单片机步进电机控制系统外文文献翻译

单片机步进电机控制系统外文文献翻译
单片机步进电机控制系统外文文献翻译

科学仪器评论80,085104(2009)

简单紧凑的大步长线性压电步进电机

Qi Wang1 and Qingyou Lu1,2,a)

1 合肥微物质科学国家实验室,中国科学技术大学,安徽合肥230026,中华人民共和国

2强磁场实验室,中国科学院,安徽合肥230031,中华人民共和国的中国(2009.6.11接收;2009.7.16通过;2009.8.14网络出版)

我们提出一篇关于新型压电步进电机的文章,它具有高密度,刚性,简单,和任意方向可操作性的特点。虽然测试在室温下进行,但是由于宽松的操作条件和大步长,该电机也能在低温下工作。电机由一个压电扫描器管来运行,它的轴向几乎被切成两半,通过轴的弹簧部分夹持一个空心轴内部两端。双驱动电压仅使压力管的两部分在一个方向上变形,且能反向移动轴承以恢复原状,反之亦然。?美国物理研究所

[工业部: 10.1063/1.3197381]

一.简介

扫描探针显微镜(SPM)在一些有重要类型的原子甚至是亚原子研究的纳米技术领域是一个功能强大的工具。显微镜的一个关键组成部分,就是它那个能在纳米范围内粗略接近被测物的末端或者样品的定位器,这多半需要一个压电步进电机。1-11压电电动机在其他领域也有重要应用,例如显微镜在现代光学12,细胞或者DNA控制中的定位13。

到现在为止,在尺蠖3,14-19、甲虫类生物5-7,10,20-22、剪切压电步进电机2,8,9,11,23,24,惯性滑块4,25-28等文献中找到了各种各样的压电电动机。然而,他们都有着严重的缺点。对于前三种而言,每一种都需要三个或者更多的电压驱动才能被操作,这使得电机的结构和控制都变得太过复杂。在小领域(极端环境条件)或者微信号测量等方面,他们的可靠性和应用程度成为了一个很大的问题。惯性滑块虽然简单,但是特性不够硬(容易产生振动,从而降低了原子图像的品质),并且无法产生足够的推动力。

在这片文章中,我们阐述了一个不具有以上限制的压电电动机。电机由一个压电扫描器管(PST)来运行,它的轴向几乎被切成两半,通过轴上的弹簧部分夹持一个空心管(HS)内部两端。双驱动电压仅使压力管的两部分在一个方向上变形,且能反向移动轴承以恢复原状,反之亦然。其紧凑,简单,刚度,和大步长的特性使其在小空间(极端条件下)和低温应用中非常有用。

a)作者的联系方式如下。电话:86-551-360-0247。电子邮箱:qxl@https://www.360docs.net/doc/9c17121197.html,。

二.设计原理

图1为我们设计的原理图。图2为实物图。两个1.5mm厚的蓝色环粘(采用了来自环氧树脂技术的环氧树脂)在了7.9mm内径、10.2mm外径的压电扫描管(压电扫描管物理模型130.24,长30mm,外径10mm,壁厚0.5mm,有±200V的最大工作电压)的整个外环边缘处。在压电扫描管的外径蓝色环上切两个相对的切口,长度从一段的蓝色环到另一端的蓝色环,总长大概占到整个压电扫描管的92%的长度。为被切到的蓝色环是粘在基环上的,另外一个蓝色环被切成了两半,它被称

作半夹持环(夹持一个可转动的空心管)。没对没有被切割的相邻电极用导线连在了一起,形成两个半圆柱形电极,任意一个称为电极1(E1),为了方便,把另一个称为电极2(E2)。由E1和E2控制的压电扫描管的两部分分别简称为P1,P2。

电机可移动部分是一个钛合金空心管,它被插入到压电扫描管的内部,如图1(a)所示。我们还研究过圆形和方形的空心管,如图1(b)所示。对于圆形空心管而言(长45mm,内径5.8mm,外径7.8mm,穿过蓝色环到达压电扫描管的边缘并形成一个0.05mm的间隙),导线从与他垂直的平面的一段管过轴到另一端。两个切割线不会穿过整个空心管,会在每端留下0.8mm的未切割部分。空心管切除部分的那对空隙朝同一方向打开,并且和压电扫描管上分布的缝隙是同一方向。一个弹性很强的弹簧被牢固的固定在空心管的一端,推动空心管的打开,分别对夹持的半环施加N1和N2的推力,同时空心管另一端一个较弱的压缩弹簧让空心管给基换施加一个总的压力N br。N1,N2和N br在上述较强和较弱的压缩弹簧上能大致平衡。因此,只要两者的摩擦系数相等,那么施加在空心管的最大静摩擦力会因为这三个压力的大致相等而抵消(方向可能与下面讨论的相反)。

