基因芯片实验原理与方法

基因芯片实验原理与方法
基因芯片实验原理与方法

基因芯片(Gene Chip,DNA Chip),又称DNA微阵列(DNA Micorarray),

是指按照预定位置固定在固相载体上很小面积内的千万个核酸分子所组

成的微点阵阵列。在一定条件下,载体上的核酸分子可以与来自样品的

序列互补的核酸片段杂交。如果把样品中的核酸片段进行标记,在专用的芯片阅读仪上就可以检测到杂交信号。

详细

实验方法

?基因芯片实验原理与方法

实验材料

?组织或细胞样本

试剂、试剂盒

?Oligo-dT (T15) - Roche

?dNTPs

?RNasin

?Superscript II

?Cot-1 DNA

?EDTA

?NaOH

?Tris

仪器、耗材

?扫描仪:ScanArray 3000

?图像处理软件:Genepix 3.0

?Cartesian 7500点样仪

?硅烷化玻片

?PCR仪器

?Scan Microarray

一、目的

本实验的目的是学会cDNA芯片的使用方法。了解各种基因芯片的基本原理和优缺点。

基因芯片这一技术方法在1991年的Science杂志上被首次提出,其高通量、并行检测的特点适应了分析人类基因组计划所提供的海量的基因序列信息的需要,

可以说,人类基因组计划是基因芯片技术发展的原因,而对深人研究基因突变和基因表达的有效方法的需求又是促进基因芯片技术发展的动力。

由于基因芯片高速度、高通量、集约化和低成本的特点,基诞生以来就受到科学界的广泛关注,正如晶体管电路向集成电路发展的经历一样,分子生物学技术的集成化正在使生命科学的研究和应用发生一场革命。

根据固定在芯片载体上的核酸分子的不同,基因芯片可以分为cDNA芯片和寡核昔酸芯片等。寡核昔酸芯片主要基于光引导聚合技术,该技术是Affymetrix公司开发的专利技术,由于其突出的优点,正得到越来越广泛的应用。

二、原理

基因芯片(Gene Chip,DNA Chip),又称DNA微阵列(DNA Micorarray),是指按照预定位置固定在固相载体上很小面积内的千万个核酸分子所组成的微点阵阵列。在一定条件下,载体上的核酸分子可以与来自样品的序列互补的核酸片段杂交。如果把样品中的核酸片段进行标记,在专用的芯片阅读仪上就可以检测到杂交信号。

基因芯片技术主要包括四个主要步骤:芯片制备、样品制备、杂交反应和信号检测和结果分析。

1、芯片制备-目前制备芯片主要以玻璃片或硅片为载体,采用原位合成和微矩阵的方法将寡核苷酸片段或cDNA作为探针按顺序排列在载体上。芯片的制备除了用到微加工工艺外,还需要使用机器人技术。以便能快速、准确地将探针放置到芯片上的指定位置。

2、样品制备-生物样品往往是复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,有时样品的量很小。所以,必须将样品进行提取、扩增,获取其中的蛋白质或DNA、RNA,然后用荧光标记,以提高检测的灵敏度和使用者的安全性。

3、杂交反应-杂交反应是荧光标记的样品与芯片上的探针进行的反应产生一系列信息的过程。选择合适的反应条件能使生物分子间反应处于最佳状况中,减少生物分子之间的错配率。

4、信号检测和结果分析-杂交反应后的芯片上各个反应点的荧光位置、荧光强弱经过芯片扫描仪和相关软件可以分析图像,将荧光转换成数据,即可以获得有关生物信息。

目前,基因芯片主要由寡核苷酸芯片和cDNA芯片两大类组成。以下分别介绍这两类芯片的基本原理和特点:

寡核苷酸芯片(Oligonucleotides Chip)

概念:是指做在固相载体上的寡核苷酸微阵列。其制备方法以直接在基片上进行原位合成为主、有时也可以预先合成,再按照制备cDNA芯片的方法固定在基片上。原位合成(In situ synthesis)是目前制造高密度寡核苷酸芯片最为成功的方法,有几种不同的工艺,其中最著名的是美国Affymetrix公司(https://www.360docs.net/doc/9b9335560.html,)的专利技术——光引导化学合成法(Light-directed chemical synthesis process)。产品名为GeneChip。

Affymetrix公司已公开的光引导化学合成主要过程如下:首先根据杂交目的确定寡核昔酸探针的长度和序列。再由计算机设计出合成寡核苷酸时用到的所有光掩膜(Masks)。最后做探针合成。光导原位合成技术的优点是可以用很少的步骤合成极其大量的探针阵列,探针阵列密度可高达到每平方厘米一百万个。而这种方法的主要缺点:一是需要预先设计、制造一系列掩模,造价较高:二是每步产宰较低.因此合成探针的长度受到了限制。

此外,原值合成的方法还有Incyte Phamaceuticals5公司(http//www.incyte.co m)和Rosetta Biosystem Inc公司等使用的基于喷墨打印原理的原价合成法(IN situ synthesis with reagents delivered by ink-jet printer devices)。喷印装置与普通的彩色喷墨打印机类似,用四种碱基液体取代墨盒中的彩色墨汁,通过计算机控制喷印机将特定种类的试剂喷洒到预定的区域上。冲洗、去保护、偶联等过程与传统的DNA固相原值合成技术相同。喷印法可以合成长度为40~50 n t的寡核昔酸链,每步产率可以达到99%,合成30nt的寡核昔酸产率可达70%以上。日本佳能公司利用其独创的“气泡喷墨”技术,仅用24 pl溶液就可以在基片上制作出近百微米的小探针点.每平方厘米可排布近20000个探针,克服了喷墨打印技术制备探针阵列密度较小的缺点。

寡核昔酸芯片的杂交和检测分析:样品处理和杂交检测方法与cDNA芯片是一致的。由于寡核昔酸阵列多需要区分单碱基突变.因此严格控制杂交液盐离子浓度、杂交温度和冲洗时间是杂交实验成败的关键。

cDNA芯片(cDNA Chip)

