伺服比例阀之浅见

伺服比例阀之浅见
伺服比例阀之浅见

伺服阀与比例阀的区别

伺服阀与比例阀的区别 阀对流量的控制可以分为两种: 一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁直通阀、电磁换向阀、电液换向阀。 另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。 所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。 伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。 比例阀和伺服阀的区别主要体现在以下几点: 1.驱动装置不同。比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达; 2.性能参数不同。滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统; 2.1 伺服阀中位没有死区,比例阀有中位死区; 2.2 伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz; 2.3 伺服阀对液压油液的要求更高,需要经过滤才行,否则容易堵塞,比例阀要求低一些; 3.阀芯结构及加工精度不同。比例阀采用阀芯+阀体结构,阀体兼作阀套。伺服阀和伺服比例阀采用阀芯+阀套的结构。 4.中位机能种类不同。比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth产品的E型)。 5.阀的额定压降不同。

伺服阀和比例阀

伺服阀与比例阀的主要共同点有: 一、伺服阀与比例阀的主要共同点有: 1、用电信号进行控制; 2、阀口开度是连续可调; 二、伺服阀与比例阀的主要差异点 1、伺服阀控制阀口采用零遮盖结构,可以用于任何闭环系统;比例阀采用正遮盖阀口,有较大的零位死区,可方便用于速度闭环系统,电控器中配置阶跃信号发生器,可用于力闭环与位置闭环。但总存在一定的不便。 2、伺服阀通过提高加工精度、油液过滤精度,加上将油源压力的三分之一用于控制阀口,因而频响很高,从几十到几百Hz,相应的弱点就是成本高、维护难,能量利用率较低;而比例阀在加工、过滤要求上低一个档次,阀口压差也较小,所以频响比伺服阀低一个档次,一般在几个到100Hz以内,相应的强项就是成本低、较易维护。可靠性比较高,能量损失相对小。 3、伺服阀一般都是在零位附近工作,而比例阀除了在零位附近工作外,经常需要在大开口位置工作,即其工作模式有较大差别,这是目前还不能使伺服阀与比例阀形成统一系列的重要原因。 4、伺服阀运行中常会出现零飘,而比例阀有较大的零位死区,就不存在零飘的问题。 5、伺服阀只用于闭环系统,比例阀还经常用于开环系统; 6、现在一般首先从要求的频响,就可大体确定选用甚么阀,频响要求高的只能选伺服阀,频响要求相对低的就选比例阀。另外就要综合考虑性能、成本、维护、可靠性等因素,决定取舍。一般的原则是: A.能用传统阀的,不用比例阀;能用比例阀的不用伺服阀; B.非用伺服阀的,不用比例阀;非用比例阀的不用传统阀。 7、在伺服阀与一般比例阀之间的伺服比例阀(闭环比例阀,高频响比例阀,调节阀),特性介于两者之间。有意进一步了解者,可阅读“新编实用电液比例技术”第九章9.7节伺服比例阀。 进口压力补偿器是什么元件啊是控制压力还是控制流量啊 在比例换向阀控制回路中,为保证比例阀进、出口压差恒定,减小负载压力波动对调速性能的影响,经常在比例换向阀下面叠加一个压力补偿器 1)比例方向阀加进口压力补偿器的目的,就是尽可能排除负载变化对控制流量的影响,也可以将加了以定差减压阀作为进口压力补偿器的比例方向阀理解称为比例方向流量阀,而将以定差溢流阀作为进口压力补偿器的比例方向阀,理解称为负载敏感阀。 2)加定差减压阀的,为了保持比例换向阀口两端压差基本不变,将多余能量消耗在补偿阀口,属于耗能型。加定差溢流阀的,是一种节能型的负载敏感控制,定量泵的出口压力不再为常数,而是仅仅比负载高一个定值。定差溢流补偿器上如配上个先导阀,当系统压力达到其调定值时,定差溢流阀就转换角色成为系统的安全阀。 3)进口压力补偿器,一般不能实现对超越负载的控制,除了其他附加措施外,常采用出口压力补偿器。进口压力补偿器原理上处于泵与比例方向阀之间,出口补偿器原理上处于比例方向阀与负载之间,管住执行器的出油流量。也就是说,进口补偿器像中国的高考制度,严格管住进大学的资格与人数(流进执行器的流量);出口压力补偿器像欧美的办法,什么人都可以进大学,但严格控制大学毕业的资格与人数。现在有些高档次的平衡阀,原理上与出口压力补偿器相近。出口压力补偿器比较复杂昂贵,像不能走考大学这个独木桥一样,对付超越负载还有很多其他办法。