图1(a)我们的压电电机的结构(b)两种空心管的研究

这种在压电扫描管和空心管两段互相夹持的结构有一个很大的好处,就是这种结构很稳定(耐振动噪声),能在任意方向上安装。同时也应注意到,这种夹持结构是灵活的(大范围的力),这表明较大的温度变化不会引起夹持力显著的变化,且这三个最大静摩擦力任然可以保持平衡。

为了能控制电机,图3(a)所示的两个驱动电压D1和D2分别适用于压电扫描管的电极E1和E2(内部电极电压定为-200V),这能试相对的半圆形螺线管P1和P2变形,如下图所示。在第一个1/6周期(T1)内,P1和P2初始化状态。在T2内,P1保持不变,P2收缩。这会导致P2和空心管的自由端的电压下降,而不是基环和空心环指间电压的下滑,因为P2到空心管的最大静摩擦力小

于fr2小于P1到空心管与基环到空心管的最大静摩擦力之和,f r1+fr br(假设这些摩擦力远远小于

P1和P2的阻力F bl1和F bl2)。下一时间段,T3,P1和P2保持在之前的状态。这种纯粹的“等待”是为下一步的同步做好准备,这不是必须的,可以去掉来节省时间。在T4时间内,P1收缩,P2保持不变。这会导致P1和空心管的自由端电压下降(与T2时间的动作原因一样)。到现在为止,P1和P2都已经在基于基础环,没有移动空心管的情况下从扩张的状态变到收缩的状态。T5是另外一个等待时间,它也是可以去掉的。在最后一个1/6周期(T6)内,P1和P2同时扩张。这次仅在基础环和空心环之间的电压发生了下滑,因为fr br

图2 压电电机的实物图

除了上述讨论的原型空心管,我们也尝试了方形空心管(42mm长,5.6mm宽,壁厚0.7mm),它的壁从一段到另一端进行了线切割(切割长度35mm),与另一个切割线互相平行,组成了一个蛇形的结构,如图1(b)所示。切割平面之间的距离是0.8mm。这种设计比圆形的设计相对以下方面要好:(1)空心管在蓝环上的滑落就想溜冰鞋在冰上的滑行,允许更大的压力(更线性)却又不会有更多的阻力;(2)阻力值更精确,更稳定;(3)只需要一个压力弹簧,它在方形空心管的位置能满足最佳的工作条件fr1≈fr2≈fr br;(4)方形空心管和蓝色环指间的最小空隙容易调整扭曲(较小的空隙容易形成较大的运行距离)。

图3(a)趋势空心管朝压电扫描管方向扩张的两个驱动电压(b)趋势空心管朝压电扫描管相反方向扩张

的两个驱动电压

显然的,夹持力N1,N2和Nbr在空心管运动时不是一直存在的,因此需要限制它的运动范围。方形空心管的运动范围可以从下述方式获得。在图4中,弹簧产生的理Fs,LB和LC分别代表从弹簧到基环,从弹簧到半圆形夹持环的距离,由杠杆原理可知:

L B·F s=(N1+N2)·(L C+L B),L C·F s=N br·(L C+L B)。因为N1≈N2,我们要求N1+N2>N br以使空心管运动,这就意味着LB>LC这个条件应该满足。因为如果L C=0,空心管不能运动,那么运动范围最终由0

以解决的。

图4 图示可得运动范围大小

三.性能测试

我们在室温下,在移动方向(向上移动和向下移动)的极端条件下测试了电机的运行情况,包括它的步长,速度,工作频率[分别如图5(a)的原型空心管和图6(a)的方形空心管],工作电压[分别如图5(b)的原型空心管和图6(b)的方形空心管]。圆形空心管的压力值设为N1≈N2≈N br≈0.22N,这个值远远小于驱动压电P1和P2的阻力值(F bl1~F bl2~2N)。

最大步长是12.9μm,测试条件是:0.3Hz向下滑的驱动频率带动的圆形空心管。当移动方向变为向上的时候,步长因为重力变为11.7μm。如果是方形空心管,向下的步长和向上的步长分别是8.9μm和8.2μm,这个值更为合适,因为他的切割边缘与蓝色环相接。所有这些步长值都比其他类似大小的压电电机9,11,23的步长要大。电机的转速当然和驱动频率很接近。我们设置的最大驱动频率是50Hz,圆形空心管(向上运行对向下运行)和方形空心管(向上运行对向下运行)的转速分别是(22.27对24.62)(19.44对19.8)mm/min。