概念:在玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等固相载体上固定的成千上万个cDNA分子组成cD4A微阵列。制作cDNA芯片最常用的固相载体是显微镜载玻片,载玻片在使用前需要进行表面处理,目的是抑制玻璃片表面对核酸分子的非特异性吸附作用。常用的表面处理方法有氨基化法、醛基化法和多聚赖氨酸包被法。

cDNA芯片的制备:制备cDNA芯片多用合成后点样法(Spotting after synthesi s),简称点样法。合成后点样法使用的专用设备称为点样仪(Arrayer),目前有多家国外公司(如Bopdiscovery,Biorobotics,Vartesian Technologies,Genetic Mic rosystems,Genomicssolutions等)生产点样仪。点样仪的主要部件是由计算机系统控制的电脑机械手。点样时电脑机械手利用点样针头(Pin)从96或384檄孔板上蘸取cDNA样品,按照设计好的位置点在载玻片表面。针头的数目、机械手的移动时间、针头清洗和干燥时间、样品总数和载破片数目共同决定了点样所需时间;针头的直径和形状、样品溶液的粘滞程度以及固相载体的表面特性决定了芯片上液滴的量和扩散面积。

除点样法以外,cDNA芯片也可以用电子定位法(Electronic addressing)制备。美国Nanogen公司(https://www.360docs.net/doc/9b9335560.html,)最早使用这项技术,他们对空白片上的持定位点进行电活化,使相应活化点的表面带有电荷,成为“微电极”,能够吸附cDNA分子。带有微电极的片子与样品溶液共同孵育,溶液中的cDNA 分子被吸附的微电极上,并与片子表面发生化学结合从而固定。用这种工艺制备的芯片的优点是:微电极的电吸附作用可以提高与靶核酸的杂交效率。缺点是制备复杂.成本较高。这种带有微电极的芯片也称为主动式芯片。许多公司出售商品化的cDNA芯片,可以根据需要从公司定制。美国Incyte公司是显著名的cD NA芯片提供商之—,其产名为GEMTM芯片,每张片子上最多可以含有1000 0点,对样品中mRNA的检出限达到2pg,对两种来源样品中的基因差异表达的检出限为2倍。

cDNA芯片的使用方法——样品制备和杂交

样品制备包括分离和标记两个方面,有些样品还婴经过核酸扩增放大这一步骤。样品制备的一般过程是:提取待检样品中的mRNA,反转录成cDNA,同时标记上荧光(荧光标记为最常用的方法.优点是无放射性且有多种颜色可供使用;研究者可以根据需要选用其它标记方法,例如同位素标记法、化学发光法或酶标法;如果目的是研究两种来源的组织细胞基因的差异表达,则分别提取两种组织细胞的mRNA,反转录成cDNA,分别标记两种不同颜色的荧光(如Cy3和Cy5),等量混合后与芯片进行杂交反应。

杂交反应可以在专用的杂交仪(Hybridization station)或杂交盒(Hybridization ch amber)内进行。杂交仪能够容纳多张芯片,有利于杂交过程的自动化和杂交条件的标准化。单个反应可以在杂交盒里进行,斯坦福大学Patrick O.Brown教授领导的实验室将制作杂交盒的详细说明提供在互联网,同时还提供了cDNA芯片设备、样品处理与杂交的完整的实验手册和有关软件的下载,网址是:http:// https://www.360docs.net/doc/9b9335560.html,/pbrowri/index.html。

杂交信号检测和分析

通常检测芯片上的杂交信号需要高灵敏度的检测系统——阅读仪(Reader),阅读仪的成像原理分为激光共焦扫描和CCD成像两种。前者分辨率和灵敏度较高,但是扫描速度较慢且价格昂贵。后者的持点与之相反。十祈一次标准的cDNA 芯片杂交实验产生的成干上万个点的杂交信息,需要生物信息学手段的支持。已经有多种读取和分析杂交信号的应用软件以及能够与网络公共数据库连接进行数据分析的应用软件、在NHGRI的问站可以下载用于图像分析的软件,还可以找到能够与Genbank、Unigene等数据库联机工作的软件包。

基因芯片基本技术流程图

表1 基因芯片的主要类型及其简要特点

三、主要器材

扫描仪:ScanArray 3000,General Scanning公司

图像处理软件:Genepix 3.0,Axon公司;Scan Microarray Analysis System ,GSI Lumonics公司

Cartesian 7500点样仪Cartesian公司

硅烷化玻片TeleChem公司

PCR仪器

四、试剂

?组织或细胞样本

?Oligo-dT (T15) - Roche

?dNTPs (in buffer 50 mM Tris pH 8)

?RNasin - Promega

?Superscript II - Life Technologies

?Qiaquick PCR purification system - QIAGEN

?22 x 50 mm cover slips

?Cot-1 DNA - Life Technologies

?Poly dA - Roche

?Cy3 and C y5-dUTP

?0.5M EDTA

?2M NaOH

?1M HCl

?1M Tris pH 8

?100mM sodium acetate

?20x SSC

?20% SDS

?Deionized Formamide

?MilliQ Water

?Array chip (5k gene-chip from QIMR)

