航空发动机润滑系统

航空发动机润滑系统
航空发动机润滑系统

1.润滑系统的组成与作用:

(1)润滑系统的组成航空活塞式发动机润滑系统由油箱、进油泵、油滤、-收油池、泡沫消除器与散热器组成。

(2)润滑系统的作用该系统的作用有以下几点:①润滑和冷却发动机内各机件,减少机件磨损,避免机件过热并防止机件锈蚀;②密封活塞和气缸间隙,防止气体从燃烧室进入曲轴箱。(3)清洗摩擦表面

(4)作为调节装置的工作液体,例如:推动螺旋桨的变距活塞,改变螺旋桨桨叶角度等。

润滑系统工作过程发动机工作时,油箱内的润滑油经进泊泵增压后,进入油滤过滤,然后去发动机内部各机件摩擦面进行润滑。工作后的润滑油流入机匣步经收油池收集后,由回油泵抽出,经散热器冷却,返回油箱。润滑油在发动机内循环时所产生的润滑油蒸气与活塞周围漏进机匣的混合气和废气,经通气管排出。在润滑系统工作过程中,对各机件的润滑方式有泼溅润滑与压力润滑。

润滑系统的循环路线航空燃气涡轮发动机润滑系统,按循环方式分为单回路、双回路及短回路三种类型。

1.单回路循环润滑系统

2.双回路循环润滑系统

3.短回路循环、润滑系统

直升飞机传动装置润滑系统的润滑工作原理在直升飞机上,发动机的功率除传给拉力螺旋桨外,有些还经过抽、主减速器、中间减速器和尾桨减速器以及离合器组成的传动装置传给尾浆。主减速器或拉力螺旋桨减速器具有较大的传动比,因为它们要将发动机转子转速降低到拉力螺旋桨所必需的转速。因此,减速器的润滑系统根据减速器型式和传到螺旋桨上功率的不同而异。当传到螺旋桨上的功率较小时,润滑系统是由兼作油箱的收油池、油泵、油滤、和政喷嘴所组成。在这种系统中通常没有润滑油的外部线路和散热器。润滑油在减速器收油池中靠专用风扇吹气冷却。当减速器传递功率较大时,润滑系统就需要有外部线路,并且润滑油还要在空气润滑油散热器中进行冷却。

直升飞机减速器润滑系统如图所示。增压泵从收油池冷油部分吸进润滑油,去润滑减速器传动齿轮。为了导走齿接触区放出的热量,并在齿间形成泊膜,润滑油沿传动装置旋转方向送到齿合区。当齿齿合间隙较小时,润滑油退出齿合区。否则,从工作面挤出去的润滑油将会使齿脱开齿合。

工作过的润滑油从减速器中流到收'池的热油部分后,由回油泵送到散热器中冷却,再从散热器回到冷油部分。

航空活塞式发动机

润滑系统的组成与作用

润滑系统的组成航空活塞式发动机润滑系统由油箱、进油泵、油滤、收油池、泡沫消除器与散热器组成。

润滑系统的作用该系统的作用有以下几点:

1.润滑和冷却发动机内各机件,减少机件磨损,避免机件过热并防止机件锈蚀;

2.密封活塞和气缸间隙,防止气体从燃烧室进入曲轴箱;

3.清洗摩擦表面;

4.作为调节装置的工作液体,例如:推动螺旋桨的变距活塞,改变螺旋桨桨叶角度等。

润滑系统工作过程发动饥工作时,油箱内的润滑油经进泊泵增压后,进入油滤过滤,然后去发动机内部各机件摩擦面进行润滑。工作后的润滑油流入机匣,经收油池收集后,由回油泵抽出,经散热器冷却,返回油箱。润滑油在发动机内循环时所产生的润滑油蒸气与活塞周围漏进机匣的混合气和废气,经通气管排出。在润滑系统工作过程中,对各机件的润滑方式有泼溅润滑与压力润滑

航空机件、仪表对润滑油品质的要求。

1.润滑油粘度较低。粘度大时,阻碍仪表零件运动,影响仪表读数准确。对于微电机,粘度大时起动困难;但粘度太小,则可能因漏泄而缺油;

2.应具有较高的化学安定性和物理安定性。在高温可不易挥发J在长期工作中,不变质,无损耗;

3.凝点低,有良好的低温性能,使仪表在各种温度条件下均能正常工作;

4.质量纯洁,没有机械杂质和水分,否则磨损机件;

5.不腐蚀仪表零件,能够防锈;

6.具有较好的润滑性能。保证高转速时,摩擦部件可靠润滑而不磨损;

7.具有良好的抗流散性。对于计时仪器要求润滑油能牢固地附着在轴承上,不会流失。润滑油的流散性与其粘度、表面张力与被润滑的表面有关。一般润滑油粘度大、表面张力大,抗流散性好。在润滑油中加入极性的抗流散性添加剂,可以改善流散性。

航空发动机燃油与控制系统测试技术研究

航空发动机燃油与控制系统测试技术研究 [摘要]燃油与控制系统是航空发动机的神经系统,其安全可靠性对航空发动机正常工作有致命的影响。为了确保科研阶段航空发动机整机试验及科研试飞安全可靠,必须对燃油与控制系统进行测试监控,以便预先评估航空发动机燃油与控制系统的安全可靠性。本论文主要研究航空发动机整机试验和科研试飞中燃油与控制系统的测试监控技术。 [关键词]航空发动机;整机试验;科研试飞;燃油与控制系统;测试技术 1引言 在航空发动机研制过程中,要经过大量整机试验和科研试飞才能最终确定燃油与控制系统的性能、可靠性和操纵性。在整机试验和科研试飞中,台面仪表仅显示了发动机状态和告警参数,几乎没有监控显示燃油与控制系统的相关参数。如果不对燃油与控制系统进行测试改装,在整机试验和科研试飞中则无法预估燃油与控制系统的安全可靠性,也不利于燃油与控制系统的故障排查。为了降低整机试验和科研试飞的风险,必须加强燃油与控制系统的全面监控,保障试验安全可靠的进行。 2燃油与控制系统组成 燃油与控制系统主要由离心式增压泵、低压燃油滤、燃油调节器、电子控制器、燃滑油散热器、超转放油阀、各类传感器及电缆等附件组成。 3燃油系统测试 燃油系统由离心式增压泵、低压燃油滤、燃油调节器、燃滑油散热器及超转放油阀等附件组成,其作用是将燃油输送到燃烧室,保证航空发动机各种工作状态下所需的燃油。飞机或台面仪表仅监控燃油滤堵塞和燃油压力低两个发动机燃油系统告警信号。因此,必须对燃油系统进行相应的测试改装,才能全面监控燃油系统的工作状态,保证试验安全进行。 3.1增压泵进出口燃油压力和燃油温度的测试 燃油系统组成元件,尤其是燃油调节器只能在特定的进口燃油压力和温度范围内正常工作,否则工作异常,给发动机正常工作造成一定的影响。通过对增压泵进出口燃油压力和温度进行测试监控,可以避免燃油系统在燃油压力和温度规定值外工作,如图2所示。 燃油压力开关虽然具有燃油压力低告警功能,但是不能对燃油压力数值进行监控。通过在燃油压力开关和燃油管路连接处增加一个三通的管接头,既不影响燃油压力低告警功能,又可以监控燃油压力的实际值。在试验过程中,一旦发现