当驱动频率上升或者工作电压值下降的时候,步长的下降情况如图5和图6所示。虽然我们从圆形空心管中获得了较大的步长,但是我们更倾向于使用方形空心管,因为它的优点限制更少。例如,方形空心管的运行范围是9mm(理论上),而圆形空心管的运行范围是3.3mm(比方形的在理论上少了6.6mm)。方形空心管电机的运行曲线如图6所示,比圆形空心管电机的曲线更平滑更稳定。

虽然测试是在室温条件下进行的,但是电机在固化氮的温度下工作也有很大潜力,原因有两个:大步长的特性可以应对热量下降带来的问题,保持运行的稳定;(2)它的弹簧夹持结构可以让压力弹簧(~5mm长,劲度系数大约是286N/m)在从室温到固化氮的很大的温度范围变化下仅有微米级的下滑,确保必要的摩擦力关系的成立,|fr1|≈|fr2|≈|fr br|,这种变化对于空心管和蓝色环之间的压力值的影响可以忽略不计。

方形空心管可以承受磨损和撕裂的问题,因为它的四个边缘可以被蓝色环固定。为了测试它的耐久度,我们在±200V和50Hz的驱动电压下超过一千次的3mm的替换条件下操作电机,电机任然能正常工作。磨损不严重。当然,空心管外部可以加上耐磨金属材料进行更好的保护(如果需要的话)。

200V)(b)最大工作电压(频率=20Hz)

图6 用圆形空心管测试的电机步长(左侧垂直轴)和速度(右侧垂直轴)(a)频率(最大工作电压=±

200V)(b)最大工作电压(频率=20Hz)

四.结束语

我们呈现了一个强大的线性压电电动机,它拥有其他压电电动机不能同时具有的几个重要特性,

包括:大步长,小尺寸,刚性,结构简单,操作方便,温度范围大,易形成不精确的加工公差等。耐久度测试结果非常好。在建设一个现代化的扫描探针显微镜中,所有这些性能都是非常需要的。致谢

这项工程得到了中国国家自然科学基金10627403号,中国国家强磁场设施计划和中国科学院自然科学基金YZ200846的资助。

1 B. J. Albers, M. Liebmann, T. C. Schwendemann, M. Z. Baykara, M.Heyde, M. Salmeron,

E. I. Altman, and U. D. Schwarz, Rev. Sci. Instrum.79, 033704 (2008).

2Chr. Wittneven, R. Dombrowski, S. H. Pan, and R. Wiesendanger, Rev.Sci. Instrum. 68, 3806 (1997).

3 R. A. Wolkow, Rev. Sci. Instrum. 63, 4049 (1992).

4Y. Hou, J. Wang, and Q. Lu, Rev. Sci. Instrum. 79, 1137(2008).

5T. H. Chang, C. H. Yang, M. J. Yang, and J. B. Dottellis, Rev. Sci. Instrum.72, 2989 (2001).

6 J. H. Ferris, J. G. Kushmerick, J. A. Johnson, M. G. Yoshikawa Youngquist,R. B. Kessinger, H. F. Kingsbury, and P. S. Weisse, Rev. Sci. Instrum.69, 2691 (1998).

7 N. Pertaya, K.-F. Braun, and K.-H. Rieder, Rev. Sci. Instrum. 75, 2608(2004).

8T. Hanaguri, J. Phys.: Conf. Ser. 51, 514 (2006).

9 S. H. Pan, E. W. Hudson, and J. C. Davis, Rev. Sci. Instrum. 70, 1459(1999).

10 L. A. Silva, Rev. Sci. Instrum. 68, 1300 (1997).

11 A. K. Gupta and K.-W. Ng, Rev. Sci. Instrum. 72, 3552(2001).

12 J. Lee, J. Chae, C. K. Kim, H. Kim, S. Oh, and Y. Kuk, Rev. Sci. Instrum.76, 093701 (2005).

13 J. Kusch, A. Meyer, M. P. Snyder, and Y. Barral, Genes Dev. 16, 1627(2002).

14 Burleigh Instruments, Inc., U.S. Patent No. 3,902,084 (1975).

15P. E. Tenzer and R. Ben Mrad, IEEE/ASME Trans. Mechatron. 9, 427(2004).

16 J. Frank, G. H. Koopmann, W. Chen, and G. A. Lesieutre, Proc. SPIE3668, 717 (1999).

17 J. Ni and Z. Zhu, IEEE/ASME Trans. Mechatron. 5, 44(2000).

18 K. Duong and E. Garcia, Proc. SPIE 2443, 782 (1995).

19 J. E. Miesner and J. P. Teter, Proc. SPIE 2190, 520 (1994).

20 B. Koc, S. Cagatay, and K. Uchino, IEEE Trans. Ultrason. Ferroelectr.Freq. Control 49, 495 (2002).

21M. Bexell and S. Johansson, Sens. Actuators, A 75, 118 (1999).