比例伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

伺服阀和比例阀的区别

一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型要多,有比例压力、流量控制阀等,控制比伺服药灵活一些。从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,反应要慢。但从发展趋势看,,抗特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多污染能力也强 伺服阀通过闭环控制可以实现位置环和压力环而且精度非常高如:AGC、AWC等,比例阀加工精度和控制精度较低所以造价较低,有比例换向阀和比例压力阀和比例流量阀。但一些设备也用高频响的比例阀(如:连铸的动态轻压下),这种比例阀主要用于闭环控制,造价相对与伺服阀较低,频宽能达到20~30个HZ 伺服阀应用多用于 1.控制精度要求高,(高到什么程度?反馈精度如何计算?) 2.动态特性好(什么状况下叫动态特性好?怎么衡量?) 伺服阀、比例阀区别: 1.驱动装置不同。比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达。 2.性能参数不同。滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统。 3.阀芯结构及加工精度不同。比例阀采用阀芯+阀体结构,阀体兼作阀套。伺服阀和伺服比例阀采用阀芯+阀套的结构。 4.中位机能种类不同。比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth 产品的E型)。 5.阀的额定压降不同。 电液比例阀(还有其他种类的比例阀?伺服比例阀)是阀内比例电磁铁根据输入电压(电压从何而来?来自于控制信号或控制电路。控制信号从何而来?开环控制无信号反馈)信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。阀芯位移也可以以机械、液压或电的形式进行反馈(开环控制为何需要反馈信号?)。 电液比例阀 1.形式种类多样、容易组成使用电气及计算机控制的各种电液系统、(充当液压控制\传动系统的电-液、电-气转换环节)(其他电-液、电-气转换元件?) 2.控制精度高、 3.安装使用灵活 4.抗污染能力强 插装式比例阀和比例多路阀充分考虑到工程机械的使用特点(?1.成本控制,2.控制的可靠性,3.批量大,安装方便,4.控制精度适中(何谓适中?)5.移动车载系统,动态特性?),具有先导控制、负载传感和压力补偿等功能。 Application: 1.移动式液压机械整体技术水平的提升 2.电控先导操作、 3.无线遥控 4.有线遥控操作 电液比例阀 1.比例流量阀、 作用 2.比例压力阀、 3.比例换向阀。 (三者在结构上有什么区别?和传统的流量、压力、换向阀有什么区别?) 按结构分 1.螺旋插装式比例阀(screwin cartridge proportional valve),应用灵活、节省管路和成本低廉

