 解析:322+

【解析】

21a b Q +=,则1111223+322b a a b a b a b a b +=++=+≥+()(),则11

a b

+的最小值为322+.

点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有

1111

2a b a b a b

+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.

14.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为

解析:12

-

【解析】 【详解】 因为,

所以,①

因为,

所以,②

①②得,

即, 解得

, 故本题正确答案为

15.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设

则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量

解析:

[2]5, 【解析】 【分析】

画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围. 【详解】

解:建立如图所示的直角坐标系,则(2,0)B ,(0,0)A ,

13,2D ?? ? ???

,设||||||||BM CN BC CD λ==u u u u r u u u r

u u u r u u u r ,[]

0,1λ∈,则(22M λ+,3)λ,5

(22N λ-,3), 所以(22AM AN λ=+u u u u r u u u r g ,35)(22λλ-g ,22353

)542544

λλλλλλ=-+-+=--+,

因为[]0,1λ∈,二次函数的对称轴为:1λ=-,所以[]

0,1λ∈时,[]2

252,5λλ--+∈.

故答案为:

[2]5,

【点睛】

本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.

16.2【解析】试题分析:因为四边形是正方形所以所以直线的方程为此为双曲线的渐近线因此又由题意知所以故答案为2【考点】双曲线的性质【名师点睛】在双曲线的几何性质中渐近线是其独特的一种性质也是考查的重点内容

解析:2 【解析】

试题分析:因为四边形OABC 是正方形,所以45AOB ∠=?,所以直线OA 的方程为

y x =,此为双曲线的渐近线,因此a b =,又由题意知22OB =,所以

22222(22)a b a a +=+=,2a =.故答案为2.

【考点】双曲线的性质

【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.

求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类

似.因此,双曲线与椭圆的标准方程可统一为

的形式,当,,

时为椭圆,当

时为双曲线.

17.【解析】【分析】根据圆的参数方程确定圆的半径和圆心坐标再根据直线与圆相切的条件得出满足的方程解之解得【详解】圆化为普通方程为圆心坐标为圆的半径为由直线与圆相切则有解得【点睛】直线与圆的位置关系可以使

解析:3

4

【解析】 【分析】

根据圆的参数方程确定圆的半径和圆心坐标,再根据直线与圆相切的条件得出a 满足的方程,解之解得。 【详解】 圆22cos ,12sin x y θθ

=+??

=+?化为普通方程为22

(2)(1)2x y -+-=,

圆心坐标为(2,1),圆的半径为2, 22121

a a +=+,解得34

a =

。 【点睛】

直线与圆的位置关系可以使用判别式法,但一般是根据圆心到直线的距离与圆的半径的大小作出判断。

18.660【解析】【分析】【详解】第一类先选女男有种这人选人作为队长和副队有种故有种;第二类先选女男有种这人选人作为队长和副队有种故有种根据分类计数原理共有种故答案为

解析:660 【解析】 【分析】 【详解】

第一类,先选1女3男,有316240C C =种,这4人选2人作为队长和副队有2

412A =种,故有4012480?= 种;第二类,先选2女2男,有22

6215C C =种,这4人选2人作为队长和副队有2

412A =种,故有1512180?=种,根据分类计数原理共有480180660+=种,故

答案为660.

19.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数

解析:6 【解析】

首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式

3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合1

2z 的几何

意义,可以发现直线31

22

y x z =-

+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】

根据题中所给的约束条件,画出其对应的可行域,如图所示:

由32z x y =+,可得3122

y x z =-+, 画出直线3

2

y x =-,将其上下移动, 结合

2z

的几何意义,可知当直线3122

y x z =-+在y 轴截距最大时,z 取得最大值, 由220

x y y --=??

=?,解得(2,0)B ,

此时max 3206z =?+=,故答案为6.

点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.