发动机润滑系统教案

发动机润滑系统教案 班级: 姓名: 学号:

汽车构造教案 课程名称汽车构造课时 2 授课班级教学方式授课多媒体教学课题发动机润滑系统任课教师 教学目的与要求 1.了解润滑系的功用; 2. 掌握润滑的方式; 3.了解润滑系的组成; 4.了解润滑系的常用零部件的结构特点; 5.掌握机油泵的结构原理; 教学重点 1. 润滑的方式; 2. 机油泵的结构原理; 教学难点 1.润滑系的组成; 2.机油泵的结构原理; 教学过程 引言: 发动机工作时,各运动零件之间存在一定的相互作用力,并伴随高速的相对运动,零件表面必然要产生摩擦,加速磨损。因此,为了 减轻磨损,减小摩擦阻力,延长使用寿命,发动机上都必须有润滑系。 授课内容: 1.润滑系统的功用 润滑作用:将机油不断地供给运动零件的摩擦表面,形成一定的油膜, 减少零件的摩擦和磨损; 冷却作用:润滑油在润滑各摩擦表面的同时,吸收各摩擦表面的热量, 降低各摩擦表面的温度; 清洁作用:润滑油在循环流动中,可清除摩擦表面的磨屑等杂质; 密封作用:在运动零件之间、气缸壁上形成的油膜可以提高零件的密 封效果; 防锈作用:在零件表面形成油膜,防止金属机件发生氧化锈蚀; 液压作用:可以利用润滑油作液压油; 缓冲作用:在运动零件表面形成油膜,吸收冲击减小振动。 2.润滑方式 压力润滑:以一定的压力将润滑油供入摩擦表面的润滑方式,适于负 荷和转速较大机件,如:曲轴主轴承、连杆轴承、凸轮轴轴承、摇臂 轴等; 飞溅润滑:利用发动机工作时运动零件溅泼起来的油滴或油雾润滑摩 擦表面的润滑方式,适于负荷较轻和速度较小或露在外面的机件,如 气缸壁、活塞销、凸轮轴、挺杆等; 润滑脂润滑:通过油脂嘴定期加注润滑脂来润滑零件的工作表面的润 滑方式,适用于发动机的辅助系统,如水泵轴承,发电机轴承。备注 举例说明各种作用 通过讲解特点提问应用装置

航空发动机燃油喷嘴实训和实验台技术要求

https://www.360docs.net/doc/9c14132560.html, 航空发动机燃油喷嘴实训和实验台技术要求 为完成我院教学大纲中关于发动机燃油系统实训内容的教学要求,使机电维修专业的学生实训更加接近实际工作要求。学生可以通过对航空发动机燃油喷嘴的检测试验过程,对发动机附件维修的整个过程有更加深入的了解。我们拟建设一个燃油喷嘴实验台,该实验台的技术要求详述如下: 1、总体设计要求 拟以三种型号发动机的燃油喷嘴作为实训和实验的附件,型号分别为CFM56-3发动机、涡喷6发动机和斯贝515发动机。采用航空煤油为实验用油液,模拟真实的燃油喷射过程,通过检测固定工况下燃油喷嘴的喷射角度来说明喷嘴的检测是否合格。发动机燃油喷嘴由我方提供。 实验台共分两个区域,一个是操作工作区,一个是实验观察区。操作区内包含操作面板和相应的显示仪表,以便控制和调节供油压力;实验观察区则包含固定工装和观察窗口,以便于学生们能够拆装和更换不同型号燃油喷嘴并清晰地观察到喷嘴的实验结果。故整体实验台需要采用不锈钢板材制作,观察窗口需要采用钢化透明玻璃制作,以保证观察效果和实验台寿命。显示仪表包括三个燃油喷嘴的供油压力表和一个流量表等。 依据发动机燃油喷嘴实际的工作情况,燃油喷嘴的供油压力分别为两种工况:15PSI,和120PSI,这两种工况下分别对应两种燃油喷射角度:64度和125度(针对CFM56机型)。故燃油供给压力应该可以在0到150PSI 之间可以调节,燃油供给流量也是可调的且最大供油量为10L/MIN.。 2、外观设计要求 外观设计以方便学生操作和观察为主,结实耐用和安全。 3、主要附件技术要求 供油泵:为齿轮泵,供油压力和流量都可以调节,最大供油压力为150PSI,最大供油量为10L/MIN。符合航空煤油为油液的特殊供压要求。 电动机:功率根据供油泵的型号配套。 供油管:不锈钢供油管。 压力表:最大显示压力为200 PSI即可 调压阀:全部采用不锈钢球阀。

航空发动机燃油喷嘴

航空涡轮发动机使用的喷油嘴有离心式喷油嘴、气动式喷油嘴、蒸发管式喷油嘴和甩油喷嘴。 离心式喷油嘴内装有一个旋流器,其工作原理如图所示。燃油从切向孔进入旋流室内,在旋流室内作急速的旋转运动,燃油从喷孔喷出后,受惯性力和空气撞击力的作用破裂成无数细小的油珠,从而获得良好的雾化结果。 由于发动机在不同的转速下工作时,所需油量的变化很大。大转速时的供油量,一般比小转速时的供油量大十几至几十倍。只有一条通路面积的单路喷油嘴就不能满足要求,所以目前有的发动机使用双路离心喷油嘴。 离心喷嘴的优点是能够形成均匀的混合气保证燃烧室在宽广的混合比例范围内工作,工作可靠,结构坚固易于调试,在航空发动机中使用广泛。 其缺点是1,供油压力要求高2,存在高温富油区,易造成发烟污染3,出口温度场不均匀4,与环形燃烧室不协调。