伺服比例阀的发展

76痰压与气耪2009卑第1囊 伺服比例阀的发展 黄增,金瑶兰。李博 DevelopmentofServoProportionalValve HUANGZeng,jiNYao—lan,LIBo (孛躲重工集爨第七。遥研究所伺服阕产监郝,上海200070) 摘要:该文对伺服阀和比例阀特点进行了比较。介绍了由常规比例阀发展而来的高性能比例阀;同时 为了满足工业场合的使用要求,伺服阀也开始由高端向中端发展,这两者往往被称为伺服比例阕(或比侧伺 黢耀)。中器重工集因第七O霭研究所在原有射漉管锅服褥镌基琏上,通逮采震一些新技术,发展了其有蠹 身特色的射流管伺服比例阀。 关键词:伺服比例阀;伺服阀;比例阀;射流管 中圈分类号:THl37.5文献标识码:B文章编号:1000-4858{2009)01-0076-04 l馕服阕与毙例阕麓俞 电液伺服阀是在二战期间内于飞行器等军事装备对控制系统快速性动态精度的更高要求而发展起来媳,著在战看逐渐用予民用积王监设备。它是一种接受模拟量电控制信号,输出随电控信号大小和极性变化、且快速响应的模拟量流量和(或)压力的液压控制阀。操据其液压放大器静不窝,主要分为喷嘴毯板式伺服阀和射流管式伺服阀‘¨。电液伺服阀具有体积 救穰器期:2008-09-04 作者简介:黄增(1968一),男,陕西西寂人,研究员,研究方向:射流管伺服阀与伺服控制系统。 q卜_{}—蚌—秘—赫—捌卜_幸卜-{}—辫—秘—秘—髓—稍—拱—秘—稍—{l—{卜。卜_{蠹_—箨—*—稍—稍—髓—辑—Ip{卜q卜r{|__{争叫睁—辩—疆—稍—嘲—婀—{卜_{}_{睁—韩—越—嘲—秘—崩—嘲—嘲—蔷一 同时也设计了基于C++Builder气动肌肉机械手的控制界面如图7a所示,在控制界面中可以根据需要绘每校气动肌肉输入不同的气愿值,通过控裁界西也可以得到气压和关节转动角度之间曲线关系如图7b所示。 嗣Io 纛o10203040 角度 蚺 瞬7关节的控制弄菌与实验馥线 根据图8,当气动人工肌肉在0.1—0.3MPa时,气动人工曩惩凌的内部气压秘转动角度有较好的线性关系,同时也证明了在这个气压范围内,气动人工肌肉的内部气压和其收缩量之间的线性关系。通过实验结合豳8表明关节的转动角度范围约为一35。一35。。 4结论 设计了研究分析气动人工肌肉驱动特憔的实验平台,结合气动人工肌肉的驱动特性,设计了基于气动人工肌肉的机械手关节。 (1)通过实验得到气动人工鼠肉收缩量及其表部气滕关系曲线。分析得到最佳适用气动人工肌肉变形的内部气压范围为0.18—0。33MPa; (2)通过实验分柝了气动人工觏肉内部气歪;露机械手关节转动角度的关系,曲线关节的转动角度范围约为一350一35。,当气动人工肌肉在0.1—0。3Mira时,气动入工虢肉的内部气压和转动磊度有较好的线性关系。 参考文献: [1]范伟,彭光正。黄雨.气动人工肌肉驱动器的研究现状及发展趋势[J】.机床与液压,2003(1):32—36. 【2j减壳江,鬏立志,晦溺建。气动入工飘肉骈究与震望【J].机床与液压,2004(4):4—7. [3】卫玉芬,李小宁.气动肌肉的驱动特性研究[J]。液压与气囊,2004(7》:24—26。 【4]林良明,田社平,颜国征.医疗机器人用空气压人工肌线 性控制的研究[J].中豳医疗器械杂志,2002,26(1):8. 万方数据

典型电-气比例阀,伺服阀的工作基本知识

典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf和电压差U的处理环节。比如状态反馈控制和PID调节等。

带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传 Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。 Ue=Uf=KfX(Kf为位移传感器增益) 上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移一定距离。 阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口开口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。 这类阀的优点是线性度好,滞回小,动态性能高。