22 J. Frohn, J. F. Wolf, K. Besocke, and M. Teske, Rev. Sci. Instrum. 60,1200 (1989). 23M. H. Arafa, O. J. Aldraihem, and A. M. Baz, IEEE Proceedings of theFifth International Symposium on Mechatronics and Its Applications,2008 (unpublished), pp.

24 S. H. Pan, International Patent Publication No. WO 93/19494 (1993).

25 R. Yoshida, Y. Okamoto, and H. Okada, J. Jpn. Soc. Precision. Eng. 68,536 (2002). 26W. Zesch, R. Buchi, A. Codourey, and R. Siegwart, Proc. SPIE 2593, 80(1995).

27 D.-S. Paik, K.-H. Yoo, C.-Y. Kang, B.-H. Cho, S. Nam, and S.-J. Yoon,J. Electroceram. 22, 346 (2009).

28 L. Howald, H. Rudin, and H.-J. Gijntherodt, Rev. Sci. Instrum. 63, 3909(1992)

科学仪器评论刊物版权归美国物理研究所(AIP)所有。使用出版物作为刊物素材必须经过AIP同意和/或AIP版权允许。更多信息,请见https://www.360docs.net/doc/9c17121197.html,/rsio/rsicr.jsp

REVIEW OF SCIENTIFIC INSTRUMENTS 80, 085104 2009

A simple, compact, and rigid piezoelectric step motor with large step size

Qi Wang1 and Qingyou Lu1,2,a

1Hefei National Laboratory for Physical Sciences at Microscale, University of Scienceand Technology of China, Hefei, Anhui 230026, People’s Republic of China

2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui

230031,People’s Republic of China

Received 11 June 2009; accepted 16 July 2009; published online 14 August 2009 We present a novel piezoelectric stepper motor featuring high compactness, rigidity, simplicity, andany direction operability. Although tested in room temperature, it is believed to work in lowtemperatures, owing to its loose operation conditions and large step size. The motor is implementedwith a piezoelectric scanner tube that is axially cut into almost two halves and clamp holds a hollow shaft inside at both ends via the spring parts of the shaft. Two driving voltages that singly deform the two halves of the piezotube in one direction and recover simultaneously will move the shaft inthe opposite direction, and vice versa. ? 2009 American Institute of Physics.

DOI: 10.1063/1.3197381

I. INTRODUCTION

The scanning probe microscope(SPM)is a powerful tool in the ?eld of nanotechnology with some important types having atomic or even subatomic resolutions. One key component of an SPM is its coarse approach positioner

which brings the tip and sample as close as in nanometer range and is many times a piezoelectric motor.1–11 The piezo-motor has nevertheless other important applications such as mirror positioning in modern optics12 and cell or DNA manipulations.13

Up to now, there are many kinds of piezomotors found in literatures including Inchworm,3,14–19 beetle type,5–7,10,20–22 shear piezostepper,2,8,9,11,23,24 and inertial slider,4,25–28 etc.However, they all have severe drawbacks. For the ?rst three

types, each needs three or more piezoelectric actuators to operate, which is too complicated in both structure and control. Their reliability and applications in small space(extreme condition environments)and weak signal measurements all become severe issues. Inertial slider is rather simple, but not very rigid(prone to vibration, thus downgrading the quality of atomic images)and unable to produce enough pushing force.

In this paper, we demonstrate a piezoelectric motor that does not have the above limitations. It is implemented by a single piezoelectric scanner tube(PST) that is axially and deeply cut into almost two halves and grips a hollow shaft

(HS)inside from both ends by the spring parts of the HS.Two driving voltages that separately deform the two halves of the PST in one direction and concurrently recover will move the HS one step in the opposite direction, and vice versa. Its compactness, simplicity, rigidity, and large step

size make it particularly useful in small space(extreme conditions)and low temperature

applications.

II. DESIGN AND PRINCIPLE

Figure 1 shows the schematic of our design. A photo of the actual setup is given in Fig. 2. Two sapphire rings of 1.5mm thick by 7.9 and 10.2 mm inner versus outer diameters are glued(with H74F epoxy from Epoxy Technology)onto

the ends of a four-quadrant PST(model PT130.24 of Physik Instrumente, 30 mm long by 10 mm outer diameter by 0.5mm wall thickness with ±200 V maximum operating voltages), respectively. A cut(with diamond saw)through two opposite boundaries of the quadrants is made from the sapphire ring at one end of the PST into about 92% of the tube length toward the other end. The uncut sapphire ring is the base ring, whereas the other is cut into two semi rings which are called clamping semi rings(will clamp hold a mobile HS).Each pair of the neighboring electrodes with no cut in between is wired together, resulting in two semicylindrical electrodes, one is arbitrarily called the ?rst electrode (E1)for convenience and the other, the second electrode(E2).The two halves of the PST that E1 and E2 control are abbreviated as P1 and P2, respectively.