气动式喷油嘴的出现,克服了离心式喷油嘴的以下两个缺点:喷油量与喷油雾化质量都直接与供油压力相关:在大供油量时,由于雾化质量好,大部分是小直径的油珠,由于其动量小,都聚集在喷油嘴附近,容易形成积炭。而气动式喷油嘴油量的改变是依靠供油压力,而雾化质量则依靠另外的气动因素。 气动式喷嘴油气混合均匀,避免了主燃区的局部富油区,减少了冒烟和积碳;火焰呈蓝色,辐射热量少使火焰筒壁温较低,气动喷嘴不要求很高的供油压力,而且在较宽的工作范围内,喷雾锥角大致保持不变,所以容易使燃烧室出口温度场分布比较均匀稳定。气动式喷嘴简化了供油管道仅用单管供油。其缺点是:由于油气充分掺混贫油熄火极限大大降低,使燃烧室稳定工作范围变窄;在启动时,气流速度较低,压力较小,雾化不良。 在装用蒸发管的燃烧室内,油气的混合提前在蒸发管内进行,如图所示。经在 T 型热管壁加热蒸发,进一步与这部分高温空气掺合。实践证明使用蒸发管的燃烧室燃烧效率较高,不冒烟,出口温度场比较稳定。这种蒸发管式的供油装置与环形燃烧室相回合,得到广泛的应用。 甩油喷嘴在高转速、小流量的折流环形燃烧室中得到广泛运用

航空发动机状态监控在试车台滑油系统上的应用研究

航空发动机状态监控在试车台滑油系统上的应用研究 作者:任忠朝 来源:《科技创新导报》2012年第10期 摘要:本文主要通过对航空发动机滑油系统的工作原理和常见的滑油系统故障的分析,以某型航空发动机为例,初步探讨状态监视系统在航空发动机试车台上的应用。 关键词:状态监视航空发动机试车台滑油系统 中图分类号:V23 文献标识码:A 文章编号:1674-098X(2012)04(a)-0081-01 航空发动机是飞机的心脏,其结构复杂,工作条件苛刻,同时受到各种外部因素的干扰。飞机发动机故障监控系统的设计就是为了保障及时有效的监控发动机性能和可靠性状态,诊断故障。通过监控来调整发动机性能,分析故障,最终达到提高发动机使用质量的目的。目前在国际上已经具有很多成熟的飞机发动机故障诊断的专家系统,如XMAN和JET-X等等。但在航空发动机试车台上应用状态监视系统却仍然较为少见。 发动机在工作过程中,滑油系统的工作状况不仅影响发动机的工作性能和寿命,而且滑油系统故障可以导致严重的飞行事故也屡见不鲜。本文主要以某型航空发动机为例,探讨状态监视系统在试车台滑油系统上的应用,分别从航空发动机滑油系统的工作原理,常见的滑油系统故障原因分析,试车台滑油系统状态监视系统的建立等三个方面进行探讨。 1 航空发动机滑油系统工作原理 滑油系统是保证航空发动机正常工作的一个重要组成部分,其主要功能是保障发动机摩擦件的润滑、散热.发动机内部有摩擦件的地方就有滑油,如转子轴承、齿轮、封严装置。滑油系统中的滑油具有循环使用的特点,因此在滑油油路中会携带大量发动机运动状态的信息,如磨损物的数量、形状、粒度成分等,它在一定程度上反映了发动机内部可能存在的故障隐患,如润滑油系统本身故障(管路阻塞、滑油泵卡滞、封严装置失效)和发动机杂音、振动、抱轴等故障。这些信息为监控与技术诊断提供了良好的条件。 2 航空发动机滑油系统常见故障 对于航空发动机滑油系统来说,主要常见故障主要有以下几种。 2.1 滑油消耗量过大

发动机润滑系统清洗安全操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 发动机润滑系统清洗安全操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5261-19 发动机润滑系统清洗安全操作规程 (正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、清洗前检查(润滑系统清洗必须在更换新机油前操作) 1、拔出机油尺检查机油是否变质(含水)非常规状态;是否过量消耗。 2、起动发动机检查仪表中的机油压力灯是否点亮。 3、运转发动机检查是否有异常响声。 4、检查发动机是否漏油。 备注:发现以上问题均需要门店技术人员确定,此车适合进行润滑系统清洗以及接下来的更换机油作业?才可以进行换油作业,并且要求在涉及以上4种现象的车辆施工单上文字标注。(以上四种情进行发动机润滑系统清洗后产生风险由门店自行承担)

二、操作工艺规程 1、清洁发动机表面相关部位,旋开发动机机油盖,加注机油润滑系统清洗剂,旋紧机油加注口。 2、发动车辆,怠速运转10-15分钟(实际清洗时间根据使用产品说明具体设定) 备注:以下操作请根据《更换机油机滤门店执行操作流程-L-2016-05-01》 三、常见问题及操作注意事项 1、建议使用机油润滑系统清洗时,发动机在正常工作温度状态下效果最佳。 2、进行润滑系统清洗后排放旧机油必须确定全部放空,(建议旧机油排放口不再滴答) 四、清洗发动机检验规程 备注:检验操作请根据《更换机油机滤门店执行操作流程-L-2016-05-01》第四章更换机滤操作流程执行 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