穆格伺服阀和伺服比例阀因其可靠性和准确性而着称

穆格伺服阀D633系列、穆格伺服阀D634系列、穆格伺服阀D661系列、穆格伺服阀 D662系列、穆格伺服阀D663系列、穆格伺服阀D664系列、穆格伺服阀D765系列、 穆格伺服阀D791系列、穆格伺服阀D792系列、穆格伺服阀G631系列、穆格伺服阀 G761系列 产品范围:穆格伺服阀和穆格伺服比例阀因其可靠性和准确性而著称。穆格设 计并制造各种不同尺寸、不同性能和不同安装方式的产品,为您提供充分的选择, 即使要求最严格的客户,穆格也能满足其独特的要求。为什么要选择穆格伺服 阀和伺服比例阀?在阀设计、制造、支持技术方面拥有50多年的丰富经验。成 熟的技术造就了可靠性,卓越的质量延长了产品的寿命。 穆格伺服阀主要用作闭环控制元件,它可以检测主阀芯位置,并通过机械信 号(机械反馈式伺服阀)或电信号(电反馈式伺服阀)反馈至先导级阀。 穆格伺服比例阀在开环或闭环控制回路中,穆格伺服比例阀用作关键控制元件,因此阀的静态、动态特性对整个电液系统的性能有着决定性的影响。 您可能需要的型号: MOOG D661-4651 MOOG D661-4652 MOOG D661-4636 MOOG D661-4469MOOG D661-4697MOOG D661-4033/ C41156-421 P80HAAF6VSX2-AMOOG D661-4059/C41156-411 P80HAAF6VSX2-BMOOG D661-4444C/C41156-421 G60JOAA6VSX2HAMOOG D661-4443C/C41156-421 G45J0AA6VSX2HAMOOG D661-4506C/C41156-421 G23J0AA6VSX2HAMOOG D661-4539C/C41156-421 G35JOAA5VSX2HAMOOG D662Z4311K/D630-072A P01JXMF6VSX2-AMOOG D662-4010/D061-8411 D02HABF6VSX2-AMOOG D662Z4336K/D630-272D P01JXMF6VSX2-AMOOG D663Z4307K/D630Z067A P02JONF6VSX2-AMOOG D663-4007/D061-8412 L03HABD6VSX2-AMOOG D663Z4307K/D630Z067A P02JONF6VSX2-AMOOG D663-4007/D061-8412 L03HABD6VSX2-AMOOG D634-341C R40K02M0NSS2MOOG D634-319C R40KO2M0NSP2MOOG D633-333B R16KO1F0NSSMOOG D791-5009/D761-2612 S16J0QA6VSB0-PMOOG D791-4002/D761-2617 S25J0QB5VSX2-BMOOG D791-4028/D761-2619 S25J0QB6VSX2-BMOOG D791-4046/D761-2619 S25J0QA6VSX2-BMOOG 072-559A S15F0FA4VBLMOOG 072-558A S22FOFA4VBLMOOG G761-3001 H04JOFM4VPLMOOG G761-3002 /MOOG G761-3003 H19JOFM4VPLMOOG G761-3004 H38JOFM4VPLMOOG G761-3005 S63JOGM4VPLMOOG J761-003MOOG J761-004MOOG D765-1603-5 S38JOGMGUSXOMOOG D765-1089-4 S63JOGAEVSXOMOOG D630Z067A/D663Z4307K H20J0GAEVBLMOOG D630-072A/D662Z4311K S10JOGAEVBLMOOG D630-272D/D662Z4336K S10JOGAEVBLMOOG D761-2617/D791-4002 H19J0GAEVALMOOG D761-2612/D791-5009 H19J0GBEVALMOOG D761-2619/D791-4028 H10J0GAEVALMOOG D061-8411/D662-4010 J15HOBA4VB1MOOG D061-8412/D663-4007 J15HOBB4VB1MOOG D633-303B D633-308B D633-313B D633-317B MOOG D633-471B D633-472B D633-473B D633-481B MOOG D633-525B D634-538A D661-393D D661-4023 MOOG D661-4033 D661-4069 D661-4070 D661-4099 MOOG D661-4313C D661-4332C D661-4334C D661-4438E MOOG D661-4451C D661-4507C D661-4575C D661-4576C MOOG D661-4586E D661-4594C D661-4624 D661-4636 MOOG D661-4640 D661-4649 D661-4650 D661-4651 MOOG D661-4652 D661-4691C D661-4697C D661-4729 MOOG D661-4773 D661-4776 D661-4782 D661-4790 MOOG D661-4826 D661-4867