20.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1

【分析】

利用弦化切的运算技巧得出(

)

cos10sin 50cos 0sin 5011an10++=?o o

o

o

o

o

,然后

利用辅助角、二倍角正弦以及诱导公式可计算出结果. 【详解】

原式

()2sin 1030sin50cos102sin 40cos 40sin50cos10cos10cos10++=?==o o o o o o o o

o o

o

()sin 9010sin80cos101cos10cos10cos10-====o o

o o o o o . 故答案为:1. 【点睛】

本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.

三、解答题

21.(1)2

2

:1,(1,1]4

y C x x +=∈-

;:2110l x ++=;(2

【解析】 【分析】

(1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值. 【详解】 (1)由2

2

11t x t -=

+得:210,(1,1]1x t x x -=≥∈-+,又()

2

2

22161t y t =+ ()()22

2116141144111x

x y x x x x x -?

+∴==+-=--??+ ?+??

整理可得C 的直角坐标方程为:2

2

1,(1,1]4

y x x +=∈-

又cos x ρθ=,sin y ρθ=

l ∴

的直角坐标方程为:2110x ++=

(2)设C 上点的坐标为:()cos ,2sin θθ

则C 上的点到直线l

的距离d ==

当sin 16πθ?

?

+

=- ??

?

时,d 取最小值

则min d = 【点睛】

本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.

22.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数

n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.

【解析】 【详解】

(1)依题意,2,2,24d d ++成等比数列, 故有()()2

2224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-?=-或2n a =.

(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222

n n n S n ??+-??

=

=.

令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =. 23.

(Ⅰ)详见解析(Ⅱ)7

- 【解析】 【分析】

(Ⅰ)由矩形ABCD 和菱形ABEF 所在的平面相互垂直,AD AB ⊥,进而证得AD ⊥平面ABEF ,证得AD AG ⊥,再根菱形ABEF 的性质,证得AG AF ⊥,利用线面垂直的判定定理,即可证得AG ⊥平面ADF .

(Ⅱ) 由(Ⅰ)可知AD ,AF ,AG 两两垂直,以A 为原点,AG 为x 轴,AF 为y 轴,

AD 为z 轴,建立空间直角坐标系,分别求得平面ACD 和平面ACG 一个法向量,利用向量的夹角公式,即可求解. 【详解】

(Ⅰ)证明:∵矩形ABCD 和菱形ABEF 所在的平面相互垂直,AD AB ⊥,

∵矩形ABCD ?菱形ABEF AB =,∴AD ⊥平面ABEF , ∵AG ?平面ABEF ,∴AD AG ⊥,

∵菱形ABEF 中,ABE 60∠=?,G 为BE 的中点,∴AG BE ⊥,∴AG AF ⊥, ∵AD AF A ?=,∴AG ⊥平面ADF .

(Ⅱ) 由(Ⅰ)可知AD ,AF ,AG 两两垂直,以A 为原点,AG 为x 轴,AF 为y 轴,

AD 为z 轴,

建立空间直角坐标系,

∵AB 3=,BC 1=,则AD 1=,3AG 2

=

, 故()A 000,,,33C 12??- ? ???,,,()D 001,,,3A 002??

???,,, 则3312AC ??=- ? ???

u u u r ,,,()001AD =u u u r ,,,3002AG u u u r ,,??= ???, 设平面ACD 的法向量()1111n x y z =u r ,,,则11111133·

022

·0AC n x y z AD n z ?=-+=???==?

u u u r u r u u u r u r , 取13y =,得()

11

30n u r

,,=, 设平面ACG 的法向量()2222n x y z =u u r ,,,则22222233

·10223

·02AC n x y z AG n x ?=-+=????==??

u u u r u u r u u u r u u r ,

取22y =,得()

2023n u u r

,=, 设二面角D CA G --的平面角为θ,则1212|?|2321

cos θ727

·n n n n ===?u r u u u r u r u u r ,

由图可知θ为钝角,所以二面角D CA G --的余弦值为21-

. 【点睛】

本题考查了立体几何中的线面垂直的判定与证明和直线与平面所成的角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 24.(1)见解析;(2)见证明

【解析】 【分析】

(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;