?Hybridisation chamber

?Dnase-, RNase-free 0.5 and 1.5 ml eppendorf tubes

?Plastic slide holders

?2 litre beakers

五、操作

(一)总RNA制备

1、组织(或细胞)碾磨粉碎

1.1、将超低温保存的组织(或细胞)材料迅速转移至盛有液氮的碾钵中,用杵子不断碾磨至粉状。

1.2、称取1.5g粉状样品,放入盛有液氮的碾钵中,并加入50ml溶液D,用杵子不断碾磨至细粉状。

2、组织匀浆

2.1、将碾好的细粉末倒入匀浆管中,在组织匀浆粉碎机上匀浆。

2.2、将匀浆液分装在离心管中,冰浴20min。

2.3 11000×g离心5min,将上清转移入另一离心管。

3、分离和沉淀

3.1、分别加入1/10体积3mol/l NaAc(pH

4.5)和等体积5:1酸性酚氯仿溶液,冰浴20min 4℃,11000*g,20min离心。

CHIP技术

染色质免疫沉淀分析ChIP技术介绍 染色质免疫沉淀分析ChIP 技术介绍 (Chromatin Immunoprecipitation Assay, ChiP) (Abcam 公司与Upstate 公司都提供ChIP 抗体产品) 染色质免疫沉淀法(Chromatin immunoprecitation,ChIP)就是研究体内DNA 与蛋白质相互作用的重要工具。它可以灵敏地检测目标蛋白与特异DNA 片段的结合情况,还可以用来研究组蛋白与基因表达的关系。核小体组蛋白可以发生多种翻译后的共价修饰,如乙酰化、甲基化、磷酸化、泛素化等,这些共价修饰与真核基因的表达密切相关。根据“组蛋白密码”假说,组蛋白的各种共价修饰的组合会以协同或拮抗的方式诱导特异的下游生物学功能,因此,ChIP 也为研究组蛋白修饰在基因表达中的作用,全面阐明真核基因的表达调控机制提供了强有力的研究工具。 真核生物细胞状态就是由内源与外源因素共同影响的,所有信号传递途径的终点都就是DNA。DNA 通过核蛋白复合物组成染色质,染色质就是基因调控的一个重要作用位点。转录激活因子与辅助抑制因子的研究显示存在一种新的调节机制--“组蛋白密码”,其信息存在于组蛋白的转录后修饰等过程中。该类修饰包括组蛋白磷酸化、乙酰化、甲基化、ADP-核糖基化等过程。随着越来越多组蛋白核心结构区域与羧端修饰的确定,组蛋白密码在控制与调节基因功能过程中的作用越来越明确。参与修饰的酶根据其作用的不同而分类:如组氨酸乙酰转移酶(HATs)可以将乙酰基团转到组蛋白上;组蛋白去乙酰酶(HDACs)可以去除氨基酸上的乙酰基团;组蛋白甲基转移酶(HMTs)可以将甲基基团转移到组蛋白上等不同组氨酸修饰标记对应于不同的生物学过程,它可以作为调节因子的作用位点,也可以用来改变染色质结构。 染色质免疫沉淀分析(ChiP)就是基于体内分析发展起来的方法,它的基本原理就是在活细胞状态下固定蛋白质-DNA 复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA 片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA 相互作用的信息。它能真实、完整地反映结合在DNA 序列上的调控蛋白,就是目前确定与特定蛋白结合的基因组区域或确定与特定基因组区域结合的蛋白质的一种很好的方法。CHIP 不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。而且,CHIP 与其她方法的结合,扩大了其应用范围:CHIP 与基因芯片相结合建立的CHIP-on-chip 方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP 与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP 用于研究RNA在基因表达调控中的作用。由此可见,随着CHIP 的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用。 凝胶电泳迁移率改变分析(EMSA)就是目前研究转录调控蛋白与相应核苷酸序列

彗星实验

应用慧星试验研究细胞D NA损伤的原理与方法 山西大学生命科学系环境生物毒理学研究室(太原030006) 孟紫强 中国辐射防护研究院二所 张连珍 提 要 对应用慧星试验(即单细胞微凝胶电泳(SCGE技术)研究细胞DNA损伤的操作过程、技术原理以及实验操作过程中应注意的事项,进行了详细介绍和讨论。 关键词 慧星试验 单细胞微凝脉电泳 DNA损伤 哺乳类细胞 淋巴细胞 诱变剂往往是通过引起DNA损伤而诱发细胞突变和癌变。近年来由Singh等改进和建立的慧星试验(Com et assay)即单细胞微凝胶电泳(SCGE)技术,是一项测定和研究细胞DNA损伤的新技术,该技术在国外有关研究领域内已得到广泛的应用〔1,2〕。但在我国有关研究报道甚少。为此,本文对我们研究室建立和改进的SCGE技术作了详细报道,以期与国内同行交流和进一步改进。 1 SCGE测定原理 哺乳类细胞和人血淋巴细胞,其DNA的分子量很高且具有严密的超螺旋结构。在理想的实验条件下,对淋巴细胞的分离、处埋、裂解、碱处理等过程均保持在避光条件下小心谨慎地操作,使细胞DNA不受损伤,其DNA结构仍象在活细胞中那样完整,外加电泳电场就不会使DNA在凝胶中泳动。因此,在理想条件下,正常对照组细胞DNA在电泳之后仍应保持在原来位置。在SCGE实验中,细胞DNA之所以从原位向电泳电场的阳极迁移,形成慧星状图象,其原因是:当细胞DNA受损伤产生链断裂时,DNA的超螺旋结构受到破坏;在细胞裂解液作用下,细胞膜、核膜及其它膜结构受到破坏,细胞内的蛋白质、RNA及其它成分均可进入凝胶而扩散到裂解液中,而核DNA分子量很高不能进入凝胶,只能留在原位。在碱处理和碱性电泳液的作用下DNA解螺旋,使DNA的断链和碱易变性DNA片断从严密的超螺旋结构中释放出来;由于这些DNA断链分子量较小且碱变性为单链,所以在电泳电场中就可以离开核DNA在凝胶分子筛中向阳极移动,形成慧星状图象。DNA受损伤愈严重,产生的断链和碱易变性片断就愈多,断链也愈小;在相同电泳条件下迁移的DNA量就愈多,迁移的距离就愈长。因此,通过测定DNA迁移部分的光密度或迁移长度就可定量测定DNA损伤程度,确定电离辐射或其它因素作用剂量与DNA损伤效应之间的关系。 我们的实验也表明,未处理的对照组淋巴细胞DNA在SCGE实验中也表现有微弱的迁移现象。我们认为这主要是由于人血淋巴细胞从静脉血分离出来之后,体外条件必竟是一种非生理条件,离开活体的细胞不可避免地会受到某些非生理条件的不利影响,使细胞中的DNA受到不同程度的损伤,导致微量DNA在电泳中迁移。我们在用碱洗脱法和DNA碱解旋速率法测定DNA单链断裂时,也发现未处理对照组的人血淋巴细胞和其它哺乳类细胞的DNA单链断裂占总DNA的5~30%〔3—5〕,也表明非生理条件能诱发DNA 损伤,与本实验结果一致。 2 SCGE实验方法 211 细胞分离和处理 (1)人血淋巴细胞分离:从健康人静脉采血015~1mL,沿离心管管壁滴加在等体积淋巴细胞分离液液面上,3500r m in离心2m in,吸取中间层淋巴细胞於10m l离心管中,加磷酸盐缓冲液(PBS)至5m l,1500r m in离心8m in,如此重复洗涤细胞两次,再将细胞悬于PBS,置4℃待用。(2)其它细胞的分离制备:对于体外培养的细胞株,若为贴壁生长的细胞,当细胞处于对数生长期时,可弃去培养液,加适量011%胰蛋白酶H ank’s溶液,在37℃下3-5m in,使细胞脱离瓶壁,用PBS洗涤细胞2—3次,调节至适当的细胞密度即可;若为悬浮培养的细胞,只需用PBS 洗涤细胞两次即可。对于实体肿瘤、胸腺、脾及其它组织,可用不锈钢剪去除结缔组织,剪碎,压研通过60目不锈钢网,再用PBS洗涤细胞2—3次,调节适当细胞密度即可。对于肝细胞的分离制备比较复杂,需经过含胶原酶和透明质酸酶的缓冲液进行器官灌注,再分离肝细胞。(3)紫外线或Χ-线照射:取新鲜分离的淋巴细胞或其它细胞悬液,用PBS调细胞浓度为1×105个细胞 m l,于冰水浴中经紫加线或60Co-Χ线照射,照后细胞置于冰水浴中,并立即用于SCGE测定。(4)化学处理:新鲜分离的淋巴细胞或其它细胞,在SCGE测定前用待测化学物在37℃下处理2-4h,细胞密度均为1×105个 m l。随后将细胞保存在4℃下或冰水浴中,立即进行测定。 212 制片 (1)磨砂载玻片:用水砂纸(粒度,N o. 380)将普通光学显微镜用的载玻片(厚度较薄为宜)单面加水轻磨,使形成的磨砂面均匀细密。磨时谨防加压过大、用力过猛,以免在载玻片面上形成粗纹痕迹。实验发现如磨砂面有粗纹划痕,细胞裂解液处理后,载玻