伺服比例阀的作用及区别

个人认为,简单地说,所谓伺服系统就是带有负反馈的控制系统,而伺服阀就是带有负反馈的控制阀。 阀对流量的控制可以分为两种: 一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁换向阀、电液换向阀。 另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。 所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。 伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。 也就是说,伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。 而我们知道,当负载为零的时候,如果四通滑阀完全打开,p口压力=t口压力+阀口压力损失(忽略油路上的其它压力损失),如果阀口压力损失很小,t口压力又为零,那么p口的压力就不足以供给前置级阀来推动主阀芯,整个伺服阀就失效了。所以伺服阀的阀口做得偏小,即使在阀口全开的情况下,也要有一定的压力损失,来维持前置级阀的正常工作。 伺服阀其实缺点极多:能耗浪费大、容易出故障、抗污染能力差、价格昂贵等等等等,好处只有一个:动态性能是所有液压阀中最高的。就凭着这一个优点,在很多对动态特性要求高的场合不得不使用伺服阀,如飞机火箭的舵机控制、汽轮机调速等等。动态要求低一点的,基本上都是比例阀的天下了 一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型要多,有比例压力、流量控制阀等,控制比伺服药灵活一些。从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,向应要慢。但从发展趋势看,特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多,抗污染能力也强! 比例阀 阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。 编辑本段滑阀结构 伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相

气比例阀伺服阀的工作原理

气比例阀伺服阀的工作 原理 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对 反馈信号和电压差U的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量 Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器 Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁铁产生的 Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。 Ue=Uf=KfX(Kf为位移传感器增益) 上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移一定距离。 阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口开口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。 这类阀的优点是线性度好,滞回小,动态性能高。 二、滑阀式二级方向伺阀 下图所示为一种动圈式二级方向伺服阀。它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀式气动放大器、反馈弹簧等组成。喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。 这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。在喷嘴气流作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力几乎与大气压相同。滑阀阀芯被装在两侧的反馈弹簧5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。

伺服阀与比例阀原理介绍

电液伺服阀的原理和性能介绍 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中,伺服阀价格高且对过滤精度要求也高,比例阀广泛用于要求对液压参数进行连续控制或程序控制但对控制精度和动态特性要求不太高的液压系统中。 另外,1.伺服阀中位没有死区,比例阀有中位死区; 2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz; 3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。 比例伺服阀性能介于伺服阀和比例阀之间。 比例换向阀属于比例阀的一种,用来控制流量和流向。 伺服阀跟比例阀的本质区别就是他有两横 1、伺服阀和比例阀上下都有两横; 2、比例阀两边都有比例电磁铁,而且有比例电磁铁的符号上都箭头。但是伺服阀确是只有一边有力马达,要强调的是只有一边有。 比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出; 伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。 区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安; 比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高

一个粗液压缸一个细液压缸长短样怎么同步升起 最简单的就是在细油缸的进油口加一个节流阀,控制一下进入油缸的流量使细油缸慢下来。但节流阀的节流效果受负载和液压油粘度的影响比较大,如果负载变化大,你得经常调整。 不用节流阀,用调速阀也可以,不受负载影响,但有发热的趋势。 也可以用分流阀,但分流阀的分流比是确定的,通常是1:1或1:2。粗细油缸的面积比不一定合适。 最贵的方案就是带有长度传感器的伺服缸和比例阀或者伺服阀,在计算机控制下,能达到液压系统能达到的最高精度。但价格很难接受。 |评论 同步精度要求不高的话,直接用个同步分流阀就行了。有负载补偿的 建议用分流集流阀,好一些的阀,精度可以达到正负3% 尽可能用机械同步。分流阀不用试,一定失败。原因是流量太小,形成不了压差。马达式同步有机会成功,但要选排量非常小的。算手泵流量时把人算100瓦的功率。 如果能做到机械式同步,那是最好不过的了,如果没条件,在同步精度要求较低的情况下,可以用同步阀(分流-集流阀),精度要求再高点的话,可以用同步马达。再高点,就无法达到了,因为要用伺服阀,但现场无法用电 分流阀在负载相同时效果非常好,但负载偏差严重时同步效果大打折扣,建议用同步马达或 同步缸,同步精高时不妨用传感器 油缸不大的话用同步缸要好点,油缸大的话用同步马达应该可以满足 流马达又叫同步马达,一般为齿轮的,与多联齿轮泵的外形有点象,就是两组或两组以上的齿轮马达串联在一起,转速一致,按一定比例分配液压泵提供来的油液供执行元件使用,不

