二维核磁处理实用手册

二维核磁处理实用手册
二维核磁处理实用手册

ACD/Labs二维核磁数据处理实用手册

高级化学发展有限公司Advanced Chemistry Development(以下简称ACD/Labs)成立于1994年,总部位于加拿大多伦多市。ACD/Labs是一家将化学结构与分析化学信息进行有效结合、进而产生全面分析化学管理系统(英文简称ChemAnalytics)的化学软件公司。其主要功能包括未知化学物质结构解析、谱图预测和解释、分析数据处理与管理、理化性质和药物代谢毒性预测、色谱分离、医药化学、新药试剂合成、化学系统命名、以及化学专利和论文的发表。ACD/NMR Processor为ACD/Labs众多模块中的一个。

ACD/NMR Processor功能简介:

1.包含1D和2DNMR数据处理以及ACD/ChemSketch画图软件

2.兼容性好,可以处理Bruker、Varian、Thermo Scientific、JEOL、Tecmag、ASCII、

GE、Acorn NMR、Lybrics、JCAMP、MSI Felix等核磁数据。

3.自动获取多重谱峰信息且数据导出专业化(可以按照国外著名期刊要求导出,数

据可直接用于文章的发表或论文的写作)。

4.宏命令自动处理谱图

5.类PPT操作界面。

6.一键处理傅里叶转换、相位校正、基线校正等。

7.支持手动、自动取峰和积分。

8.数据能按照强度或者等值线图表显示。

9.应用Magnitude spectrum, Power spectrum以及Symmetrization命令。

10.谱图叠加处理功能。

11.可将1D谱图添加到2D谱图中

12.通过化学位移和耦合常数建立2D核磁谱图

13.另外还具有差谱处理、化学结构导入、谱图注释标记、自动识别氘代试剂等功能

搭配NMR Predictor还可实现:

1.自动验证化学结构与谱图的匹配度。

2.自动归属1D和2D核磁数据。

ACD/NMR Processor所支持的数据格式

ACD/Labs目前最新版本是ACD/Labs12.5,操作平台:Windows

1、谱图处理界面

双击安装文件夹中ACDLabs 12.0文件夹中的Specmanager图标进入如下界面,或者进入ACD/Labs的任一模块,选择菜单栏ACD/Labs/Specmanager模块(一般图标选择ChemSketch)

注:如最左边出现分隔栏,则在菜单栏View中将ACD/NMR Workbook的勾去掉

2、导入数据

方法一:

点击如下操作界面中最左边红色的文件夹按钮,或者File-Open所要打开的数据。【文件路径ACD12/EXAMPLES/SPECMAN/2DNMR/EXAMPLE_2】

数据导入后

方法二:

将文件夹直接拖入SpecManager窗口查看Spectrum Parameter

选择菜单栏View/Spectrum Parameter

3、Pereference预设置

工具栏选择Option按钮,选择Pereference

Structure标签,Structure Coloration附近,点击,出现Coloration Setting 对话框,输入需要设置的数值

Labels与Scales标签

*如无需更改设置,直接点击OK 4.Full FT

工具栏选择Full FT

点击OK

放大功能。

上一次放大范围

滚动鼠标滚轴调整Threshold

5、Attach 1D Curve

选择工具栏Setup 1D Curve

选择Horz Spectrum将1HNMR附于F2

点击打开

如需调整1HNMR谱峰强度,点击,输入如300,Enter

注:这一部分是具体谱图类型而定,如H-HCosy,纵轴为1HNMR

点击打开

如需调整1HNMR谱峰强度,点击,输入如300,Enter

放大谱峰

选中谱峰中心,像右拖至F2谱峰中心位置

横向定标后谱图

纵向定标

单击Vert,选中谱峰中心,向上拖至F1谱峰中心位置

纵向定标后的谱峰

选择Accept

定标后谱图

7、Peak Picking

选择工具栏Peak Picking按钮

选择Manual

选择Peak Picking位置,单击左键

选择Accept

8、添加或删除网格线

工具栏选择Peak Picking按钮

单击左键

选择Gridlines

放大需要建立网格线的区域

单击左键

工具栏选择Vert,建立纵向网格线

工具栏选择Both,同时建立横向及纵向网格线

删除横向网格线

工具栏选择Horz

将红色线移至需要删除的网格线

当红色变成蓝色

单击左键,出现节点

单击Delete

Vert和Both操作同上

9、添加化合物结构式

方法一:Processor界面选择操作界面左下角的4-Structure

选择Edit in ChemSketch在ChemSketch界面画化合物结构

画好化合物结构后选择Attach Structure to the Current Spectrum

e

方法二:Processor界面切换到ChemSketch界面,画好结构,选择

Attach Structure to the Current Spectrum

10、Verify

注:需搭配ACD/NMR Prediction功能使用,如无此功能可跳过此说明。选择工具栏

选择,出现Verification Options对话框

选择,出现Option对话框

点击OK,点击Verify

点击OK,运行Verification

点击OK

Assignment工具栏选择Show Table of

Verification

高精度磁法勘探讲义

高精度磁法勘探 一、出队前的生产准备 包括对生产设计和高精度磁测规范的学习;对磁法仪器和测量仪器的准备,保证各种仪器性能良好;生产用GPS、地形图、地质图、1/5万航磁图;还有对野外或室内生产材料的准备等,野外主要有红布(设立测量标志)、木桩(埋石)、记号笔、铅笔、圆珠笔、小刀、记录本等,室内主要有笔记本电脑、打印机、打印纸、大的方格厘米纸、三角板、铅笔、彩色铅笔等。只有准备工作做充分了,才能保证野外顺利的开展工作。 二、仪器性能校验 到野外后在工作现场进行,共校验两次,野外开工前和工作结束后各一次。在校验之前要把仪器编上号(或使用仪器出厂时本身的编号,不要搞乱)。 1、磁力仪噪声水平的测定 选择一处磁场平稳而又不受人文干扰影响的地区(驻地附近)进行。各仪器间的距离要在20米以上,避免探头磁化时互相影响,然后使所有仪器同时作日变测量,观测时各仪器达到秒一级同步。取100个左右的观测值按公式计算每台仪器的噪声均方根值S。公式见规范。 2、仪器一致性校验 观测点不少于50个,其中少数点要处于较强的异常场上(大于5倍的均方误差),全部仪器做往返观测。有一台仪器作日变观测,