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

毒性试验整理

实验一发光细菌的急性毒性评价试验 一、实验器材 1.菌株 明亮发光杆菌(Photobacterium phosphoreum) 2.培养基 酵母膏0.5%,胰蛋白胨或多聚蛋白胨(Polypetone)0.5%,甘油0.3%,NaCl 3%,Na2HPO4 0.5%, KH2PO4 0.1%,pH6.5。固体培养基再加琼脂2%。 3.溶液、试剂及待测物质 酵母粉,蛋白胨,NaCl(AR),Na2HPO4(AR),KH2PO4(AR),甘油(AR),二甲基亚砜(AR),乙酸乙酯(AR),HCl(1M),去离子水。 4.仪器及其他用品 生物毒性测试仪;电热恒温鼓风干燥箱;振荡培养箱;DELTA 320pH计;氮吹仪;镊子,移液枪,三角锥形瓶等。 二、目的要求 1.学习了解发光细菌的急性毒性评价试验的基本原理。 2.掌握发光细菌的急性毒性评价试验的操作要领和评价方法。 三、基本原理 发光细菌是指在正常的生理条件下能够发射肉眼可见的蓝绿色荧光的细菌,这种可见荧光波长在450-490 nm之间,在黑暗处肉眼可见。不同种类发光细菌的发光机理是相同的,都是由特异性的荧光酶(LE),还原性的黄素(FMNH2),八碳以上长链脂肪醛(RCHO),氧分子(O2)所参与的复杂反应,大致历程如下: FMNH2+LE→FMNH2·LE+O2→LE·FMNH2·O2+RCH→LE·FMNH2·O2·RCHO→LE+FMN+ H2O+RCOOH+光 具体来说,生物发光反应由分子氧作用,胞内荧光酶催化,将还原态的黄素单核苷酸(FMNH2)及长链脂肪醛氧化为FMN及长链脂肪酸,同时释放出最大发光强度在波长为 407-409 nm处的蓝绿光。 发光细菌法是利用灵敏的光电测量系统测定毒物对发光细菌发光强度的影响。发光细菌含有荧光素、荧光酶、ATP等发光要素,在有氧条件下通过细胞内生化反应而产生微弱荧光。当细胞活性升高,处于积极分裂状态时,其ATP含量高,发光强度增强。发光细菌在毒物作用下,细胞活性下降,ATP含量水平下降,导致发光细菌发光强度的降低。实验显示,毒物浓度与菌体发光强度呈线性负相关关系,因而,可以根据发光细菌发光强度判断毒物毒性大小,用发光度表征毒物所在环境的急性毒性。

CHIP实验操作

ChIP实验操作指南 国家瓜果改良中心荔枝分中心 采用Bowler等(2005)的方法,具体如下: 1收获2.0g花生根、茎、也、种子于一个50ml离心管中。 2加40 ml超纯水于离心管中,轻柔颠倒离心管洗材料2次。 3去掉尽可能多的水,再加入37ml 1% 甲醛,与15-25 ℃,真空放置15 min。 4 加入2. 5 ml 2 M甘氨酸是离心管中的甘氨酸的终浓度为0.125 M,再真空放置5 min。 5 加40ml超纯水与离心管中,轻柔颠倒离心管洗材料2-3次。 6去掉尽可能多的水,液氮速冻后-80℃保存或直接利用。 第一天 1 准备核酸提取液Extraction buffer 1、2、3,并4 ℃预冷。 2 液氮淹没样品,样品尽量磨碎,注意不用潮解样品。 3 预冷的50 ml离心管中加入预冷的30 ml核酸提取液1 ,再将样品粉末加入离心管中,轻柔颠倒混匀后放在冰上5 min. 4 再拿一个50 ml离心管于冰上预冷,用两层滤膜将样品过滤入该离心管,如果滤液中仍有残渣,重复步骤4。 5 4 ℃, 3000g 离心10min。 6 小心弃上清,加入1 ml 4 ℃预冷核酸提取液2重悬浮沉淀,移入进口(或严格灭菌)的1.5ml 离心管,4 ℃,12000g离心溶液10Min. 7 小心弃上清,加入300μl 4 ℃预冷核酸提取液3重悬浮沉淀,可以轻柔颠倒助匀,但要避免起泡。(核酸提取液3很粘稠,但还是要尽量重悬浮好沉淀)。 8 在一新4 ℃预冷离心管中加300μl 4 ℃预冷核酸提取液3,再将步骤7的溶液小心加入上层,4 ℃,16000g离心溶液1h(准备步骤9,制一块1%琼脂糖凝胶,用80μl CHIP 洗液洗磁珠)。 9 准备核酸裂解液 Nuclei lysis Buffer。 10 小心弃上清,加入300μl预冷核酸裂解液,于冰上用(剪过尖端)枪头吹打溶液混匀或轻柔颠倒助匀,但要注意避免起泡。并取出1-2μl混匀也来作为对照看超声波破碎后的对照。 11 超声波破损染色质5次,每次15s,中间间隔1 min 避免溶液过热,避免损失过多及起泡。跑电泳(1%琼脂糖凝胶)检测超生效果(应该在200-1000bp之间)。可以把破碎后的染色质-80 ℃保存或直接进入下一步。 12 超声波破碎后溶液4 ℃,12000g离心5 min,上清液移至1个5ml离心管中,并移出10μl来,于-20℃保存作为“Input DNA对照”。 13 先验证这时候的超声波破碎后溶液体积少于300μl,再补加CHIP洗液至总体积3 ml。