气比例阀伺服阀的工作原理

气比例阀伺服阀的工作 原理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

典型电---气比例阀、伺服阀的工作原 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf 差U PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传感器的反馈电Uf=0Uf,控制放大器将得到的U=- Ue>0,则电压差U增大,使控制放 Uf的增大,直与指令电压Ue基本相等,阀芯达到力平衡。此时。 Ue=Uf=KfX(Kf为位移传感器增益) 上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移距离。 阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入Ue的线性控制。 这类阀的优点是线性度好,滞回小,动态性能高。 二、滑阀式二级方向伺阀 下图所示为一种动圈式二级方向伺服阀。它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀 式气动放大器、反馈弹簧等组成。喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。 这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。在喷嘴作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力几乎与大气压相同。滑阀阀芯被装在两侧的反馈5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。 当某个动圈式马达有电流输入是(例如右侧力马达),输出与电流I成正比的推力Fm将挡板推向喷嘴,使节流器的流通面积减小,容腔6内的气压P6升高,升高后的P6又通过喷嘴对档板产生反推力Ff。当Ff与Fm 时,P6趋于稳定,其稳定值乘以喷嘴面积Ay等于电磁力。另一方面,P6升高使阀芯两侧产生压力差,该压力用于阀芯断面使阀芯克服反馈弹簧力左移,并使左边反馈弹簧的压缩量增加,产生附加的弹簧力Fs,方向向右小与阀芯位移X成正比。当阀芯移动到一定位置时,弹簧附加作用力与7、3容腔的压差对阀芯的作用力达到平阀芯不在移动。此时同时存在阀芯和挡板的受力平衡方程式: Fs=KsX=(P6-P5)Ax

ATOS DLHZO伺服阀与AGRO比例阀性能对比

Comparison between Atos DLHZO-TEB and ARGO HYTOS PRM7-06 January 13rd, 2017 Valve model ATOS 15E0266 DLHZO-TEB-SN-NP-040-L71/I ARGO HYTOS PRM7-063Z11/3024E04S01V Mechanical construction single solenoid sleeve execution with fail safe double solenoid NO sleeve execution – spring centered Spool overlap Zero spool overlap Positive overlap HYDRAULIC CHARACTERISTICS Max pressure 350 bar 350 bar Nominal flow 26 l/min (at delta p 30 bar) 50 l/min (at delta p 30 bar) Response time 0-100% < 10 ms Not declared Frequency Response 70 Hz at -3dB (+/- 100% reference signal) 9Hz at -3 dB (+/- 90% reference signal) CLIMATE AND MECHANICAL CHARACTERISTICS Ambient temp. range Standard: -20 ÷ +60°C Option /BT: -40 ÷ +60°C Standard: -20 +50°C Mechanical resistance Tested on 3 axis X, Y, Z Sine test 57-2000Hz acceleration 10 g Random test Spectral acceleration density 0,05 g^2/hz Shock test Half sine wave shock 50 g / 11 ms Not declared

MOOG 伺服比例阀

Servovalve with Bushing and integrated 24 Volt Electronics D661 Highresponse Series ISO 4401 Size 05

D661 Highresponse Series Two stage servovalves with highresponse pilot stage The flow control servovalves D661 H ighresponse Series are throttle valves for 2-, 3- and 4-way applications. These valves are suitable for electrohydraulic position, velocity, pressure or force control systems including those with high dynamic res-ponse requirements. The spool of the main stage is driven by a jet pipe pilot stage in an electrically closed loop. Principle of operation An electric command signal (flow rate setpoint) is applied to the integrated control amplifier which drives the pilot stage. Thus the deflected ServoJet highresponse system produces a pressure difference across the drive areas of the spool and effects its movement. The position trans-ducer which is supplied via an oscillator measures the position The integrated electronics of the valve is a new development featuring SMD technology and requires 24 VDC power supply. Operational features of the ServoJet Highresponse pilot stage The ServoJet Highresponse pilot stage consists mainly of torque motor, jet pipe and receiver. A current through the coil dis- places the jet pipe from neutral. This displacement combined with the special shape of the nozzle directs a focussed fluid jet more into one receiver opening than the other. The jet now produces a pressure dif- ference in the control ports.This pressure difference results in a pilot flow which in turn causes a spool displacement. The pilot stage drain is through the annular area around the nozzle to tank. The valve series des- cribed in this cata- logue has success- fully passed EMC tests required by EC Directive. Please take notice of the respective referen- ces in the electronics section. This catalogue is for users with technical knowledge. To ensure that all necessary characteristics for function and safety of the system are given, the user has to Our quality management system is conformed to DIN EN ISO 9001. of the spool (actual value, position voltage). This actual value is being rectified by a demodulator and fed back to the control amplifier where it is compared with the command value. The control amplifier drives the torque motor until command voltage and feedback voltage are equal. Thus, the position of the spool is propor- tional to the electric command signal. check the suitability of the products described herein. In case of doubt please contact MOOG. 2