对其他仪器的观测结果做日变改正。一致性对比时各仪器探头高度要保持一致,避免垂直梯度变化的影响(如选在树林中进行)。对比结果按规范中的公式计算总均方误差,要求误差不大于设计总均方误差值的2/3。对于性能不好(达不到要求)的仪器不能投入野外生产使用。 磁测误差分配表 三、基点的选择与联测 1、基点的选择 总基点位置首先在区域内已有航磁图上选址,最好在区域磁场零基值线附近。并据交通地形等条件,选点在半径2m,高差0.5m范围内磁场变化不超过2nT,附近没有磁性干扰物,有利于长期保存的地方。 分基点亦即日变站选址要求位于平稳磁场内,靠近驻地(最好是独立的房屋内)使用方便,附近没有磁性干扰物。 仪器校正点:基本要求同分基点的要求。 对野外实地的选择结果要有记录。 日变站使用控制范围小于50km。

飞利浦核磁设备用户操作手册V1

Philips Healthcare 飞利浦核磁设备 用户操作手册

目录 1.飞利浦客户服务电话号码--------------------------------------------2 2.基本安全注意事项------------------------------------------------------------3 3.系统登录密码------------------------------------------------------------4 4.开关机流程----------------------------------------------------------------5 5.系统快速自检------------------------------------------------------------7 6.日常维护与保养---------------------------------------------------------9 7.常见故障解决-----------------------------------------------------------11 8.如何测试网络连接---------------------------------------------------12 9.如何接受远程诊断----------------------------------------------------14 10.如何保存问题图像----------------------------------------------------15 11.如何检查传输与打印队列------------------------------------------17 12.如何保存错误信息----------------------------------------------------18 13.失超的紧急处理--------------------------------------------------------20 14.机柜的实物图例-------------------------------------------------------24 本手册希望能成为您工作的帮手,成为我们沟通的桥梁。 飞利浦医疗售后服务部

磁法勘探实验报告

重力勘探实验报告 学号: 班号: 061123 :梦谨 指导教师:永涛

目录 前言 (2) 实验目的 (3) 实验原理 (3) 磁力仪工作原理 (4) 工作容及步骤 (3) 实验容及步骤 (6) 实验数据分析与解释 (7) 评述与结论 (13) 总结 (8) 建议 (9)

一.实验目的: 1.学习磁法勘探的基本原理,会用磁力仪进行简单的勘探; 2.根据勘探的结果,能够反演出地下物体的基本形态和特征。 二.实验原理 磁法勘探是利用地壳各种岩(矿)石间的磁性差异所引起的磁场变化(磁异常)来寻找有用矿产资源合查明隐伏地质构造的一种物探方法。 自然界的岩石和矿石具有 不同磁性,可以产生各不相同 的磁场,它使地球磁场在局部 地区发生变化,出现地磁异 常。利用仪器发现和研究这些 磁异常,进而寻找磁性矿体和 研究地质构造的方法称为磁 法勘探。磁法勘探是常用的地球物理勘探方法之 图1 磁异常示意图 一,它包括地面、航空、海洋磁法勘探及井中磁测等。磁法勘探主要用来寻找和勘探有关矿产(如铁矿、铅锌矿、铜锦矿等)、进行地质填图、研究与油气有关的地质构造及构造等问题。

三.磁力仪的工作原理 磁力仪按其测量的地磁场参数及其量值,可分为:相对测量仪器和绝对测量仪器。从使用磁力仪的领域来看,可分为:地面磁力仪,航空磁力仪,海洋磁力仪及井中磁力仪。下面重点介绍电子式磁力仪中的质子磁力仪。 (1)性能指标 图3-6 GSM-19T型质子磁力仪 主要技术指标如下: 灵敏度:0.05nT 分辨率:0.01nT

绝对精度:±0.2nT 动态围:20000到120000nT 梯度容差:>7000nT/m 采样率: 3秒至60 秒可选 温飘:0.0025nT/°C(环境温度为0到-40°C); 0.0018nT/°C(环境温度为0到+55°C) 工作温度:-40℃—+55℃ 存储4M字节:对流动站可存209715个读数 对基点站可存699050个读数 对梯度测量可存174762个读数 对步行磁测可存299593个读数 尺寸及重量:主机223×69×240mm,重2.1Kg 传感器170mm(长)×75mm(直径),重2.2Kg (2)测量原理 应用质子自旋磁矩在地磁场的作用下围绕地磁场方向做旋进运动的现象进行磁场测量。在水、酒精、甘油等样品中,质子受强磁场激发而具有一定方向性,去掉外磁场,质子在地磁场作用下绕地磁场T旋进,其旋进频率f与地磁场T强度成正比,关系式为: T=23.4872f 单位:伽马或纳特。测定出频率f即可计算出总磁场强度T的数