一型航空发动机燃油调节系统浅析

龙源期刊网 https://www.360docs.net/doc/9c14132560.html, 一型航空发动机燃油调节系统浅析 作者:缪建波陈福利王慧颖 来源:《中国科技纵横》2014年第05期 【摘要】航空发动机燃油调节系统主要用来向主燃烧室、加力燃烧室以及燃油液压控制系统供给燃油,并根据发动机状态和外界条件的变化,调节供油量,以保证发动机在各个状态下都能稳定工作。发动机在节流状态(即发动机油门手柄从最大位置移到慢车位置的移动区域所对应的发动机工作状态),由机械液压高压转子转速调节器控制;在最大和加力状态,由电子和机械液压调节器控制,采用闭环调节原理。 【关键词】燃油调节系统机械液压电子调节器节流状态最大状态 1 燃油调节系统工作原理 1.1 主燃烧室燃油调节系统的一般特性 节流状态燃油流量的调节由液压机械高压转子转速调节器来完成。最大和加力状态的调节,由电子和机械液压燃油调节系统共同完成。当系统工作正常时,由发动机电子调节器内燃油控制通道进行调节。通道调节器为模拟式,机械液压部分仅作为电子调节器的执行机构。当电子调节器故障时,系统自动转换为机械液压调节器进行工作,机械液压调节器根据高压转速=f(油门杆,进气温度)进行调节。 1.2 液压机械部分与高压转子转速控制相关机构的简介 高压转子转速调节器功用是在节流状态,或在最大和加力状态,发动机电子调节器故障完全失效、改由机械液压调节器工作时,根据给定的转速调节规律,自动保持给定的转速;当油门杆位置改变时,自动改变发动机的工作状态。 高压转子最大转速重调机构的功用是,当发动机电子调节器故障时,为保证发动机的安全,降低发动机高压转子的最大转速。 2 电子调节器 2.1 电子调节器工作原理 电子调节器是发动机电子—机械液压控制系统的一部分,用来调节发动机参数,向发动机控制附件、监控告警系统和机载记录系统发出指令。调节器根据发动机进口温度,调节最大状态和加力状态的高低压转子转速以及涡轮后温度。

四 上海大众车系发动机润滑系统

4 上海大众系列车型发动机润滑系统 学习目标 知识目标: (1)掌握润滑系的类型、组成和工作原理; (2)能正确识别润滑系主要部件的结构; (3)掌握润滑系统油路结构组成和工作原理。 能力目标: (1)能正确判断发动机润滑系统的类型和结构; (2)能掌握润滑系统油路结构和润滑方式。 (3)会根据发动机的性能与使用条件选择和更换适当的润滑油。 4.1 润滑系统概述 1. 润滑系统功用 为了减轻磨损,减少摩擦阻力,延长使用寿命,发动机上设置了润滑系统,润滑系统将清洁的润滑油不断地供给给运动零件的摩擦表面。润滑系统使用的润滑油具有以下作用。 润滑:润滑运动零件表面,减小摩擦阻力和磨损,减小发动机的功率消耗。 清洗:机油在润滑系内不断循环,清洗摩擦表面,带走磨屑和其它异物。 冷却:机油在润滑系内循环带走摩擦产生的热量,起到冷却作用。 密封:在运动零件之间形成油膜,提高它们的密封性,有利于防止漏气或漏油。 防锈蚀:在零件表面形成油膜,对零件表面起保护作用,防止腐蚀生锈。 液压:润滑油可用作液压油,起液压作用,如液压挺柱。 减震缓冲:在运动零件表面形成油膜,吸收冲击并减小振动,起减震缓冲作用。 2. 润滑方式 根据发动机中各运动副工作条件的不同,发动机一般采用下面两种润滑方式。 压力润滑:利用机油泵,将具有一定压力的润滑油源源不断地送往摩擦表面。例如,曲轴主轴承、连杆轴承及凸轮轴轴承、摇臂等处形成油膜以保证润滑。 飞溅润滑:利用发动机工作时运动零件飞溅起来的油滴或油雾来润滑摩擦表面的润滑方式称为飞溅润滑。可使裸露在外面承受载荷较轻的气缸壁,相对滑动速度较小的活塞销,以及配气机构的凸轮表面、挺柱等得到润滑。 大众轿车发动机其润滑系都是压力润滑与飞溅润滑相结合的复合润滑系统。

航空发动机的一种新型主燃油泵设计

航空发动机的一种新型主燃油泵设计 离心泵是航空发动机燃油系统应用最多的增压泵,结构简单,体积小,质量轻,抗污染能力强,寿命长。具有同样优点的齿轮泵已成为采用最多的主燃油泵。若将离心泵和齿轮泵合为一体,设计成组合泵,既简化了传动机匣的设计,又减轻了质量,因此,这种组合泵的应用很有前途,尤其是在民航领域。但是,随着航空发动机推重比(或功质比)的不断增高,对泵的要求也在提篼,为此,在不断挖掘各种泵的潜力的同时,还要对新型燃油泵进行研究。 2航空发动机对主燃油泵的新要求寿命增压温升可靠性进口压力7Zm为满足上述要求,在泵的组合形式、设计计算、材料选择等方面均需有新的思路和创新。 3选型的创新众所周知,提高泵的转速是减轻泵的质量的主要途径,对现有广泛采用的离心-齿轮组合泵来说,离心增压泵提高转速的潜力很大,转速提高后,若要改善泵的吸人性能、提高汽蚀比转速,在其叶轮进口设置诱导轮即可。而齿轮泵则难以满足要求,其原因:一是齿轮栗在高速、高压、长寿命时值过大,滑动轴承设计困难,所以齿轮泵对转速的提高有一定的限制;二是在高流量比时,齿轮泵的大量回油将使低的温升目标难以实现。 经过俄罗斯和美国专家的共同研究试验,试制成功一种由带诱导轮的低压离心栗、变流量的高压离心泵和三级旋涡泵组合而成的新型

的主燃油泵,简称离心-高压变流量旋涡泵,如所示。这种泵的最大转速为27000r/min.为满足发动机对泵的新要求,这种组合泵中的离心泵在其设计思想上有着大胆的创新。 4.2航空发动机用离心泵的工作特点由于航空发动机有慢车、巡航、额定、最大(起飞)等工作状态,离心泵亦有与之相对应的不同的供油量,在这种情况下,传统设计把最大流量定为设计流量显然不合理,因为发动机在该状态下工作的时间短,高效率状态未充分显示出优越性。为了减少功率消耗,减轻泵的质量,应该选择发动机工作时间最长的巡航状态的流量作为设计流量。 4.3离心泵设计流量的确定发动机巡航状态的需油量约为最大流量的70%,这时离心泵的效率曲线如所示。在这种情况下,发动机最大状态时泵的效率还是比较高的,但由于设计流量是原来的70%,泵的体积就可明显减小,以利于泵的功质比的提高;而在发动机巡航状态,由于泵的效率的提高,则又可减少发动机的功率消耗。 4设计思想的创新设计思想的创新主要表现在离心泵设计点流量的选择与传统设计不同。 4.1民用泵的运行区间离心泵的特性曲线一般是指转速一定时,泵的扬程H(AP)、效率7、温升At、消耗的功率N与流量Q的关系曲线,心=/(<3)及JV=/(Q),如所示。设计理想的离心泵应该在设计流量Qd运行时,扬程达到设计要求Hd,同时效率要最高。为了扩大泵的使用范围,又不使效率过低,一般将设计流量的80% ~120%定为离心泵的运行区间。