伺服阀原理分析及计算

伺服阀原理分析及计算 电液伺服阀是一种比电液比例阀的精度更高、响应更快的液压控制阀,其输出流量或压力受输入的电气信号控制,主要用于高速闭环液压控制系统,而比例阀多用于响应速度相对较低的开环控制系统中,伺服阀价格高且对过滤精度要求也高,比例阀广泛用于要求对液压参数进行连续控制或程序控制但对控制精度和动态特性要求不太高的液压系统中。 另外,1.伺服阀中位没有死区,比例阀有中位死区; 2.伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般最高几十Hz; 3.伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些。 比例伺服阀性能介于伺服阀和比例阀之间。 比例换向阀属于比例阀的一种,用来控制流量和流向。 伺服阀跟比例阀的本质区别就是他有两横 1、伺服阀和比例阀上下都有两横; 2、比例阀两边都有比例电磁铁,而且有比例电磁铁的符号上都箭头。但是伺服阀确是只有一边有力马达,要强调的是只有一边有。 比例阀多为电气反馈,当有信号输入时,主阀芯带动与之相连的位移传感器运动,当反馈的位移信号与给定信号相等时,主阀芯停止运动,比例阀达到一个新的平衡位置伺服阀,阀保持一定的输出; 伺服阀有机械反馈和电气反馈两种,一般电气反馈的伺服阀的频响高,机械反馈的伺服阀频响稍低,动作过程与比例阀基本相同。 区别:一般比例阀的输入功率较大,基本在几百毫安到1安培以上,而伺服阀的输入功率较小,基本在几十毫安; 比例阀的控制精度稍低,滞环较伺服阀大,伺服阀的控制精度高,但对油液的要求也高

一个粗液压缸一个细液压缸长短样怎么同步升起 最简单的就是在细油缸的进油口加一个节流阀,控制一下进入油缸的流量使细油缸慢下来。但节流阀的节流效果受负载和液压油粘度的影响比较大,如果负载变化大,你得经常调整。 不用节流阀,用调速阀也可以,不受负载影响,但有发热的趋势。 也可以用分流阀,但分流阀的分流比是确定的,通常是1:1或1:2。粗细油缸的面积比不一定合适。 最贵的方案就是带有长度传感器的伺服缸和比例阀或者伺服阀,在计算机控制下,能达到液压系统能达到的最高精度。但价格很难接受。 |评论 同步精度要求不高的话,直接用个同步分流阀就行了。有负载补偿的 建议用分流集流阀,好一些的阀,精度可以达到正负3% 尽可能用机械同步。分流阀不用试,一定失败。原因是流量太小,形成不了压差。马达式同步有机会成功,但要选排量非常小的。算手泵流量时把人算100瓦的功率。 如果能做到机械式同步,那是最好不过的了,如果没条件,在同步精度要求较低的情况下,可以用同步阀(分流-集流阀),精度要求再高点的话,可以用同步马达。再高点,就无法达到了,因为要用伺服阀,但现场无法用电 分流阀在负载相同时效果非常好,但负载偏差严重时同步效果大打折扣,建议用同步马达或 同步缸,同步精高时不妨用传感器 油缸不大的话用同步缸要好点,油缸大的话用同步马达应该可以满足 流马达又叫同步马达,一般为齿轮的,与多联齿轮泵的外形有点象,就是两组或两组以上的齿轮马达串联在一起,转速一致,按一定比例分配液压泵提供来的油液供执行元件使用,不

相关文档
最新文档