彗星实验要点

1、凋亡细胞的观察:看过国外此法作出的凋亡细胞彗星图像,很漂亮, 用CASP软件分析后,其曲线呈典型的双峰,而正常细胞为单峰。我的一些教训:观察凋亡细胞最好把电压、电流、和电泳时间均调低,否则,凋亡细胞中的DNA片断跑的太块,荧光下根本看不到凋亡细胞的尾巴。注:我用的是中性条件,20V,200mA,20min, 凋亡细胞观察宜选用10V,100mA,10min。朋友们如果有异议,请不吝赐教,也对我有所帮助。 2、 解旋20分钟应该没问题,但是我认为您的电泳时间过长,当然我不知道 您的电泳条件(电压、电流、),我认为20分钟足够了,时间长了一是浪费时间,二是彗星图像不好,不利于分析。您的裂解时间有点短了,文献报道,最好不要少于1.5小时 3、一般100ul0.5%低熔点胶中含400个细胞就足够了 4、本版【图片仓库】子版有我做的彗星图像,感兴趣可以看看 https://www.360docs.net/doc/9b9335560.html,/bbs/post/view?bid=66&id=2729243&sty=1&tpg=1&ag e=0 5、注意,CASP只读.tif扩展名的图像,如果你的相机拍摄的图像可以有.tif 格式,就更好了,如果是.jpg格式,那还要在计算机中转换一下,不过很简单 6、首先,荧光染色的东西最好马上看,否则影响结果。 其次,您的染色液量我觉得多了点,我用2ug/ml,1ml注射器1滴就可以。第三,要忠于实验结果,图象内容不能更改,可以用ACDSEE或PHOTOSHOP 转换图象格式或大小,所以,作出来的实验图象质量要好 7、。背景的选择问题,如果图片质量好的话,背景大小不同,对结果影 响不是很大,如果图片背景乱七八糟,那背景框的选择肯定对结果产生很大影响。我的建议:背景框不要太大,参考我贴的那个图。注意,背景框可以在细胞的上面或下面,如果背景框在上面时,分析后的图像(分析后出现一个头、尾分明的图像,是基本重合在细胞上的)质量很差,很不规则,那再把背景框调到下面试试,如果还是不好,那只能说你的结果质量不好了。背景框的选择关键在于分析同一批细胞,背景框要相同,才能保持资料的可比性。 结果的保存,记得好像使用说明里提到了,如果没有提到,那就是我原创的!!!呵呵,先卖个关子。FILE菜单下有一个EXPORT RESULTS(输出结果)的按钮,点击以后,默认是.TXT文本文件,好了,给你的输出文件起个名字,选择保存位置,点击确定就OK了,回到你保存的输出结果文件,发现它是一个不可识别的文件,那就直接把它的扩展名改成.TXT,打开它,看看你的结果,包括13个指标,很好,这个.TXT的结果文件可以被SPSS统计软件直接识别,不是很方便吗??(如果你愿意把数据一个一个地输入统计软件,我也没意见,呵呵)。这里还有一个小窍门,在用SPSS读取之前,最好把你的结果文件调整一下,这也是我发现的。把所有的指标都排列到第一行,下面的结果要和指标一一对应,每个数据之间留空格(默认的),行与行之间不要用回车,就是不要有空行,其实调整起来很简单,主要是调节.TXT文本文件阅读框的宽度。调好后,SPSS软件直接识别,很方便,为你节省很大工作量,不信就试试。 8、我用双层铺胶法,自制微电泳槽,第一层:0.75%正常熔点胶,100μl,

ChIP 原理及实验方法

染色质免疫沉淀技术(ChIP)实验方法 实验原理 染色质免疫沉淀技术(ChIP)通过与染色质片段共沉淀和PCR技术,在体内检测与特异蛋白质结合的DNA片段。ChIP技术最大的优点就是在活体细胞状态下研究了蛋白质和目的基因结合状况,减少了体外实验的误差。在活体细胞中,先对与调节蛋白结合的染色质进行分离,然后通过一定的方法(例如:超声波)随机剪切染色质,用调节蛋白的抗体沉淀目的染色质,再通过一定手段把目的染色质上的蛋白质去除掉,最后用PCR等方法检测鉴定共沉淀的DNA片段的特性。 仪器和试剂