The moving part of the motor is a titanium HS that is inserted into the PST as shown in Fig.1(a).We have studied a circular and a square HS as illustrated in Fig.1(b). For the circular one(length=45mm,inner diameter=5.8mm, and outer diameter= 7.8 mm which can pass through the sapphire rings at the PST ends with a small gap of 0.05 mm),a wire cut through the axis is made from each end toward the other end with the cutting planes perpendicular to each other.The two cuts do not go through the entire HS and a small length of 0.8 mm remains uncut at each end. The pair of the HS cut slits having the opening toward the same direction as that of the PST slits is arranged in the same plane with the PST slits. A stronger compression spring is secured in the HS at one end, pushing the HS to open wider and press against the clamping semi rings with forces N1 and N2,respectively,whereas a weaker compression spring in the HS at the other end presses the HS on the base ring with a total pressing force N br.The three pressing forces N1,N2,and N br are set roughly equal by the above stronger and weaker compression springs. Accordingly, the maximum static friction forces on the HS due to these three pressing forces are approximately equal in value(directions may be opposite as discussed below)if equal friction coef?cients are assumed.

FIG.1.(a)The structure of our piezomotor;(b)two kinds of hollow shafts

studied.

One big advantage of this mutual clamping between the PST and HS at both ends is that this structure is very ?rm(resistant to vibration noise)and can be installed in any direction. Also note that the clamping is elastic(long range forces),implying that large temperature variations will not change the clamping forces signi?cantly and the three maximum static frictions remains equal in value.

To operate the motor, two driving voltages D1 and D2 of Fig.3(a)type are applied to the electrodes E1 and E2 of the PST, respectively(the inner electrode voltage is ?xed at -200 V), which will deform the corresponding semitubular actuators P1 and P2 as follows. P1 and P2 are initialized to expansion states during the ?rst 1/6 period(T1).In T2,P2 shrinks while P1 stays unchanged. This results in a sliding between the free end of P2 and HS rather than a sliding between the base ring and HS, because the P2-to-HS maximum static friction fr2 is smaller than the sum of the P1-to-HS and base ring-to-HS maximum static frictions, fr1+

fr br(assuming these frictions are much smaller than the blocking forces F bl1 and F bl2 of P1 and P2). Next, in T3, P1and P2 both stay in the previous state. This purely “wait”state is a preparation for good synchrony in the next action,which is not necessary and can be dropped to save time. In T4, P1 shrinks while P2 stays unchanged. This induces a sliding between the

free end of P1 and HS(y the similar reason to the T2 action).Up to now, both P1 and P2 have

changed the states from expansion to contraction without moving the HS with reference to the base ring. T5 is another wait which is again discardable.In the last 1/6 period(T6),P1 and P2 both expand simultaneously. This time, the sliding happens only between the base ring and HS because fr br

Finally, P1 and P2 return to the initial states and the HS has moved one step. This sequence can be repeated to achieve a large travel range. The HS can also move in the opposite direction using the driving voltage given in Fig.3(b)and the principle is very similar.

FIG.2.The photo of our piezoelectric motor.

FIG. 3.(a)The two driving voltages which move the HS in the expansion

direction of the PST.(b)The two driving voltages which move the HS in the

contraction direction of the PST.

Apart from the circular HS described above, we have also tried a square HS (42 mm long by 5.6 mm wide, wall thickness is 0.7 mm),which is wire cut from each end to the other

end(cutting length= 35 mm)with the cutting planes parallel to each other, forming a serpentine structure as exhibited in Fig.1 (b). The distance between the cutting planes is 0.8 mm. This design is better than its circular counterpart in the following aspects:(1)the sliding of the HS on the sapphire rings is like ice skating shoes sliding on ice, allowing bigger pressing forces more rigid without increasing the frictions;(2)the fri ctions are better de?ned and more stable;(3)only one compression spring is needed, whose position in the square HS can be adjusted to meet the optimal working condition of fr1≈fr2≈fr br;(4)the smallest gap between the

square HS and the sapphire rings is easier to tweak by grinding(smaller gap will lead to a larger travel range).

FIG.4.The schematic diagram for deriving the range of motion.