航空发动机滑油系统常见故障分析

- 31 - 高 新 技 术 性,把轴承安装位设置为固定约束,由于巴哈赛车运行工况恶劣,有可能在某一时刻会发生3种极限同时出现的情况,因此将3种工况下的受力合并后统一乘以1.5倍的安全系数施加在轮毂上,以保证在各种工况下轮毂都能满足其使用要求。最后将显示选项设置为非平均值,优化目标为减重50 %,运行ANSYS 软件得到轮毂拓扑优化结果。 从3种极限工况下50 %拓扑减重图中可以看出,原设计下的轮毂在3种极限工况下的拓扑优化结果各不相同,在综合考虑3种极限工况下的应力图以及3种极限工况下的50 %拓扑减重图后发现,其需要减重的主要部位在于安装轮辋以及制动盘安装的法兰支撑臂中,因此,在安装轮辋的法兰支撑臂以及安装制动盘的法兰支撑臂处,采用数铣加工工艺进行轻量化处理以降低质量。 3.2 轮毂结构设计校核 为使最终优化完成的轮毂能满足其刚度、强度要求,再 次将最终设计的轮毂导入ANSYS Workbench 中进行静力学仿真,并利用3种工况下的载荷进行强度校核。轮毂受力在乘以安全系数后仿真出的最大应力均低于材料屈服强度320 MPa,应变也没有变大。优化结果见表1。 表1 优化结果对比表 优化前优化后变化率紧急制动工况下的最大应力/MPa25.67743.12259.54 %越过不平路面工况下的最大应力/MPa5.209817.12930.41 %急转向工况下的最大应力/MPa 22.61438.64558.51 %轮毂质量/kg 0.49 0.327 66.73 % 4 结语 该文分析得出轮毂法兰的最大应力制动盘安装位处,且均小于材料的许用应力,因此认为该轮毂满足静力强度的要求,其安装轮辋以及制动盘安装的法兰支撑臂中存在较大的冗余量。而后结合拓扑优化模块对轮毂进行了轻量化设计。最后对设计的轮毂进行了结构静力学分析的效验,结果显示该轮毂满足其设计的强度、轻量化及其使用要求。参考文献 [1]吴国瑞,陈晓鹏,张世琪.铝合金轮毂的优势与热处理[J].内燃机与配件,2018(23):105-106.[2]王新建,张蕊,耿杰,等.巴哈赛车转向节结构优化设计[J].天津职业技术师范大学学报,2018,28(3):42-46. [3]吴国瑞,陈晓鹏,张世琪.汽车铝合金轮毂铸造技术工艺应用研究[J].内燃机与配件,2018(24):81-82. 1 滑油系统基本组成1.1 滑油箱 滑油箱分为干槽式和湿槽式2种。干槽式滑油箱的特点是拥有独立的外部油箱。如果滑油存在于发动机内集油槽或集油池中,则称为湿槽式滑油箱。现在的涡扇发动机绝大部分是干槽式。加油可以是重力加油或压力加油。加油口应标注“Oil”和油箱容量。通过目视检查口盖可以清楚地看到滑油箱中的实际滑油存储量,为重力或压力加油提供依据。油箱应留有容量为10 %或0.5 gal 的膨胀空间。油箱中的传感器用来测量油箱滑油量,并在驾驶舱仪表上显示出来。 1.2 滑油冷却器 燃油/滑油热交换器的功能是使滑油在任何操作情况下都能保持足够的温度。不过燃油温必须保持在1.7 ℃~143 ℃以防燃油结冰和燃油气化。滑油绕着燃油流过的管路流动。滑油需要循环使用,因此必须将滑油的热量散掉。温度控制活门决定了滑油是否通过散热器。滑油温度低时,不需要散热,温度控制活门打开,滑油旁通,不进行热交换;滑油温 度高时,温度控制活门关闭,迫使滑油同燃油或者空气进行热交换。 1.3 滑油滤 在供油路和回油路上都装有滑油滤以保证滑油清洁。油滤有旁通活门,一旦油滤堵塞,旁通活门打开。用油滤压差电门监视油滤是否堵塞。当油滤前、后压差过大时,给驾驶舱信号,显示油滤堵塞。 1.4 其他各类部附件 磁屑探测器又称磁性堵塞,安装在回油路上探测金属粒子,判断发动机内部机件工作状态。其内部的永久磁铁和滤网吸附含铁及不含铁的粒子、碎块。磁屑探测器应定期拆下检查,在高倍放大镜下观察分析。磁屑探测器有自封活门,防止磁性堵塞拆下时滑油流出;接通驾驶舱告警系统,提供指示;油气分离器;为防止滑油箱、齿轮箱和轴承腔中的压力过高,在滑油系统中有通大气的通风口。在空气通往机外之前,空气中的油滴被油气分离器分离出来。通过油气分离器,去除气泡、蒸汽,防止供油中断或破坏油膜,减少滑油 航空发动机滑油系统常见故障分析 张 椋 (上海工程技术大学,上海 201600) 摘 要:该文运用可靠性维修理论对飞机滑油系统故障进行分析和研究,并详细叙述了处理故障的方法。飞机滑油系统故障分析的内容是运用AMM(飞机维护手册)手册对飞机滑油系统的工作原理、结构、内部系统以及飞机滑油系统故障原因进行分析研究。关键词:航空发动机;滑油系统;故障分析中图分类号:TP18 文献标志码:A