真空设备、涡旋器、液氮、冷冻离心管、离心机、超声波粉碎仪、miracloth 37%甲醛,2M甘氨酸,ddH O,剪切的鲑精DNA/protein A琼脂糖珠(Sant cruz), 2 蛋白酶K(14mg/ml),RNaseA,酚:氯仿:异戊醇(25:24:1),氯仿,无水乙醇, 提取缓冲液1(EB1):0.4M蔗糖;10mM Tris-HCl,pH8.0;5mM β-ME; 0.1mM PMSF;蛋白酶抑制剂混合物(aprotinin、pepstain A、Leupeptin、 Antipain、TPCK、Benzamidine) 提取缓冲液2(EB2):0.25M 蔗糖;10mM Tris-HCl,pH8.0;10mM MgCl2; 1%Triton X-100(聚乙二醇辛基苯基醚) ;5mM β-ME;0.1mM PMSF;蛋白酶抑制剂混合物(同上) 提取缓冲液3(EB3):1.7M蔗糖;10mM Tris-HCl,pH8.0;0.15%Triton X-100;2mM MgCl ;5mMβ-ME;0.1mM PMSF;蛋白酶抑制剂混合物(同上) 2 核裂解缓冲液(NLB):50mM Tris-HCl,pH8.0;10mM EDTA;1%SDS;PMSF和蛋白酶抑制剂混合物(同上) ChIP稀释缓冲液(ChIP DB):1.1%Triton X-100;1.2mM EDTA;16.7 mM Tris-HCl,pH8.0;167mM NaCl;PMSF和蛋白酶抑制剂混合物(同上) 洗脱缓冲液(EB):1%SDS;0.1M NaHCO3(现配) 低盐洗脱液:150mM NaCl;0.1%SDS;1%Triton X-100;2mM EDTA;20mM Tris-HCl,pH8.0

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.360docs.net/doc/9b9335560.html,/geo/)和ArryExpress (http:// ;https://www.360docs.net/doc/9b9335560.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

药物毒理学考试要点

名词解释 1.血脑屏障:是指血液-脑组织间液和血液-脑脊液间的屏障,由血液-脑屏障、脑脊液-脑屏 障和血液-脑脊液屏障三个屏障构成。 2.内分泌系统:是一种整合性的调节机制,通过分泌特殊的化学物质来实现对有机体的控 制与调节。 3.药物依赖性:也称药物成瘾性,是精神活性物质与机体长期相互作用下造成的一种精神 状态(有时也包括身体状态),表现为强制性地连续不断地使用该药物的行为和其他反应,目的是去感受该药物所产生欣快性精神效应,或是为了避免由于停用该药物引发的戒断症状所带来的严重不适感。 4.直接致癌物:指进入机体后不需经代谢活化,直接与细胞生物大分子(DNA、RNA、蛋 白质)作用而诱发细胞癌变的化学物质。 5.间接致癌物:指进入机体后需经细胞内微粒体混合功能氧化酶系统等代谢活化后才具有 致癌性的化学物质。 6.促癌物:此类物质本身并无致癌性,严格的说不属于致癌物,但它可以与致癌物协同作 用,诱发突变细胞克隆扩增,促进癌的发生;或在致癌物作用之后,反复作用与细胞,加速癌细胞发展成为癌瘤。 7.促癌剂:具有促癌作用的物质,通过促进突变细胞的克隆扩增而发挥致癌作用。 8.前致癌物:未经代谢活化的间接致癌物称为前致癌物或原致癌物。 9.辅致癌物:有些化学物质既非引发剂,也非促长剂,本身并不致癌,但能增强引发剂和 促长剂的作用,即能加速致癌作用的过程。 10.药物的暴露:通过对暴露、时间依赖性的靶器官剂量与毒性作用关系研究解释毒性作用

机制。 11.急性毒性试验:又称单次给药毒性试验,系研究实验动物一次或24小时内多次给予受 试物后一定时间内所产生的毒性反应,观察期至少为14天。 最大耐受剂量(浓度):(MTD)指动物能够耐受的而不引起动物死亡的最高剂量。 最小致死剂量(浓度):(MLD)引起个别受试动物出现死亡的剂量 LD50:(半数致死量)预期引起50%动物死亡的剂量,该值是经统计学处理所推算出的结果。 12.长期毒性实验:又称重复给药毒性试验,是研究实验动物重复给予较大剂量的受试物后 产生的毒性反应特征,药物非临床安全性评价的重要内容。 13.一般生殖毒性实验:在雌雄动物交配前的交配期直至胚胎着床给药,评价受试药物对动 物生殖的毒性干扰作用,即生殖过程的第一阶段试验。 14.致畸敏感期毒性试验:妊娠动物自胚胎着床至硬腭闭合阶段给药,评价受试药物对妊娠 动物、胚胎及胎仔发育的影响。致畸敏感期毒性试验即生殖过程的第二阶段试验。15.围生期毒性试验:从胚胎着床到幼仔断奶这段时期给药,检测受试药物对妊娠及哺乳动 物、胚胎发育以及子代出生后生长发育的不良影响。围生期毒性试验即生殖过程的第三阶段试验 16.光敏反应:指皮肤对光线敏感产生的不良反应,是由某些药物(化学药物)与皮肤接触、 经特定波长的光照后引起的皮肤损伤。 17.靶点:医学上进行某些放射治疗时,放射线从不同方位照射,汇集病变部位,这个病变 部位叫做靶点。 18.靶部位:药物吸收进入机体分布于全身,通常仅对其中某些部位造成损害,被药物造成 损害的部位叫靶部位。

ChIP实验的原理与实践

一、原理 转录从基因的启动子区开始,由一系列的转录因子结合到基因的启动子区,通用转录因子结合在 基本启动子区起始转录,而这个过程对基因的转录是必需的,但不是充分的,通常需要一些特异的转 录因子结合在上游调节序列,使基因特异表达并维持的合适水平,ChIP主要用于研究转录因子(个人 认为主要是特异转录因子的作用,因为这些因子的表达才有时空特异性)与下游基因的结合,如果 ChIP发现转录因子能与目的基因结合,那么这说明该基因可能是其下游基因,要想进一步证明,还要 做高低表达和荧光素酶等实验。 二、目的基因的筛选 1,如果做ChIP-seq那就不需要在实验前筛选目的基因了,理论上芯片会分析出样本中该转录因 子所有的下游基因,我们根据这个分析结果进行筛选就可以了。 2、如果是做普通的ChIP,那么在实验前要进行初步的筛选,选择自己感兴趣的目的基因,设计 PCR引物,进行验证,所以,这样考虑的话,ChIP实验是对你的早期数据的验证。个人认为,筛选目 的基因的方法有一下几种:a,查文献,看转录因子和哪些基因在表达时间,空间,及功能