(2)问题转化为证e x ﹣x 2﹣xlnx ﹣1>0,根据xlnx ≤x (x ﹣1),问题转化为只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),根据函数的单调性证明即可. 【详解】 (1)()()2

1ln 1(0)f x x g x x x x x x

=

-

=->,()2

2ln 'x g x x -=,当()

2

0,x e ∈,()'0g x >,

当()

2

,x e ∈+∞,()'0g x <,()g x ∴在(

)2

0,e

上递增,在()2

,e +∞上递减,()g x ∴在

2x e =取得极大值,极大值为

2

1

e ,无极大值. (2)要证

f (x )+1<e x ﹣x 2. 即证e x ﹣x 2﹣xlnx ﹣1>0,

先证明lnx ≤x ﹣1,取h (x )=lnx ﹣x+1,则h ′(x )=,

易知h (x )在(0,1)递增,在(1,+∞)递减,

故h (x )≤h (1)=0,即lnx ≤x ﹣1,当且仅当x =1时取“=”, 故xlnx ≤x (x ﹣1),e x ﹣x 2﹣xlnx ≥e x ﹣2x 2+x ﹣1, 故只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,

令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),则k ′(x )=e x ﹣4x+1,

令F (x )=k ′(x ),则F ′(x )=e x ﹣4,令F ′(x )=0,解得:x =2ln2, ∵F ′(x )递增,故x ∈(0,2ln2]时,F ′(x )≤0,F (x )递减,即k ′(x )递减, x ∈(2ln2,+∞)时,F ′(x )>0,F (x )递增,即k ′(x )递增, 且k ′(2ln2)=5﹣8ln2<0,k ′(0)=2>0,k ′(2)=e 2﹣8+1>0,

由零点存在定理,可知?x 1∈(0,2ln2),?x 2∈(2ln2,2),使得k ′(x 1)=k ′(x 2)=0,

故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2

﹣1, k (x 2)=﹣2

+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>

0,

故x >0时,k (x )>0,原不等式成立. 【点睛】

本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.

25.(1)见解析;(2)13

【解析】 【分析】

(1)在正方形ABCD 中,有AB AD ⊥,CD BC ⊥,在三棱锥M DEF -中,可得

MD MF ⊥,MD ME ⊥,由线面垂直的判定可得MD ⊥面MEF ,则MD EF ⊥; (2)由E 、F 分别是AB 、BC 边的中点,可得1BE BF ==,求出三角形MEF 的面积,结

合()1及棱锥体积公式求解. 【详解】

(1)证明:Q 在正方形ABCD 中,AB AD ⊥,CD BC ⊥,

∴在三棱锥M DEF -中,有MD MF ⊥,MD ME ⊥,且ME MF M ?=,

MD ∴⊥面MEF ,则MD EF ⊥;

(2)解:E Q 、F 分别是边长为2的正方形ABCD 中AB 、BC 边的中点, 1BE BF ∴==,

11

1122MEF BEF S S V V ∴==??=,

由(1)知,1111

23323

M DEF MEF V S MD -=?=??=V .

【点睛】

本题考查线面垂直的判定定理及性质定理的应用,考查棱锥体积的求法,是中档题. 26.(1)340x y -+=;(2210

【解析】 【分析】

(1)求得()04A ,

,()22B --,,问题得解. (2)利用直线AB 和曲线C 相切的关系可得:圆心到直线A B 的距离等于圆的半径r ,列方程即可得解. 【详解】

(1)分别将()π42A ,,()

5π224B ,转化为直角坐标为

()04A ,,()22B --,, 所以直线AB 的直角坐标方程为340x y -+=. (2)曲线C 的方程为r ρ

=(0r >),其直角坐标方程为222x y r +=.

又直线A B 和曲线C 有且只有一个公共点,即直线与圆相切,

所以圆心到直线A B的距离等于圆的半径r.

=r.

又圆心到直线A B

【点睛】

本题主要考查了极坐标与直角坐标互化,还考查了直线与圆相切的几何关系,考查计算能力及点到直线距离公式,属于中档题.

相关主题
相关文档
最新文档