磁法测量原理及GSM-19T操作说明

地面高精度磁磁测方法、技术 一、质子旋进式磁力仪原理简述 通常,根据磁力仪测量的场量的性质将磁力仪分为标量磁力仪和矢量磁力仪。垂直磁秤磁力仪、磁通门磁力仪、超导磁力仪均属于矢量磁力仪,它们测量的是地磁场在某一方向上的强度或差值。质子磁力仪和光泵磁力仪在本质上属于标量磁力仪,它们测量的是地磁场总强度的模量。地面高精度磁法找矿使用的磁力仪大都为质子磁力仪,下面对其原理作简单的 介绍。 在所有物质的组成上,氢是是一种特殊的物质,它的原子核只有一个质子,因而氢原子核的自旋磁矩得不到抵消,而使氢原了显示出微弱的磁矩,这些磁矩在地磁场T的作用下,沿着T的方向排列。当这些氢原子放入如图所示的环境中,并对线圈充电,施加一个与地磁场T方向垂直的人工磁场,当这一人工磁场远大于地磁场时,氢原子的质子自旋轴都转至磁化(人工)磁场方向。这时切断电流,人工磁场突然消失,氢质子将会在原有自旋惯力及地磁场力的共同作用下,以相同的相位绕地磁场方向进动,也即质子旋进或核子旋进。在这种旋进期间,会产生新的变化的磁矩,这种磁矩切割线圈,将产生电感应信号,它的频率与质子进动频率相同,而质子进动频率与地磁场大小是成正比的,经实验及理论计算,它们之间存在这样的关系:T=23.4874f(T:地磁场,f:质子旋进频率),因而通过对电感应信号的的精确检测可以计算出地磁场的大小。 二、高精度磁法勘探与地质找矿 随着电了信息技术和数据处理技术的进展,磁法勘探从方法技术、数据采集、资料处理、成果解释等都提高到了一个新的水平,完全实现了自动化和信息化,其中最为突出的是磁测精度提高了1至2个数量级,并可进行多参量测量,这些为高精度磁法在地质找矿上的应用提供了坚实的硬件和软件保证。 新的地质找矿表现为直接找矿与间接找矿并举的特点,而且往往以间接找矿为主,这为高精度磁法在地质找矿上的应用提供更为广阔的应用领域。尤其在磁测精度大幅度提高之后,在某些方面磁法勘探成为了地质找矿必不可少的手段。 新一轮地质普查强调利用综合信息,采用地质---地球物理---地球化学模型指导普查工作的全过程;从任务确定、方法选择、解释推断先验条件的给定等都要使用模型,而高精度磁测通用性强、理论上最成熟,具有轻便、快速、成本低等特点,完全可以作为新一轮地质普查中最优先的物探方法。 磁测精度的提高也相应增强了其有效探测深度和对弱磁矿物的探测能力。有人作过计算,计算模型为垂直磁化、磁化率=0.01*4PI、T0=5000nT、R=50米的圆球、水平圆柱、及2b=6米的直立板状体三种模型。极大值与埋深的关系如图所示

磁法勘探数据处理系统使用说明

第一节软件功能 一、软件简介 1. 方法原理简介 剖面位场正演拟合是采用二度半多边形截面棱柱体重磁正反演公式[]计算磁性体模型正演理论曲线,然后与实测异常曲线进行对比,使理论曲线拟合实测曲线。同时采用奇异值分解与阻尼最小二乘法相结合的方法,得到收敛速度快而且稳定的计算结果,此方法适合于任意起伏地形条件。 2. 功能简介 剖面位场可视化正演拟合软件是在WINDOWS下开发的具有友好界面的高精度重磁剖面解释软件。所选模型为水平有限长的棱柱体,截面为任意多边形,其任意组合可以逼近任意形态的地质体。使用者可以根据实际测量的数据情况,进行圆滑、滤波预处理及化极、延拓等位场转换处理。根据磁场的曲线形态,可在计算机屏幕上直观地建立模型,动态地修改模型,且能同时看到其重磁场与实测场的拟合情况。另外还可以快速直观地反演模型的物性。该程序系统功能强,操作简便,使用者可以把精力集中于要解决的目标问题上,因而极大地提高了异常的反演效率和解释效果。 二、主窗口功能介绍 图4.1.1主窗口

如图4.1.1主窗口由上到下由四部分组成,即菜单项、工具条、工作区、状态条。 图4.1.2 菜单条 1、菜单条 1.1 文件 文件菜单项可以新建模型,对数据文件和模型文件进行装入、保存以及打印等操作。 1.2 查看 查看菜单项的功能有 a.查看部分模型的曲线;b.模型的合理性检查;c.工具条和状态条的显示/隐藏设置;d.数据区和模型区信息显示。 1.3 编辑修改 编辑修改菜单项可以对模型进行剖分,对窗口进行更新。 1.4 设置 设置菜单项用来对正反演系统进行设置,其设置项包括a.选择要反演的重磁场类型;b.设置原始数据曲线、计算数据曲线、数据区、模型区以及所选部分模型的颜色;c.选择模型移动方式;d.设置地磁场参数以及剖面方位角;e.设置模型角点加/不加标志;f.设置角点的有效范围。 1.5 预处理 预处理菜单项可以选择性地对原始数据进行三点圆滑、非线性滤波、位场上延、化极以及调整剖面水平等处理。 1.6 反演 反演菜单项可以通过调整物性约束范围,选择模型进行最优化物性反演。 1.7 格式转换 格式转换菜单项可以对以下四种格式的数据进行转换。a.DOC版数据格式; b.线数据格式; c.HC-90D格式; d.数据库格式。 1.8 输出 输出菜单项可以以文件的形式输出预处理结果和剖面拟合结果。 1.9 帮助

第四章 二维核磁共振谱

第四章二维核磁共振谱 4.1二维核磁共振的概述 1.什么是二维谱 二维核磁共振(2D NMR)方法是有Jeener 于1971年首先提出的,是一维谱衍生出来的新实验方法.引入二维后,减少了谱线的拥挤和重叠,提高了核之间相互关系的新信息.因而增加了结构信息,有利于复杂谱图的解析.特别是应用于复杂的天然产物和生物大分子的结构鉴定,2DNMR是目前适用于研究溶液中生物大分子构象的唯一技术.一维谱的信号是一个频率的函数,记为S(ω),共振峰分别在一条频率轴上.而二维谱是两个独立频率变量的信号函数,记为S(ω1,ω2),共振峰分布在由两个频率轴组成的平面上.2D-NMR的最大特点是将化学位移,偶合常数等参数字二维平面上展开,于是在一般一维谱中重叠在一个频率轴上的信号,被分散到两个独立的频率轴构成的二维平面上.,同时检测出共振核之间的相互作用. 原则上二维谱可以用概念上不同的三种实验获得,(如图 4.1),(1).频率域实验(frequency- frequency) (2).混合时域(frequency-time)实验(3). 时域(time-time)实验.它是获得二维谱的主要方法,以两个独立的时间变量进行一系列实验,得到S(t1,t2),经过两次傅立叶变换得到二维谱S(ω1,ω2).通常所指的2D-NMR均是时间域二维实验. 图4.1 2D-NMR 三种获得方式 2.二维谱实验 二维谱实验中,为确定所需的两个独立的时间变量,要用特种技术-时间分割。即把整个时间按其物理意义分割成四个区间。(如图所示)