相关。b, 你的课题设计中涉及到的基因,比如说你课题中设计到c-myb基因,你就想看一下转录因子和c-myb的 关系(这个纯属碰运气)。c,根据自己早期的实验结果,比如,你做高、低表达后,发现你的转录 因子表大变化后,一些基因的表达也发生了变化,那么这些基因可以作为候选基因。 3、另外筛选完自己感兴趣的基因后,可以用一些分析工具进行初步的预测,这个网上也可以搜 到,就不罗嗦了,如果有战友需要,可以再讨论。 三、实验设计 这里只说说实验各组的作用 1.input:样本经过超声,但是没有进行ChIP,包含样本超声后总DNA,可以进行电泳,检测超声 效果,同时,可以与最后ChIP样本进行比较,看ChIP的效率(如果用同一引物进行PCR,ChIP组和 input组亮度差不多,说明ChIP效率高,基本上,样本中所有的目的基因片段都被ChIP下来了,反之 ,说明效率低,实验条件有待改进) 2、阳性对照:一般用anti-RNA Polymerase II抗体,因为RNA Polymerase II是通用转录

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

彗星实验

彗星实验 彗星实验又称单细胞凝胶电泳实验。 实验原理:它能有效地检测并定量分析细胞中DNA单,双链缺口损伤的程度。当各种内源性和外源性DNA损伤因子诱发细胞DNA链断裂时,其超螺旋结构受到破坏,在细胞裂解液作用下,细胞膜、核膜等膜结构受到破坏,细胞内的蛋白质、RNA以及其他成分均扩散到电解液中,而核DNA由于分子量太大不能进入凝胶而留在原位。在中性条件下,DNA片段可进入凝胶发生迁移,而在碱性电解质的作用下,DNA发生解螺旋,损伤的DNA断链及片段被释放出来。由于这些DNA的分子量小且碱变性为单链,所以在电泳过程中带负电荷的DNA会离开核DNA 向正极迁移形成"彗星"状图像,而未受损伤的DNA部分保持球形。DNA受损越严重,产生的断链和断片越多,长度也越大,在相同的电泳条件下迁移的DNA 量就愈多,迁移的距离就愈长。通过测定DNA迁移部分的光密度或迁移长度就可以测定单个细胞DNA损伤程度,从而确定受试物的作用剂量与DNA损伤效应的关系。该法检测低浓度遗传毒物具有高灵敏性,研究的细胞不需处于有丝分裂期。同时,这种技术只需要少量细胞。 实验材料: 玻片、琼脂糖、细胞裂解液、碱性解链溶液(PH>13,200mM NaOH,1Mm EDTA)、电泳槽、超纯水、DAPI、PBS、荧光显微镜。 实验步骤: 1.制片:配制1%的琼脂糖凝胶,于微波炉中加热融化后,浸泡磨砂玻片,用吸水纸将玻 片滑面及四周吸干,自然晾干备用; 2.细胞处理:将细胞消化收集,离心后吸弃上清,用预冷的1*PBS清洗细胞一次,以1*10^5 细胞/ml悬浮细胞;

3.铺胶:将细胞与凝胶以一定的比例(1:10)混匀后迅速滴于玻片上,在显微镜下观察 细胞的数目(注意调整比例及铺板均匀),4℃黑暗环境中固化10min; 4.裂解:轻轻取出玻片,将玻片浸于预冷的细胞裂解液中,4℃避光裂解30-60min; 5.解旋:从裂解液中取出载玻片,用PBS浸泡玻片3次,每次3mim,用纸巾吸去玻片上 的液体,置于水平电泳槽,加入新鲜配制的碱性电泳缓冲液至高于玻片表面3mm以上,避光解旋30min; 6.电泳:电压30V,电流300Ma,电泳30min。 7.漂洗及染色:电泳完毕,取出玻片,用PBS浸泡2次,每次15min,以中和强碱。滴加 DAPI染色,立即置于荧光显微镜下观察。 结果观察: 荧光显微镜下20倍波长,激发波长377nm,发射波长477nm。每一个视野观察50个细胞,记录拖尾细胞数。计算拖尾细胞率=(拖尾细胞数/50)*100%。每个视野用目镜测微尺测量30个细胞的全长和头长,拖尾细胞尾长(TL)=全长-头长,计算各剂量组的平均尾长。

基因芯片相关图像技术的简单介绍

本科课程论文 基因芯片相关图像技术的简单介绍 张大力 201330200125 指导教师邓继忠 学院名称生命科学学院专业名称14生物科学2班论文提交日期2017年6月9日

摘要 生物芯片是一种高效快速地生物学检测手段,以探针和底物的特异性结合为基本原理。其反应结果常常显示为荧光点阵列,往往具有信息量大,信息密度大的特点,人工难以识别和处理,因此多采用自动化手段进行处理,包括图像技术和计算机技术。本文简单介绍现有的几天芯片图像处理过程中所用到的图像技术。 关键词:图像技术、生物芯片、基因芯片。

1 生物芯片简介 生物芯片是20世纪90年代出现的一种将分子生物学/基因工程和芯片结合的一项技术,根据性能可分为功能芯片和信息芯片两大类。 功能芯片是指在芯片上集成一系列反应所需的试剂和条件,在一块芯片生完成固定的,程序化的,复杂的反应,从而大大减少检测人员的劳动强度,并使检测过程快速方便。 信息芯片又可以根据芯片探针和探测目标的不同分为基因芯片、蛋白芯片、细胞芯片、组织芯片等。[1]信息芯片是现在广泛使用的一类芯片,是在芯片基质材料上安装许多,基质可以是玻璃、金属、尼龙或者其他材料。基因芯片又是信息芯片中最常使用的。 生物芯片上探针可与样品液体中的目标的特异性结合,结合的产物可以经过处理,在激光的照射下发出特定波长的荧光,如果没有发生结合的探针或者目标不会发出荧光。 用特定的光照射反应后的芯片,使其上面发生特异性结合的部位发出荧光,再用技术手段取得此时芯片的图像。通过对芯片图像中荧光的位置,颜色、强弱进行分析可以推测基因芯片上探针发生反应的情况。进而得知样品中待测目标的情况,包括样品中某同可以和探针特异性结合的目标是否存在,含量、浓度是多少等,这些信息可以作为进一步判断的依据。 2 生物芯片图像信息的采集 反应后经光源照射发出荧光的芯片包含我们所需要的信息,所谓基因芯片的扫描就是指将含有大量的以微阵列方式排列的生物杂交反应样点的基因芯片以图像的方式读取出来,且在保证样点信息的能够准确描述前提下,扫描图像转变成可供计算机处理的数字图像[2]。基因芯片以外的生物芯片的与基因芯片类似。 常见的生物芯片扫描仪有两种分别是:CCD 系统扫描仪和激光共聚焦扫描仪,中CCD 扫描仪的应用较为广泛。[3]