航空发动机原理复习题

发动机原理部分 进气道 1.进气道的功用: 在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机; 2.涡轮发动机进气道功能 冲压恢复—尽可能多的恢复自由气流的总压并输入该压力到压气机。提供均匀的气流到压气机使压气机有效的工作.当压气机进口处的气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力 3.进气道类型: 亚音进气道:扩张型、收敛型;超音速:内压式、外压式、混合式 4.冲压比:进气道出口处的总压与远前方气流静压的比值∏i=P1*/P0*。 影响进气道冲压比的因素:流动损失、飞行速度、大气温度。 5.空气流量:单位时间流入进气道的空气质量称为空气流量。 影响因素:大气密度, 飞行速度、压气机的转速 压气机 6.压气机功用:对流过它的空气进行压缩,提高空气的压力。供给发动机工作时所需 要的压缩空气,也可以为坐舱增压、涡轮散热和其他发动机的起动提供压缩空气。7.压气机分类及其原理、特点和应用 (1)离心式压气机:空气在工作叶轮内沿远离叶轮旋转中心的方向流动. (2)轴流式压气机:空气在工作叶轮内基本沿发动机的轴线方向流动. (3)混合式压气机: 8.阻尼台和宽叶片功用 阻尼台:对于长叶片,为了避免发生危险的共振或颤振,在叶身中部带一个减振凸台。 宽弦叶片:大大改善叶片减振特性。与带减振凸台的窄弦风扇叶片比,具有流道面积大,喘振裕度宽,及效率高和减振性好的优点。 9.压气机喘振: 是气流沿压气机轴向发生的低频率、高振幅的气流振荡现象。 10.喘振的表现: 发动机声音由尖锐转为低沉,出现强烈机械振动. 压气机出口压力和流量大幅度波动,出现发动机熄火. 发动机进口处有明显的气流吞吐现象,并伴有放炮声. 11.造成喘振的原因 气流攻角过大,使气流在大多数叶片的叶背处发生分离。 燃烧室 12.燃烧室的功用及有几种基本类型 功用:用来将燃油中的化学能转变为热能,将压气机增压后的高压空气加热到涡轮前允许的温度,以便进入涡轮和排气装置内膨胀做功。 分类:单管(多个单管)、环管和环形三种基本类型 13.简述燃烧室的主要要求点火可靠、燃烧稳定、燃烧完全、燃烧室出口温度场符合要 求、压力损失小、尺寸小、重量轻、排气污染少 14.环形燃烧室的结构特点、优缺点 结构特点:火焰筒和壳体都是同心环形结构,无需联焰管 优点:与压气机配合获得最佳的气动设计,压力损失最小;空间利用率最高,迎风面积最小;可得到均匀的出口周向温度场;无需联焰管,点火时容易传焰。 缺点:调试时需要大型气源; 采用单个燃油喷嘴,燃油—空气匹配不够好; 火焰筒刚性差;

发动机润滑系统保养的误区浅析

发动机润滑系统保养的误区浅析 【摘要】发动机润滑系统中机油保养是车辆发动机日常维护保养的重要项目之一,这将直接关系到车辆的正常工作情况,了解机油保养中的相关内容,才能消除机油保养中经常出现的误区,解决日常机油保养中出现的常见问题,真正起到对车辆维护保养的作用。 【关键词】机油保养误区机油消耗量粘度 目前,车辆数量快速增加,车辆的维护和维修已经成为了道路安全中的重中之重的任务,机油维护保养是发动机润滑系统维护保养重要内容之一,维护的好坏,对发动机将产生直接的影响。但是,目前对机油的维护内容存在比较多的误区,维护不当,将造成适得其反的后果。 1 分析发动机机油误区的表象及正确处置方法 (1)忽略日常检查发动机机油任务。驾驶员应该养成及时检查车辆状况的习惯。车辆的保养周期的制定是根据汽车的正常行驶情况制定的。对于使用条件比较恶劣的车辆,有些工作必须在两次保养周期之间进行。例如出租车,相对于普通车辆,怠速时间长、频繁停/启动、低速运转,更容易造成机油消耗的增加,所以应注意及时检查与添加。(2)机油少了就认为是“烧机油”。汽车发动机机油的适度消耗是正常而且不可避免的。发动机机油具有润滑密封、冷却、清洗、防锈保护等四大作用,只要发动机运转就会有机油消耗,正常的机油消耗是维持发动机运转所必需的,不会对发动机造成危害。驾驶员必须经常检查发动机油液面高度,观察注意机油压力、液位报警灯情况。如果发动机机油液面高度低于规定值,应及时添加机油。最长每1000公里检查一次机油液位,如果条件允许最好在每次加油时进行检查。(3)发动机机油加注的越多越好。如果机油加得太多,发动机曲轴的工作阻力就会增大,这样,不仅增加发动机的内部功率损失,还会造成燃烧室残碳增多。所以,机油量应控制在机油尺的上、下刻线之间为好。(4)机油越粘越好,颜色越深越好。有人误认为机油越粘越好,甚至判断一种机油油质好坏也仅以粘度代替,用手捻一捻或用力摇摇、看看、听听。还有一种对机油粘度的误区,那就是机油颜色越深,就认为粘度越大,就认为是好油;机油颜色越浅就认为是机油粘度小,甚至认为油的质量差。这实际是一种视觉上的错觉。误认、误用机油的现象更为普遍。其实对于特定的某一辆车,一定有其适用粘度级别及质量级别的机油,并非每台车都适用高粘度油。对于老旧汽车,零部件都有一定程度的磨损,摩擦间隙较大。高粘度油有利于加强其密封性。但对于大部分车辆,考虑节能及排放方面,倾向于选用低粘度油。与低粘度机油相比,高粘度油流动性较差,启动阻力大,油耗大;高粘度油在启动瞬间比低粘度油难到达摩擦部位,对车辆冷启动的伤害大一些;高粘度油低温启动性差,尤其在冬天,车辆难以启动。(5)一贯遵循车辆的使用手册,忽视机油压力观测,造成延误发动机机油保养。遵循使用手册是应该的,但要根据车辆的实际情况,进行正确的机油保养,定期更换,尤其在磨合期内尤为重要。机油压力的大小,取决于机油的温度、粘度、机油泵的供油能力等,从仪表盘或压力信号指示灯显示而获得。