图4.2 一般二维谱实验 (1)预备期:预备期在时间轴上通常是一个较长的时期,使核自旋体系回复对平衡状态,在预备期末加一个或多个射频脉冲,以产生所需要的单量子或多量子相干。 (2)在t1开始时由一个脉冲或几个脉冲使体系激发,此时间系控制磁化强度运动,并根据各种不同的化学环境的不同进动频率对它们的横向磁化矢量作出标识。 (3)在此期间通过相干或极化的传递,建立检测条件。 在此期间检测作为t2函数的各种横向矢量的FID的变化。它的初始相及幅度受到t1函数的调制。 与t2轴对应的ω2(ν轴),通常是频率轴,与t1轴对应的ω1是什么,取决于在发展是何种过程。 3.二维谱的表达方式 (1)堆积图(stacked plot). 堆积图的优点是直观,具有立体感.缺点是难以确定吸收峰的频率。大峰后面可能隐藏小峰,而且耗时较长。 图4.3 堆积图等高线 (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优点是容易获得频率定量数据,作图快。缺点是低强度的峰可能漏画。目前化学位移相关谱广泛采用等高线。 4.二维谱峰的命名 (1)交叉峰(cross peak):出现在ω1≠ω2处,(即非对角线上)。从峰的位置关系可以判断哪些峰之间有偶合关系,从而得到哪些核之间有偶合关系,交叉峰是二维谱中最有用的部分。 (2)对角峰(Auto peak):位于对角线(ω1=ω2)上的峰,称为对角峰。对角峰在F1和F2轴的投影。

磁法勘探考试A答案

磁法勘探考试A答案

————————————————————————————————作者:————————————————————————————————日期:

一、名词解释:(每题2分,共20分) 1.地磁要素:表示地球磁场方向和大小的物理量 2.磁偏角:磁子午线(磁北)与地理子午线(地理北)的夹角. 3.磁性:是指其吸引铁、镍等物质的性质 4.磁化率:表征物质受磁化的难易程度 5.灵敏度:指仪器反映所测场强度最小变化的能力(敏感程度) 6.磁扰:地磁场常常发生不规则的突然变化 7.磁异常:在消除了各种短期磁场变化以后,实测地磁场与作为正常磁场的主磁场之间的差异 8.区域异常分布较广的中深部地质因素引起的磁力异常,其特征是异常幅值较大,异常范围也较大,但异常梯度小。 9.磁异常正演:根据已知质体及磁性体的形态、质量及磁性、空间等分布来计算其磁场分布的过程。 10.延拓:是把原观测面的磁异常通过一定的数学方法换算到高于或低于原观测面上,分为向上延拓与向下延拓 二、选择题(将正确叙述前面的字母填在括号内)(每题1分,共10分) 1.正常地磁场的垂直分量Z在地表的变化规律是(C)。 A.由赤道向两极逐渐增大 B.由南到北逐渐增大 C.由赤道向两极绝对值逐渐增大 2.有效磁化倾角i s是有效磁化强度M s与(B)的夹角。 A.Z轴正向之间 B.X轴正向之间 C.Y轴正向之间 3.地磁傾角I在地表的变化规律是(C)。 A.在南半球为正,北半球为负 B.在南半球为负,在赤道地区较大 C.在南半球为负,北半球为正, 在极地地区较大 4.岩石的剩余磁化强度包括(B)。 A.热剩磁,等温剩磁,原生剩磁,次生剩磁等 B.热剩磁,化学剩磁,沉积剩磁,粘滞剩磁等 C.热剩磁, 碎屑剩磁,粘滞剩磁,沉积剩磁等 5.在研究地球的磁场时我们建立的坐标系是(B)。 A.x轴指向地磁北,y轴指向地磁东,z轴指向下 B.x轴指向地理北,y轴指向地理东,z轴指向下 C.x轴垂直于y轴, y轴平行于地体走向, z轴指向下 6.相对磁力测量是用仪器测出地面上两点之间的(C)值。 A.地磁场 B.地磁异常 C.地磁场差值 7.地磁图是在地图上标出各个测点的某个地磁要素的已化为同一时刻的数值,并以(C)的形式用光滑曲线画出来。 A.图形B.曲线C.等值线 8.导出泊松公式时,假设了对同一磁性体,其中(A) A.密度和磁性都是均匀的

磁法勘探实验报告

重力勘探实验报告 学号:20121003268 班号: 061123 姓名:李梦谨 指导教师:李永涛

目录 前言 (2) 实验目的22222222222222222223 实验原理22222222222222222223 磁力仪工作原理2222222222222224 工作内容及步骤 (3) 实验内容及步骤2222222222222226 实验数据分析与解释2222222222227 评述与结论 (13) 总结222222222222222222228 建议22222222222222222229

一.实验目的: 1.学习磁法勘探的基本原理,会用磁力仪进行简单的勘探; 2.根据勘探的结果,能够反演出地下物体的基本形态和特征。 二.实验原理 磁法勘探是利用地壳内各种岩(矿)石间的磁性差异所引起的磁场变化(磁异常)来寻找有用矿产资源合查明隐伏地质构造的一种物探方法。 自然界的岩石和矿石具有不同磁性,可以产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常。利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁 法勘探。磁法勘探是常用的地球物理勘探 方法之一,它包括地面、航空、海洋磁法勘探及 井中磁 测等。磁法勘探主要用来寻找和勘探有关矿产(如铁矿、铅锌矿、铜锦矿等)、进行地质填图、研究与油气有关的地质构造及大地构造等问题。 图1 磁异常示意图

三.磁力仪的工作原理 磁力仪按其测量的地磁场参数及其量值,可分为:相对测量仪器和绝对测量仪器。从使用磁力仪的领域来看,可分为:地面磁力仪,航空磁力仪,海洋磁力仪及井中磁力仪。下面重点介绍电子式磁力仪中的质子磁力仪。 (1)性能指标 图3-6 GSM-19T型质子磁力仪 主要技术指标如下: 灵敏度:0.05nT

核磁共振操作流程

核磁共振操作日常维护 1做样品前必须先执行cf命令 2调磁场3D两到三周做一次 3定期看内外两个电表,遵守核磁室的规定 4待完善 基本操作流程 1.每次开机后的基本操作 打开空气压缩机 ↓ 运行程序,命令栏输入ii(检查仪器硬件) ↓ 显示finished则硬件无故障,若命令过不去,输入ii restart命令 ↓ 命令栏输入“cf” ↓ 弹出对话框中输入bruker,点击OK ↓ 点击Edit ↓点击Next ↓ 再点击Next ↓ 依次点击Save、Restore、Next ↓ 点击Save,点击Next ↓ 点击finished 2. 3D匀场 配样(用H2O+D2O调磁场) 用量液器调橡皮套合适位置 ↓ 按下BSMS盒子上的