Apparently, the clamping forces N1,N2,and N br do not remain constant when the HS moves, thus limiting its range of motion.The range of motion for the square HS can be derived as follows. Referring to Fig.4 in which F S is the force produced by the spring and L B and L C stand for the distances from the spring to the base ring and to the clamping semi rings, respectively, the lever law leads to:L B·F S=(N1+N2)·(L C+L B) and L C·F S=N br·(L C+L B).Because N1=N2 and we need N1+N2>N br for the HS to walk, this means that L B>L C should be satis?ed. Since the HS cannot move if L C=0, the range of motion is ?nally determined by0

III. PERFORMANCE TEST

We have tested the room temperature performance of the motor in two extreme cases of moving directions(upward and downward)by measuring its step size and speed as functions of the frequency [Figs. 5(a)and 6(a)for circular and square HS, respectively]and operating voltage[Figs.5(b)and 6(b)for circular and square HS, respectively]. The pressing forces were set to N1≈N2≈N br≈0.22N for circular HS which are much smaller than the blocking forces

(F bl1~F bl2~2N)of the driving piezo-P1 and P2.

The maximum step size is 12.9 m with the measurement conditions being: circular HS, downward stepping with0.3 Hz driving frequency. When the moving direction is changed to upward, the step size becomes 11.7 m due to gravity. In case of square HS, the downward and upward step sizes are 8.9 and 8.2m, respectively, which is more uniform because of its knife edge contacts with the sapphire rings. All these step sizes are rather large compared with other types of piezoelectric motors9,11,23with the similar size.The speed of motion is of course closely related to the driving frequency. The maximum driving frequency we set was50 Hz,

at which the speeds for the circular(upward versus downward) and square(upward versus downward)HS were:(22.27 versus 24.62)and(19.44 versus 19.98)mm/min.

When the driving frequency increases or if the magnitude of the operating voltage drops, the step size diminishes as seen in Figs. 5 and 6. Although we get larger step size from circular HS, we still prefer the square HS owing to its advantages listed earlier. For instance, the travel range using the square HS is 9 mm(as designed)compared with 3.3 mm for the circular HS(worse than the designed 6.6mm travel range).The performance curves of the square HS motor seen in Fig.6 are also smoother and more consistent than those (Fig.5)of the circular HS motor.

FIG.5.The step size(left vertical axis)nd speed(right vertical axis of the motor using the circular HS as functions of (a) frequency(maximum operating

voltage=±200 V) and (b) maximum operating voltage (frequency=20 Hz).

Although tested in room temperature, the motor has high potential to work in liquid helium temperature for two reasons:(1)its large step size can afford to pay for the thermal contraction still with remarkable step size remaining to produce a move;(2)its spring clamping structure validates the required friction relationship,|fr1|≈|fr2|≈|fr br|,in a very wide temperature range since a change from room temperature to liquid helium only shrinks the compression springs (~5 mm long, spring constant is about 286 N/m)by microns which do not considerably affect the pressing forces between the HS and the sapphire rings.

The square HS may suffer wear and tear issues as its four edges could be scratched by the sapphire rings. To test its durability, we operated the motor repeatedly with ±200 V and 50 Hz driving voltages for more than one thousand times with a displacement about 3 mm and the motor still worked well. The wear was not severe. Of course, the HS can be coated with wear resistant materials for better protection if necessary.

FIG.6.The step size(left vertical axis)nd speed(right vertical axis of the motor using the circular HS as functions of (a) frequency(maximum operating

voltage=±200 V) and (b) maximum operating voltage(frequency=20Hz).

IV. CONCLUSION

We have presented a powerful linear piezoelectric motor that owns several important features not simultaneously owned by other piezomotors,including: large step size,small size,very rigid,simple in structure and operation, very large temperature range, easy to make

and loose machining tolerance,etc. Its durability has also been tested,which is rather good.All these are highly desired in the construction of a modern SPM.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant No.10627403,the project of Chinese national high magnetic ?eld facilities,and Science Foundation of The Chinese Academy of Sciences under Grant No. YZ200846.

1B.J.Albers,M.Liebmann,T.C.Schwendemann,M.Z.Baykara,M.Heyde,M.Salmeron,E.I.Altma n,and U.D.Schwarz,Rev.Sci.Instrum.79,033704 2008.

2Chr.Wittneven,R.Dombrowski,S.H.Pan,and R.Wiesendanger,Rev.Sci.Instrum.68,3806 1997. 3R.A.Wolkow,Rev.Sci.Instrum.63,4049 1992.

4Y.Hou,J.Wang,and Q.Lu,Rev.Sci.Instrum.79,113707 2008.

5T.H.Chang,C.H.Yang,M.J.Yang,and J.B.Dottellis,Rev.Sci.Instrum.72,2989 2001 .