某型航空发动机滑油系统故障分析

某型航空发动机滑油系统故障分析 发表时间:2018-10-30T11:19:25.287Z 来源:《防护工程》2018年第17期作者:罗崴[导读] 某型航空发动机滑油系统主要功能是对发动机进行润滑和散热,保证发动机的正常工作。 中国航发哈尔滨东安发动机有限公司黑龙江哈尔滨 150066 摘要:某型航空发动机滑油系统主要功能是对发动机进行润滑和散热,保证发动机的正常工作。某型号发动机使用过程中,滑油系统的故障,是比较常见的。本文介绍了某型号发动机滑油系统的组成、结构及工作原理,分析常见故障,并从原理上进行分析。 关键词:航空发动机滑油系统故障处理方法 1 引言 航空发动机空中飞行时滑油消耗量大故障近年来在外场屡有发生,对飞行安全的影响较为严重。这类故障表现的特点往往有:(1)地面试车时,发动机滑油消耗量正常,滑油无外漏现象;(2)飞行时滑油消耗量大,尤其是连续飞行时;(3)飞行后,发动机下部蒙皮有较多滑油痕迹。本文简要的介绍了该型发动机滑油系统,总结了滑油系统常见故障发生机理,分析了其原因,并给出了排故方案。 2 发动机滑油系统 该型发动机滑油系统为封闭式反向循环系统,主要作用是向发动机主轴轴承、接触式密封装置、中央传动齿轮、附件传动机匣的齿轮、轴承提供用于润滑及冷却的滑油,从而保证其正常工作。 2.1 航空发动机附件封严装置和漏油放油系统结构特点 对航空发动机附件机匣而言,其附件转接座有两种结构(见图1),一种带一道封严装置,如主泵转接座,加力泵转接座;一种不带封严装置,如左右液压泵转接座,离心增压泵转接座。对飞机和发动机附件而言,其传动腔安装座也有两种结构,一种带一道封严装置,如主泵和加力泵安装座。当附件安装到附件机匣上后,不论对哪种结构的附件和附件机匣转接座,附件机匣内腔和附件内腔之间就都存在两道封严装置,一是用来封严燃油外漏,二是用来封严滑油外漏。这两道封严装置之间形成一个空腔,再通过漏油管连接到漏放油系统的前漏油收集器。发动机漏油放油系统的一个作用就是排出发动机附件的密封装置渗漏的燃油、滑油和液压油。当发动机工作时,从附件机匣一侧封严装置泄漏出来的滑油和从附件一侧封严装置泄漏出来的燃油(或液压油)进入两道封严装置之间的空腔内,再通过漏油管进入前漏油收集器,最后由P2空气引射至机外。如果这些封严装置中的某一道存在缺陷,当发动机工作时,就可能会造成滑油消耗量大故障。 2.2 滑油系统工作原理 发动机滑油系统由四大子系统组成,分别是供油系统、回油系统、通气系统、密封装置增压系统。 (1)供油系统。本系统的作用是将滑油增压并提供给发动机,对轴承、齿轮等进行冷却和润滑。供油系统的组成附件为:滑油箱、增压泵、主燃滑油散热器、供油滤、转换活门、加力燃滑油散热器、单向活门及各喷嘴。当发动机未接通加力时,滑油供油流路是:滑油箱→增压泵→主燃滑油散热器→供油滤→转换活门→单向活门→各喷嘴→润滑部位。当发动机接通加力时,滑油供油流路是:滑油箱→增压泵→主燃滑油散热器→供油滤→转换活门→加力燃滑油散热器→单向活门→各喷嘴→润滑部位。 (2)回油系统。本系统的作用是将润滑发动机各部件后的滑油抽回到油箱中,并分离油中的空气,以便循环使用。回油系统的组成为:3个主轴承腔、飞机附件机匣、发动机附件机匣、四级回油泵、飞机附件机匣回油泵、金属屑末信号器、动压式油气分离器、滑油箱。滑油回油流路是:3个主轴承腔、发动机附件机匣、飞机附件机匣→四级回油泵、飞机附件机匣回油泵→金属屑末信号器→动压式油气分离器→滑油箱。 (3)通气系统。本系统的作用是将发动机各密封漏入滑油系统的空气在与滑油分离之后排出发动机。通气系统的组成为:各轴承腔、离心通风器、前通风器、后通风器、滑油箱、油气分离器(在滑油箱中)、通风管组件(在滑油箱中)、高空活门。滑油系统的通气系统有两种方式:一种是前轴承腔、发动机附件机匣、飞机附件机匣及滑油箱的空气管路相连通,从一支点密封装置漏入前轴承腔的空气及中、后轴承腔回油泵抽回的空气经发动机附件机匣内的离心通风器和高空活门排入大气;另一种通气方式是采用轴心通风,即经密封装置漏入中、后轴承腔的空气由低压涡轮轴内的前后轴心通风器从低压涡轮轴轴心排入发动机尾锥后的加力燃烧室。 (4)密封装置增压系统。本系统的作用是对发动机各轴承腔进行密封及各密封装置外增压。密封增压系统的组成为:No.1圆周石墨密封、No.2双联圆周石墨密封、No.3圆周石墨密封、No.4篦齿密封、No.5圆周石墨密封及后盖。前轴承腔No.1轴承后采用一道石墨密封,中轴承腔No.2轴承前采用双联石墨密封,No.3轴承后采用一道石墨密封。后轴承腔No.4轴承前为篦齿密封,No.5轴承前为石墨密封,后通风器与后盖间采用篦齿密封。前轴承腔密封外增压采用风扇后的空气,中轴承腔密封外增压采用高压三级后空气。后轴承腔密封外增压采用高压二级后空气。 3 常见故障浅析 该型发动机使用过程中滑油系统主要有三类故障,分别为滑油压力不合格、滑油温度不合格和滑油消耗量大,以下主要针对三种情况从原理上进行简单的分析,供对从事发动机使用维护的同仁有所借鉴。 3.1 滑油压力不合格 该型发动机使用过程中,滑油压力常出现压力不合格。从滑油系统原理可以知道,滑油压力不正常,问题出现在供油系统上。再看看供油系统,有两个可能造成滑油压力低。第一种是滑油箱滑油少供应不足,但是开车前必须保证滑油箱油位不低于允许最低值,除非漏油,否则不可能造成滑油箱油量少。 3.2 滑油温度不合格 从发动机滑油系统原理知道,滑油系统温度主要有前腔、中腔、后腔和散热器能够影响滑油温度。当出现某腔滑油温度高,可能是轴承齿轮啮合的阻力大,摩擦产生的热量多而造成温度升高,可以通过增加滑油压力来增加某腔的供油和加大某腔的回油能力来达到加速循环降低温度。如果某腔温度还高,可能是燃滑油散热器芯体损坏或脏污造成阻力过大,导致一部分燃油或滑油从旁路活门流过,造成滑油得不到充分冷却。

发动机润滑系统清洗安全操作规程正式样本

文件编号:TP-AR-L8918 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 发动机润滑系统清洗安全操作规程正式样本

发动机润滑系统清洗安全操作规程 正式样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、清洗前检查(润滑系统清洗必须在更换新机 油前操作) 1、拔出机油尺检查机油是否变质(含水)非常 规状态;是否过量消耗。 2、起动发动机检查仪表中的机油压力灯是否点 亮。 3、运转发动机检查是否有异常响声。 4、检查发动机是否漏油。 备注:发现以上问题均需要门店技术人员确定, 此车适合进行润滑系统清洗以及接下来的更换机油作