↓ 样品连同橡皮套放入,盖上盖子 ↓ 按下BSMS盒子上的 “Down”显示绿色则样品放好了 ↓ 点击Lock,点击H2O+D2O,点击OK ↓ 命令栏显示finished后,输入“topshim空格gui” ↓ 点击3D,点击Start ↓ 输入“tr回车atp” ↓ 点击Final Test/Accepture ↓ 输入“sinocal” ↓ 点击Close,点击Wsh,点击Write (替代或添加一组,时间为名) ↓ 点击Close,点击Rsh,点击Read ↓ 退出ATP main screen ↓ 点击Exit (3D调磁场结束) 4. 测试基本流程(C谱和氢谱) 配样,用量液器调橡皮套合适位置 ↓ 按下BSMS 盒子上的 ↓ 样品连同橡皮套放入,盖上盖子 ↓ 按下BSMS 盒子上的 “Down”显示绿色则样品放好了 ↓ 输入“edc” ↓ 填写【NAME】,【EXPNO】修改尾数氢谱为0碳谱为1;点击【Solvent】下拉三角选择溶剂 ↓ 输入Lock ↓ 输入“atma”(自动调谐)

磁法勘探实习报告

磁法勘探实习报告 学号: 班号: 组号: 姓名: 指导教师:

目录 第一章序言 1.1 实习时间、地点、测区自然及交通条件 1.2 测区地质及地球物理概况 1.3 实习任务完成情况 第二章磁法勘探野外施工技术设计 2.1 实习的地质任务及要求 2.2 磁测工作技术设计 2.3 磁测工作质量保障措施 第三章磁法勘探数据采集质量检查及评价 3.1 施工仪器性能的检查及评价 3.2 野外数据采集质量检查及评价 第四章 UXO探测及资料处理 4.1 UXO磁测数据的整理及图件编制 4.2 磁异常的分析及地质解释 第五章辉绿岩体地质调查及资料处理解 5.1 工区野外数据的整理及图示 5.2磁异常的分析及地质解释 第六章结论与建议

第一章序言 磁法勘探是通过观测和分析由岩石、矿石或其他探测对象磁性差异所引起的磁异常,进而研究地质构造和矿产资源或其他探测对象分布规律的一种地球物理方法。其中探测对象与围岩的磁性差异是磁法勘探的前提条件。 1.1 实习时间、地点、测区自然及交通条件 2011年8月8日至13日,我组在河北省秦皇岛市开展磁法勘探教学实习,测区按实习任务分为两个,一个是实习基地的操场,一个是位于实习基地正北方向的大梁山区。该区属于山坡地形,地势较陡。山坡上长满很深的草,土质系砂岩风化层。此地交通较为便利,可乘汽车到达山脚下公路,步行十分钟可到达测区左右部分测区。 1.2 测区地质及地球物理概况 工区内出露地层以元古界混合花岗岩为主(属区域变质岩),其中存在燕山期辉绿岩脉,属浅层基性侵入型岩浆岩;局部地段有第四系坡积物存在。由于辉绿岩属于基性岩浆岩,因此磁化率比较大,约为5000~8000(10-6SI(κ)),其围岩花岗岩的磁化率约为30~50(10-6SI(κ)),远远小于辉绿岩的磁化率,因此我们可以利用它们之间的磁性差异来确定大梁山工区内辉绿岩脉的赋存状况。 1.3 实习任务完成情况 本次磁法勘探实习有两个任务: 任务一: 使用磁法技术进行掩埋铁磁性物体的详查,查明铁磁性物体的平面位置; 面积:28×14米2。 任务二: 使用磁法技术进行地质普查,查明大梁山工区辉绿岩脉(磁性地质体)的赋存情况;面积约:60×80米2。 任务一实习结束后,本组完成了实习基地操场UXO磁法探测,绘制完成了操场磁异常平面等值线图,并通过分析此图最终基本探明掩埋铁磁性物体的平面位置(个别物体位置有偏差)。 任务二实习结束后,本组完成了对大梁山工区共7条测线(50至110号测线,其中包括一条精测剖面80号测线)的磁法普查,绘制完成大梁山区磁异常平面剖面图、工区实际材料图等各种成果图件,并对大梁山区辉绿岩脉的赋存情况有了初步了解,圆满完成了任务二。 第二章磁法勘探野外施工技术设计 2.1 实习的地质任务及要求 本次实习的地质任务有两个:

核磁操作指南

超导核磁共振操作指南 一、样品的制备 1.液体样品 用一次性滴管取一定量的液体(氢谱取1滴,碳谱取5-10滴),加入到一干净的样品管内,然后样品管倾斜一定的角度,取一支选好的氘代试剂加入到样品管中,轻轻振荡,混合均匀。 2.固体、粉末样品 取一定量的样品(1H谱 5mg;13C谱 20mg),放入一干净的样品管内,然后样品管倾斜一定的角度,把氘代试剂加入到样品管中,轻轻的振荡样品管使样品充分溶解。 二、测试前的准备 1. 打开空压机电源(电源开关向上推); 2. 打开空压机的排气口; 3. 取下磁体样品腔上端的盖子 4. 将样品管插入转子中,然后用定深量筒控制样品管的高度。这个步骤不能缺少,如果样品管插入的太长,有可能会损坏探头。 三、常规样品的测试(所有操作采用在命令行中输入命令完成) 1. 双击桌面上的图标,进入topspin 2.1主界面,调出最近做过的一张谱图。 2. 在命令行中输入“new”回车,跳出一窗口, 建立一个新的实验, NAME、Solvent、 Experiment等实验参数。其中1H选proton;13C选 C13CPD;13C定量谱选C13IG;13Cdept谱选择 C13DEPT135)。点击OK。 3.“ej”回车,打开气流,放入样品管;”ij”回车, 关闭气流,样品管落入磁体底部。 4.“lock solvent(选用的溶剂)”回车,进行锁 场,待锁场完场后进行下步操作。 5.“atma”回车,进行探头匹配调谐。 6.“edte”回车,设置气流在400l/h, 温度不超过313K;点击set max,调节max power为5%;点probe heater后的off,使其变为on,打开控温。实验温度超过313K时需通入氮气。一般一维谱不用控温,二维谱常用。