6J.H.Ferris,J.G.Kushmerick,J.A.Johnson,M.G.Yoshikawa Young quist,R.B.Kessinger,

H.F.Kingsbury,and P.S.Weisse,Rev.Sci.Instrum.69,2691 1998.

7N.Pertaya,K.-F.Braun,and K.-H.Rieder,Rev.Sci.Instrum.75,26082004.

8T.Hanaguri,J.Phys.:Conf.Ser.51,514 2006.

9S.H.Pan,E.W.Hudson,and J.C.Davis,Rev.Sci.Instrum.70,14591999.

10L.A.Silva,Rev.Sci.Instrum.68,1300 1997.

11A.K.Gupta and K.-W.Ng,Rev.Sci.Instrum.72,3552 2001.

12J.Lee,J.Chae,C.K.Kim,H.Kim,S.Oh,and Y.Kuk,Rev.Sci.Instrum.76,093701 2005.

13J.Kusch,A.Meyer,M.P.Snyder,and Y.Barral,Genes Dev.16,16272002.

14Burleigh Instruments,Inc.,U.S.Patent No.3,902,084 1975.

15P.E.Tenzer and R.Ben Mrad,IEEE/ASME Trans.Mechatron.9,4272004.

16J.Frank,G.H.Koopmann,W.Chen,and G.A.Lesieutre,Proc.SPIE3668,717 1999 .

17J.Ni and Z.Zhu,IEEE/ASME Trans.Mechatron.5,441 2000.

18K.Duong and E.Garcia,Proc.SPIE 2443,782 1995.

19J.E.Miesner and J.P.Teter,Proc.SPIE 2190,520 1994.

20B.Koc,S.Cagatay,and K.Uchino,IEEE Trans.Ultrason.Ferroelectr.Freq.Control49, 495 2002. 21M.Bexell and S.Johansson,Sens.Actuators,A 75,118 1999.

22J.Frohn,J.F.Wolf,K.Besocke,and M.Teske,Rev.Sci.Instrum.60,1200 1989.

23M.H.Arafa,O.J.Aldraihem,and A.M.Baz,IEEE Proceedings of the Fifth International Symposium on Mechatronics and Its Applications,2008 unpublished, pp.1–5.

24S.H.Pan,International Patent Publication No. WO 93/19494 1993.

25R.Yoshida,Y.Okamoto,and H.Okada,J.Jpn.Soc.Precision.Eng.68,536 2002.

26W.Zesch,R.Buchi,A.Codourey,and R.Siegwart,Proc.SPIE 2593,801995.

27D.-S.Paik,K.-H.Yoo,C.-Y.Kang,B.-H.Cho,S.Nam,and S.-J.Yoon,J.Electroceram.22, 346 2009.

28L.Howald,H.Rudin,and H.-J.Gijntherodt,Rev.Sci.Instrum.63,39091992.

步进电机及单片机英文文献及翻译

外文文献: Knowledge of the stepper motor What is a stepper motor: Stepper motor is a kind of electrical pulses into angular displacement of the implementing agency. Popular little lesson: When the driver receives a step pulse signal, it will drive a stepper motor to set the direction of rotation at a fixed angle (and the step angle). You can control the number of pulses to control the angular displacement, so as to achieve accurate positioning purposes; the same time you can control the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes. What kinds of stepper motor sub-: In three stepper motors: permanent magnet (PM), reactive (VR) and hybrid (HB) permanent magnet stepper usually two-phase, torque, and smaller, step angle of 7.5 degrees or the general 15 degrees; reaction step is generally three-phase, can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. 80 countries in Europe and America have been eliminated; hybrid stepper is a mix of permanent magnet and reactive advantages. It consists of two phases and the five-phase: two-phase step angle of 1.8 degrees while the general five-phase step angle of 0.72 degrees generally. The most widely used Stepper Motor. What is to keep the torque (HOLDING TORQUE) How much precision stepper motor? Whether the cumulative: The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.

AT89C51单片机外文翻译

AT89C51外文翻译 Description The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM). The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51? instruction-set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications. Features ? Compatible with MCS-51? Products ? 4K Bytes of In-System Reprogrammable Flash Memory – Endurance: 1,000 Write/Erase Cycles ? Fully Static Operation: 0 Hz to 24 MHz ? Three-Level Program Memory Lock ? 128 x 8-Bit Internal RAM ? 32 Programmable I/O Lines ? Two 16-Bit Timer/Counters ? Six Interrupt Sources ? Programmable Serial Channel ? Low Power Idle and Power Down Modes The AT89C51 provides the following standard features: 4K bytes of Flash,128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.