业?才可以进行换油作业,并且要求在涉及以上4种现象的车辆施工单上文字标注。(以上四种情进行发动机润滑系统清洗后产生风险由门店自行承担) 二、操作工艺规程 1、清洁发动机表面相关部位,旋开发动机机油盖,加注机油润滑系统清洗剂,旋紧机油加注口。 2、发动车辆,怠速运转10-15分钟(实际清洗时间根据使用产品说明具体设定) 备注:以下操作请根据《更换机油机滤门店执行操作流程-L-2016-05-01》 三、常见问题及操作注意事项 1、建议使用机油润滑系统清洗时,发动机在正常工作温度状态下效果最佳。 2、进行润滑系统清洗后排放旧机油必须确定全部放空,(建议旧机油排放口不再滴答)

航空发动机滑油系统1实验 -实验报告 (自动保存的)

BASICS ON AIRBREATHING ENGINES

Figure1 2D engineering drawing Figure2 2D engineering drawing

Figure3 3D engine view This engine is a twin-spool single-stage centrifugal high-bypass turbofan engine. Reasons: There are two shafts: HP and LP shaft; The HP compressor is centrifugal and only one compressor; There is two gas streams and the ratio of mass flow is high(>7.4 at design point); There is a fan in front of the engine. 3) What are the three operating phases that will be founded in any type of propulsion? What are the mechanic parts that will be used for the realization of these three phases? Provide a schematic of these three phases and the mechanics parts associated. Answers : The three operating phases in any type of propulsion is: air compress, fuel combust, gas expansion. The mechanical parts for these phases are: compressor, combustion chamber, turbines.

浅谈维护保养发动机润滑系统.

浅谈维护保养发动机润滑系统 如果不注意保养发动机润滑系统,就会给机器造成意外损害。机油量不足,供油不好便会造成润滑不好,机件磨损加快,严重时会烧损曲轴、连杆轴承和活塞。长期不更换机油和滤清器,机油太脏、油池内的机油含杂质太多,便会在机油集滤网上堆积,使机油不能顺利进行循环,同样会造成严重后果,甚至可能因此使发动机报废。 1.定期检查润滑油液面高度 发动机机油消耗属正常现象,汽车正常行驶机油消耗为1.0L/1000km。因此必须定期检查机油液面,最好是在每次加油时检查。 发动机润滑油液面高度应经常进行检查。检查时,车辆应停放在平地上。待发动机停止运转后数分钟,润滑油全部流回油底壳,拔出量油尺,擦净油尺上的油迹后,将油尺重新插入油底壳,再拔出量油尺,油面应在最高和最低之间。必须注意的是发动机工作之时检查油面高度是不准确的。因为发动机的振动必将使得油底壳内发生油面的波动和飞溅。因此油面高度的检查是在发动机不工作时。 有些驾驶员常存在这样的心理,为了使发动机润滑得更好些,认为多加润滑油总比少加好些。因此,往往不按规定办事,所加润滑油超过机油尺上的标志。其实这是有害的。因为,油加得太多了,会增加曲轴转动的阻力,降低发动机功率,使大量润滑油窜入燃烧室烧掉,造成排气冒蓝烟,润滑油的消耗量增加。同时,使燃烧室与气缸内积碳增多,增大了活塞环与气缸的磨损,降低了发动机功率。所以加油前、后应用机油尺测量,使润滑油既不过多,也不过少,一般以保持略低于油尺上刻度线为宜。 但润滑油油面过低也不好,当低于机油泵集滤器滤网时,则将有空气开始进入机油泵中,造成机油泵的泵油压力降低,从而导致各部分相对运动零件表面加速磨损及过热、甚至引起烧坏轴瓦等事故。 2.定期监测润滑油的质里

(完整版)航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。 A.技术难度大 B.研制周期长 C.费用高 D.费用低 正确答案:D 试题解析:发动机研制开发耗费昂贵。 2.航空发动机设计要求包括()。 A.推重比低 B.耗油率高 C.维修性好 D.可操纵性差 正确答案:C 试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。 3.下列哪种航空发动机不属于燃气涡轮发动机()。 A.活塞发动机 B.涡喷发动机 C.涡扇发动机 D.涡桨发动机 正确答案:A 试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。 4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。 A.进气道 B.涡轮 C.尾喷管 D.起落架 正确答案:B 试题解析:压气机、燃烧室和涡轮并称为核心机。 5.活塞发动机工作行程不包括()。 A.进气行程 B.压缩行程 C.膨胀行程 D.往返行程 正确答案:D 试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。 6.燃气涡轮发动机的主要参数不包括下列哪项()。 A.推力 B.推重比 C.耗油率 D.造价 正确答案:D 试题解析:造价不是发动机性能参数。 7.对于现代涡扇发动机,常用()代表发动机推力。 A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比 C.高压涡轮出口总压与低压涡轮出口总压之比 D.低压涡轮出口总压与低压涡轮进口总压之比 正确答案:A 试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。 8.发动机的推进效率是()。 A.单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比。 B.发动机的推力与动能之比。 C.发动机推进功率与单位时间流过发动机空气的动能增量之比。 D.推进功率与单位时间内发动机加热量之比。 正确答案:C 试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。 9.航空燃气涡轮发动机是将()。 A.动能转变为热能的装置 B.热能转变为机械能的装置 C.动能转变为机械能的装置 D.势能转变为热能的装置 正确答案:B 试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。 10.航空燃气涡轮喷气发动机经济性的指标是()。 A.单位推力 B.燃油消耗率 C.涡轮前燃气总温 D.喷气速度 正确答案:B 试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。 11.气流马赫数()时,为超音速流动。 A.小于1 B.大于0 C.大于1 D.不等于1 正确答案:C 试题解析:气流马赫数大于1时,为超音速流动。 12.燃气涡轮喷气发动机产生推力的依据是()。 A.牛顿第二定律和牛顿第三定律 B.热力学第一定律和热力学第二定律 C.牛顿第一定律和付立叶定律 D.道尔顿定律和玻尔兹曼定律 正确答案:A 试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。 13.燃气涡轮喷气发动机出口处的静温一定()大气温度。 A.低于 B.等于 C.高于

相关文档
最新文档