布鲁克400兆核磁氢谱操作使用指南

布鲁克400兆核磁氢谱操作使用指南 1.氢谱 ——进入到topspin操作界面,用高度量桶准确量测核磁管高度后,键入ej命令,气体自动吹出,等到感觉气体气流最大时,放入样品,然后在topspin界面上,键入ij命令,样品自动下滑到探头位置。 ——键入edc命令,在出现如下窗口时 分别在name栏目中填入实验名字,expno为实验序号,一般为数字,procno为处理序号,默认设定为1,dir为硬盘符,默认值为d:,user为用户账号,一般使用导师英文名称的缩写。其它的不用填写。点击ok即可。 ——键入rpar protonx all命令后回车。 ——键入getprosol命令,获取仪器参数。 ——锁场键入lock命令,弹出溶剂对话框,选择所用的氘代试剂,点中后仪器自动完成锁场工作,最后出现lock finished字样。 ——匀场键入topshim字样,仪器进入到自动匀场过程。匀场结束出现topshim finished 字样,意味匀场结束。(当氘代试剂为氘代氯仿时,请使用gradshim进行匀场,不然匀场时间会很长。具体使用方法为键入gradshim命令,点击start gradient shimming命令,当锁场线恢复正常时即表示匀场结束。) ——采样前准备键入rga命令,仪器将根据样品浓度情况调整仪器增益。 ——开始采样键入zgefp命令,仪器将进行采样,并在实验结束后对原始数据进行傅立叶变化处理; ——相位调整键入apk命令即可 ——基线平滑键入abs命令即可。 ——谱峰校准点击按钮,选择需要校准的谱峰,鼠标左键点击后出现一对话框,输入标准值即可。 ——谱峰积分在topspin菜单上,点击按钮,进入到积分界面。点击按钮,选

核磁共振碳谱总结

第4章核磁共振碳谱 在C的同位素中,只有13C有自旋现象,存在核磁共振吸收,其自旋量子数I=1/2。13C NMR 的原理与1H NMR一样。由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。加之H核的偶合干扰,使得13C NMR信号变得很复杂,难以测得有实用价值的图谱。知道二十世纪七十年代后期,质子去偶技术和傅里叶变换技术的发展和应用,才使13C NMR的测定变的简单易得。 4.1 核磁共振碳谱的特点 1. 灵敏度低 由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。 2. 分辨能力高 氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。同时13C 自身的自旋-自旋裂分实际上不存在,虽然质子和碳核之间有偶合,但可以用质子去偶技术进行控制。 3. 能给出不连氢碳的吸收峰 有机化合物分子骨架主要由 C 原子构成,因而13C NMR 能更全面地提供有关分子骨架的信息。而1HNMR 中不能给出吸收信号的 C=O、C=C、C≡C、C≡N以及季碳等基团,在13CNMR 中都可以直接给出特征吸收峰。13CNMR 可直接观测不带氢的含碳官能团,如羰基、氰基等。 4. 不能用积分高度来计算碳的数目 13C NMR的常规谱是质子全去偶谱。对大多数碳,尤其是质子化碳,他们的信号强度都会由去偶的同时产生的NOE效应而大大增强。因此不到呢国家的碳原子的数目不能通过常规共振谱的谱线强度来确定。 5. 弛豫时间T1可作为化合物结构鉴定的波谱参数 在化合物中,处于不同环境的13C核,他们的弛豫时间数值相差较大,可以达到2~3个数量级,通过T1可以致人结构归属,窥测体系的运动情况等。 4.2 核磁共振碳谱的测定方法 4.2.1 脉冲傅里叶变换法 同核磁共振氢谱。 4.2.2 核磁共振碳谱中的几种去偶技术 13C核的天然丰度很低,分子中相邻的两个 C 原子均为13C 核的几率极低,因此可忽略13C 核之间的偶合。 13C-1H 之间偶合常数很大,高达 120~320Hz,而13C 被偶合氢按 n+1 规律分裂为多重峰,使谱图不易解析,为提高灵敏度和简化谱图,须去掉1H 对13C 的偶合,方法有如下几种。 1. 质子带宽去偶法 又称噪声去偶,是最重要的去偶技术。在观察13C的同时,用一覆盖所有质子共振频率的射频照射质子,消除全部氢核对13C 的偶合,使每一个磁等价的13C 核成为一个信号,13CNMR呈现一系列单峰,同时由于 NOE 效应使13C 峰大为增强,信噪比提高。