ChIP实验步骤-英文原版chip技术

一、ChIP实验步骤 第一天:(一)、细胞的甲醛交联与超声破碎。 1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。(培养基共有9ml) 2、37摄氏度孵育10min。 3、终止交联:加甘氨酸至终浓度为0.125M。 450ul 2.5M甘氨酸于平皿中。混匀后,在室温下放置5min即可。 4、吸尽培养基,用冰冷的PBS清洗细胞2次。 5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。预冷后2000rpm 5min 收集细胞。 6、倒去上清。按照细胞量,加入SDS Lysis Buffer。使得细胞终浓度为每200ul 含2×106个细胞。这样每100ul溶液含1×106个细胞。再加入蛋白酶抑制剂复合物。假设MCF7长满板为5×106个细胞。本次细胞长得约为80%。即为4×106个细胞。因此每管加入400ul SDS Lysis Buffer。将2管混在一起,共800ul。 7、超声破碎:VCX750,25%功率,4.5S冲击,9S间隙。共14次。 (二)、除杂及抗体哺育。 8、超声破碎结束后,10,000g 4度离心10min。去除不溶物质。留取300ul做实验,其余保存于-80度。 300ul中,100ul加抗体做为实验组;100ul不加抗体做为对照组;100ul加入4ul 5M NaCl (NaCl 终浓度为0.2M),65度处理3h解交联,跑电泳,检测超声破碎的效果。 9、在100ul的超声破碎产物中,加入900ul ChIP Dilution Buffer和20ul的50×PIC。再各加入60ul Protein A Agarose/Salmon Sperm DNA。4度颠转混匀1h。 10、1h后,在4度静置10min 沉淀,700rpm离心1min。 11、取上清。各留取20ul做为input。一管中加入1ul 抗体,另一管中则不加抗体。4度颠转过夜。 (三)、检验超声破碎的效果。 取100ul超声破碎后产物,加入4ul 5M NaCl,65度处理2h解交联。分出一半用酚/氯仿抽提。电泳检测超声效果。 第二天:(一)、免疫复合物的沉淀及清洗。 12、孵育过夜后,每管中加入60ul Protein A Agarose/Salmon Sperm DNA。 4度颠转2h。 13、4度静置10min后,700rpm离心1min。除去上清。 14、依次用下列溶液清洗沉淀复合物。清洗的步骤:加入溶液,在4度颠转10min,4度静置10min沉淀,700rpm离心1min,除去上清。洗涤溶液:a. low salt wash buffer----one wash b. high salt wash buffer-----one wash c. LiCl wash buffer------one wash d. TE buffer------two wash 15、清洗完毕后,开始洗脱。洗脱液的配方:100ul 10%SDS, 100ul 1M NaHCO3, 800ul ddH2O,共1ml。 每管加入250ul洗脱buffer,室温下颠转15min,静置离心后,收集上清。重复洗涤一次。最终的洗脱液为每管500ul。 16、解交联:每管中加入20ul 5M NaCl(NaCl终浓度为0.2M)。混匀,65度解交联过夜。第三天:(一)、DNA样品的回收 17、解交联结束后,每管加入1ul RNaseA(MBI),37度孵育1h。 18、每管加入10ul 0.5M EDTA, 20ul 1M Tris.HCl(PH 6.5),2ul 10mg/ml 蛋白酶K。 45度处理2h。 19、DNA片段的回收―――omega胶回收试剂盒。最终的样品溶于100ul ddH2O。(二)、PCR分析二、技术总结(一)、关于细胞细胞的生长状态要好。因为细胞的生长状

综述基因芯片技术、蛋白芯片技术的原理及应用。

综述基因芯片技术、蛋白芯片技术的原理及应用。 1.1 基因芯片是生物芯片技术中发展最成熟和最先实现商品化的产品。基因芯片是基于核酸探针互补杂交技术原理而研制的。所谓核酸探针只是一段人工合成的碱基序列,在探针上连接上一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。基因芯片,又称DNA芯片,DNA微阵列(DNAmicroar ray),和我们日常所说的计算机芯片非常相似,只不过高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,通过已知碱基顺序的DNA片段,来结合碱基互补序列的单链DNA,从而确定相应的序列,通过这种方式来识别异常基因或其产物等。目前,比较成熟的产品有检测基因突变的基因芯片和检测细胞基因表达水平的基因表达谱芯片。基因芯片技术主要包括四个基本技术环节:芯片微阵列制备、样品制备、生物分子反应和信号的检测及分析。 目前制备芯片主要采用表面化学的方法或组合化学的方法来处理固相基质如玻璃片或硅片,然后使DNA片段或蛋白质分子按特定顺序排列在片基上。目前已有将近40万种不同的DNA分子放在1平方厘米的高密度基因芯片,并且正在制备包含上百万个DNA探针的人类基因芯片。生物样品的制备和处理是基因芯片技术的第二个重要环节。生物样品往往是非常复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片进行反应。要将样品进行特定的生物处理,获取其中的蛋白质或DNA、RNA等信息分子并加以标记,以提高检测的灵敏度。第三步是生物分子与芯片进行反应。芯片上的生物分子之间的反应是芯片检测的关键一步。通过选择合适的反应条件使生物分子间反应处于最佳状况中,减少生物分子之间的错配比率,从而获取最能反映生物本质的信号。基因芯片技术的最后一步就是芯片信号检测和分析。目前最常用的芯片信号检测方法是将芯片置入芯片扫描仪中,通过采集各反应点的荧光强弱和荧光位置,经相关软件分析图像,即可以获得有关生物信息。 自从1992年Affymetrix公司首次合成第一块基因芯片诞生以来,在之后的十几年里该技术以其高通量、平行性、多样化、微型化、自动化的显著特点被广泛应用到了各个领域,展现出了巨大的发展前景。 1)在医学上的应用:

相关文档
最新文档