2011磁法勘探系统软件(MAGS3.0)简介

磁法勘探软件系统(MAGS3.0)简介 磁法勘探软件系统是在原国家高技术研究发展计划(863)“海洋深部地壳结构探测技术”(820-01-03)课题的基础上,针对固体矿产重新研究与编制的。MAGS3.0是采用Visual Fortran,Visual Basic,Visual C语言编写开发的一套适合固体矿产使用的高精度磁法勘探软件,目的是使高精度磁法勘探从仪器设备检查、各项改正、资料预处理到正演、反演与转换处理、综合解释等环节都有一个方便、高效、快捷的平台,解释人员利用这一软件系统(平台)就能够在野外生产过程中及时进行处理与解释,同时把磁法勘探一些新的方法技术应用到生产中。 本系统按照地面高精度磁测技术规程(DZ/T 0071-93、DZ/T 0144-94)编写,其主要功能包括:1)野外磁测结果整理与预处理;2)剖面与平面资料的转换处理与正反演,包括小波多尺度分析技术,匹配滤波方法,2.5D与3D人机交互反演等;3)磁法勘探资料综合解释,包括人工神经网络,模糊数学,灰色系统等综合预测方法;4)导出到MapGis成图:可以根据实际情况画平面剖面图并均匀或渐变填充颜色,可以将二度半人机交互反演得到的地质剖面导出在MapGis环境下成图输出。 磁法勘探软件系统共分三大部分:1.仪器检验、各项改正与磁测资料的预处理等;2.剖面与平面磁测资料的转换处理与正、反演3.磁法勘探资料综合解释。而每一部分又分为: 一、野外磁测结果整理与预处理 1.仪器性能检验:噪声水平、一致性与仪器观测精度; 2.磁测资料的各项改正:利用国际地磁参考场IGRF作正常地磁场改正,高度改正,水平梯度改正,日变改正和混合改正。各项改正方法按地质矿产行业标准DZ/T0071-93,94,同时也兼顾一些单位对精度要求不高,还使用机械式仪器用混合改正和水平梯度改正方法。 3.磁测工作精度:按平稳场和异常场不同用均方误差和相对误差计算。 4.标本磁参数的测定与统计整理:根据质子磁力仪测定结果计算标本的磁化率和剩余磁化强度,同时按算术平均或几何平均方法计算均值;并对计算结果进行分组和绘制频率直方图和频率分布曲线。 5.磁测资料预处理:对剖面资料进行5点、7点圆滑和加密插值,跳点放稀点距;对平面资料进行25点、49点圆滑和加密插值,跳点放稀测网;从平面资料中任意切出一条剖面或一块面积(如某一个局部磁异常)进行精细解释。 二、剖面与平面资料的转换处理与正反演 1.二度、似二度体的正演 (1)有效磁化强度、有效磁化倾角的计算,感应磁化强度与剩余磁化强度的矢量合成;(2)常见规则几何形体,如水平圆柱体,斜交磁化有限延深板状体,接触带与台阶,矩形截面水平棱柱体组合模型,下延无限直立棱柱体组合模型的正演,以及二度半任意多边形截面水平棱柱体模型正演; (3)强磁性磁性体的消磁作用的计算。 正演部分可以计算任何复杂地质情况下磁性体产生的磁场,如可以计算任意形状磁性体,多个孤立脉状体的组合,矿体与岩体的组合,孤立矿体与区域磁性基底组合等,用于正演研究和检验反演解释的结果。 2.剖面资料的转换处理 (1)分离区域场与局部场方法:滑动平均法,插值切割场法,趋势分析法,差值场法,匹配滤波与维纳滤波法等;

磁法勘探实习

磁法勘探

1.实习目的和基本要求 磁法勘探本身是实践性很强的学科,通过课堂学习,学生已初步掌握了其基本理论,但学习磁测工作方法技术及仪器操作尚需通过教学实习来完成,在实习阶段达到以下目的: 1、巩固加深对课堂理论教学的认识和理解。 2、初步进行野外工作方法技术的基本训练,理解和熟悉磁法野外工作 的全过程,掌握磁异常资料的采集、整理及解释的基本技能; 3、了解磁测工作设计书的编写方法; 4、掌握生产报告的编写方法; 5、培养学生实事求是的科学态度和严肃认真、不怕困难、艰苦朴素的 工作作风。 磁测野外工作的基本过程: (1)仪器性能的检查及调节; (2)仪器一致性的检查; (3)基点的选择方法; (4)基、测点磁场观测方法; (5)磁性标本物性测试方法; 2.磁法勘探概要 2.1磁法仪器 仪器系统如图所示,其中包括仪器主机、探头、探杆、充电器、电缆和背架。 奇异键盘的认识:本仪器界面键盘共有19个,为了易于操作,其中两个最常用的键分别安置在仪器面板的右侧和左侧,即开始/停止“START/STOP”键和记录键“RECORD”,有些键还有三重功能,各种功能体现在不同工作进程有关。

质子磁力仪的注意事项: 1.用磁性标本产生的磁感强度(设为)ΔT1的梯度值TH 代替ΔT 值,在标本周围某点测定的ΔT 及TH 两者的物理实质不同,数值更不同,使测定结果普遍比早期用刃口式磁秤测定的同类岩(矿)石标本磁性偏大 。 2.测定结果计算的磁化率误差更大,源于质子磁力仪探头内高达数百奥斯特的极化场(设其为H P ),由于质子磁力仪探头未对H P 屏蔽,因此,处于探头附近的被测标本既受到地磁场T 0的磁化,又受到H P 的磁化,仪器观测到标本的磁感强度为: 2.2工区地理信息概况 ? +++=?20 3 0sin 31])([4v Mr H T x r T P πμ

磁法勘探设计书范例

XX省XX市XX铁矿外围地面磁异常查证设计书 (二号宋体、粗体居中) XX省地球物理勘查院 (三号仿宋体、粗体居中) 2006年4月 (小三号仿宋体、居中)

XX省XX市XX铁矿外围地面磁异常查证设计 书 (二号仿宋体、居中) 编写单位:XX省地球物理勘查院 项目负责人:XX 编写人:XX 总经理:XX 总工程师:XX 提交单位:XX省地球物理勘查院 (仿宋体、四号) XX年XX月 (仿宋体、四号)

目录 (宋体小四号、目录为自动生成) 第一章前言 (1) 第一节工作目的任务 (1) 第二节工区位置及自然地理概况 (1) 第二章工区选择依据及以往工作程度 (3) 第一节工区的选择和拟解决主要的地质矿产 (3) 第二节以往工作程度 (3) 第三章地质背景及地球物理特征 (5) 第一节地质背景 (5) 第二节地球物理特征 (6) 第四章工作方法、技术要求及工作部署 (10) 第一节测地工作 (10) 第二节磁测工作 (10) 第三节钻探 (12) 第四节本次工作选区的具体情况及工作部署 (13) 第五章资料整理、处理及推断解释 (17) 第六章实物工作量 (18) 第七章预期成果 (19) 第八章组织机构及人员安排 (19) 第一节组织管理 (19) 第二节人员安排 (19) 第九章经费预算 (20) 第一节工区地形等级 (20) 第二节预算编制依据 (20) 第三节采用的费用标准计算方法 (21) 第十章质量保障与安全措施 (24) 附图 (24)

第一章前言 (小三号宋体、加粗) 第一节工作目的任务 (四号宋体、加粗) 此次矿产工作是为适应当前国家建设对铁矿资源的迫切需求,必须加快矿区外围的勘探步伐,以增加矿区储量。我院因以上原因组织有关专家对司家营矿区及外围未经勘探的地磁异常及航磁异常进行了深入研究,筛选出6处具有找矿前景较好的磁异常优先进行查证,以扩大本区铁矿资源勘探储量,为国家建设提供充足的铁矿资源储备。本项目设计进行1:1万的地面面精测量及1:2000的精测剖面。预期工作任务的时间为2006.4—2008.6 。此次工作的有关要求是根据XX国土资〔2006〕6号文件对本项目下达的任务要求,编写了本设计。 (这一节中主要内容是说明:任务来源如招投标是国家项目还是甲方委托。工作方法及技术要求按高精度磁测的要求执行,如使用1:10000高精度磁测、测地工作的点位误差要求、对控制点的要求、检查要求等) (正文部分为小四号宋体、1.5倍行距) 第二节工区位置及自然地理概况 (四号宋体、加粗) 一、工区位置(小四号黑体) 工区位于XX省XX部XX市,大部分位于XX境内,其地理坐标为 东经118°30′~119°00′ 北纬39°10′~39°53′ 二、工区自然地理概况(小四号黑体) 该工区北部为丘陵,南部为滦河冲积平原,海拨在10—260米之间。滦河由北向南在工区东部穿过。工区北临京沈高速公路。京哈铁路、唐港高速公路、205国道在区内通过,交通十分便利(见插图1)。区内村庄稠密,农作物以小麦、玉米为主,村庄附近多有规模较大、成片的温室大棚及果树。秋后、冬季、春季施工较为便利。(工区交通位置图及自然、人文地理概况;仅叙述与野外作业、生活有关

Simens 3T 功能磁共振扫描简单操作手册

Simens 3T 功能磁共振扫描简单操作手册 1 如何开启Simens系统 把墙壁上的钥匙旋转到右侧,有一个锁被开了这样一个图形的位置----再按“system on”---然后进入水冷房,先打开射频系统最下面的按钮,然后打开上面的那个按钮----等20分钟左右,系统启动完毕----此时弹出一个中间有三个黑色方框,没有任何头像的屏幕。 2 刺激呈现系统与Simens系统的连接 打开呈现刺激的电脑,-----点击投影设备控制系统-----双击“on/off”按钮-----进入磁共振机房,将屏幕贴在磁体上-----观察投影是否位于屏幕的正中,如果不是,就进行相应调整。 3 被试上床、定位、移床 3.1 磁共振仪器上按钮的含义: 1)有一个人躺在床上,箭头朝里-------慢速向内移动 2)有一个人躺在床上,箭头朝外-------慢速向外移动 3)有一个人躺在床上,箭头朝里,同时腿部有一个向下的箭头-----降低床的高度 4)带一个准星的圆圈----------------------开启红外,定位参考点 5)------------------------------------以现在调整的位置为参考点,按下后床体会快速移动向磁共振腔体内部,进入扫描位置。 6)Speeded 与1)或者2)联合使用,能稍微快一点地移动床体,进行参考点的确定。

3.2 被试上床: 注意头部的水平,头部全部进入扫描范围,被试头部用海绵夹紧,防止头动,同时确保没有不舒服等 3.3 盖上头线圈 将头线圈的上半部分盖在下半部分上面(如果盖好了,会听见清脆的Click声音)----将头线圈上半部分的插头插入下半部分的插孔内(此时会在磁体上的液晶屏上显示出: head matrix的字样,否则就是没有插好) 注意头线圈有12道和32道两种,前者较大,后者较小。 3.4 缓慢移床,并确定参考位置 一般将红外线与头线圈上的参考刻度重合 确定好之后,按,床体自动快速移动向磁共振腔体内部,进入扫描位置。 3.5 关闭磁共振机房防护门 按“关”,要能听见气流的声音,才能关上。 4 建立protocol,确定扫描参数 建立protocol有两种方法:一种是在输入被试信息之前,在protocol list里面新建protocol;另一种方法是在扫描过程中,在输入被试信息后,临时的增加protocol的扫描序列。 4.1 在输入被试信息之前,在protocol list里面新建protocol 点击显示屏右边第五个有一支笔的那个图标(表示序列集)------在弹出的对话框里选择user-----head----func-----点右键----new----输入protocol的名字-----从HX中选择需要扫描的序列(如localizer(扫描定位像序列),t1-flzd-tra(扫描同层t1), epid-pan-dy(扫描EPI序列), t1-mpr-ns-sag-p2-iso(扫描高分辨3dt1结构像)----把选出的序列拉入自己新建的protocol 里面(或者Ctr+c和Ctrl+v粘贴和复制)。

磁法勘探实验报告

中国地质大学(武汉) 本科生实验报告 磁法勘探实验报告 学生姓名:施伟刚 所在学院:地球物理与空间信息学院学生班级:061134 学生学号:20131001450 任课教师:李永涛

目录 一、实验内容和实验步骤 (1) 1、实验内容 (1) 2、实验目的 (1) 二、实验原理和实验步骤 (1) 1、实验原理 (1) 2、实验步骤 (2) 三、EREV-1质子磁力仪的原理和性能 (2) 1、主要特点 (2) 2、最新技术 (3) 3、技术指标 (3) 四、测线布置图和现场工作图 (4) 五、数据成图和分析解释 (6) 1、测量数据 (6) 2、数据成图 (7) 3、分析和解释 (8) 六、实验心得和体会 (8)

一、实验内容和实验步骤 1、实验内容 2016年4月28日在物探楼(南边)和数理楼(北边)之间的小树林进行磁法勘探的野外工作布置,仪器熟悉与操作,数据的采集和整理,以及对结果的解释和报告的编写等环节。 2、实验目的 1:熟悉EREV-1质子磁力仪的原理和操作,熟悉野外磁法勘探和室内资料处理的流程如测线布置,数据采集和整理和对结果的解释和说明。 2:将课堂的理论知识和野外实际工作相结合,加深对老师上课所讲内容的理解,为以后野外工作打下基础。 3:熟悉grapher、matlab等软件的操作等。 二、实验原理和实验步骤 1、实验原理 磁法勘探是通过观测和分析由岩矿石或其他探测对象磁性差异所引起的异常,来研究地质构造、矿产资源或其他探测对象的一种地球物理勘探方法。在所有的地球物理勘探方法中,磁法勘探是发展最早、应用广泛的一种地球物理勘探方法。 通过测量区内各点的磁场强度,通过IGRF得到区内正常磁场强度,则可以得到各点的磁异常。利用一些分析软件得到测区的磁异常等值线图,分析出区域内磁场分布特点,找出异常分布位置及特点,通过反演得到该地区的地质特征。

相关文档
最新文档