单片机方面毕业设计外文文献翻译

单片机方面毕业设计外文文献翻译

中文译文 单片机 单片机也被称为微控制器(Microcontroller Unit),常见英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是经过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL 的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,而且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。当前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和

使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至能够直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不但远超过PC机和其它计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。 单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可......用它来做一些控制电器一类不

单片机外文翻译

杭州电子科技大学信息工程学院毕业设计(论文)外文文献翻译 毕业设计(论文)题目用单片机实现的数字时钟电路设计文献综述题目单片机控制系统系电子工程 专业电子信息科学与技术 姓名郭筱楠 班级08091911 学号08919115 指导教师王维平

单片机控制系统 广义地说,微型计算机控制系统(单片机控制系统)是用于处理信息的,这种被用于处理的信息可以是电话交谈,也可以是仪器的读数或者是一个企业的帐户,但是各种情况下都涉及到相同的主要操作:信息的处理、信息的存储和信息的传递。在常规的电子设计中,这些操作都是以功能平台方式组合起来的,例如计数器,无论是电子计数器还是机械计数器,都要存储当前的数值,并且按要求将该数值增加1。一个系统例如采用计数器的电子钟之类的任一系统要使其存储和处理能力遍布整个系统,因为每个计数器都能存储和处理一些数字。 现如今,以微处理器为基础的系统从常规的处理方法中分离了出来,它将信息的处理,信息的存储和信息的传输三个功能分离形成不同的系统单元。这种主要将系统分成三个主要单元的分离方法是冯-诺依曼在20世纪40年代所设想出来的,并且是针对微计算机的设想。从此以后基本上所有制成的计算机都是用这种结构设计的,尽管他们包含着宽广的物理形式与物理结构,但从根本上来说他们均是具有相同基本设计的计算机。 在以微处理器为基础的系统中,处理是由以微处理器为基础的系统自身完成的。存储是利用存储器电路,而从系统中输入和输出的信息传输则是利用特定的输入/输出(I/O)电路。要在一个以微处理器为基础的时钟中找出执行具有计数功能的一个特殊的硬件组成部分是不可能的,因为时间存储在存储器中,而在固定的时间间隔下由微处理器控制增值。但是,规定系统运转过程的软件却规定了包含实现计数器计数功能的单元部分。由于系统几乎完全由软件所定义,所以对微处理器结构和其辅助电路这种看起来非常抽象的处理方法使其在应用时非常灵活。这种设计过程主要是软件工程,而且在生产软件时,就会遇到产生于常规工程中相似的构造和维护问题。 图1.1 微型计算机的三个组成部分 图1.1显示出了微型计算机中这三个单元在一个微处理器控制系统中是如何按照机器中的信息通信方式而联接起来的。该系统由微处理器控制,微处理器能够对其自身的存储器和输入/输出单元的信息传输进行管理。外部的连接部分与

at89c52单片机中英文资料对照外文翻译文献综述

at89c52单片机简介 中英文资料对照外文翻译文献综述 A T89C52 Single-chip microprocessor introduction Selection of Single-chip microprocessor 1. Development of Single-chip microprocessor The main component part of Single-chip microprocessor as a result of by such centralize to be living to obtain on the chip,In immediate future middle processor CPU。Storage RAM immediately﹑memoy read ROM﹑Interrupt system、Timer /'s counter along with I/O's rim electric circuit awaits the main microcomputer section,The lumping is living on the chip。Although the Single-chip microprocessor r is only a chip,Yet through makes up and the meritorous service be able to on sees,It had haveed the calculating machine system property,calling it for this reason act as Single-chip microprocessor r minisize calculating machine SCMS and abbreviate the Single-chip microprocessor。 1976Year the Inter corporation put out 8 MCS-48Set Single-chip microprocessor computer,After being living more than 20 years time in development that obtain continuously and wide-ranging application。1980Year that corporation put out high performance MCS -51Set Single-chip microprocessor。This type of Single-chip microprocessor meritorous service capacity、The addressing range wholly than early phase lift somewhat,Use also comparatively far more at the moment。1982Year that corporation put out the taller 16 Single-chip microprocessor MCS of performance once

51单片机外文文献

The Introduction of AT89C51 Description The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications. Function characteristic The AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, one 5 vector two-level interrupt architecture, a full duplex serial port, one-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset. Pin Description VCC:Supply voltage. GND:Ground.

单片机外文文献翻译

外文文献一单片机简介 单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 二、单片机的发展趋势 现在可以说单片机是百花齐放,百家争鸣的时期,世界上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,数不胜数,应有尽有,有与主流C51系列兼容的,也有不兼容的,但它们各具特色,互成互补,为单片机的应用提供广阔的天地。 纵观单片机的发展过程,可以预示单片机的发展趋势,大致有: 1.低功耗CMOS MCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。所以这种工艺将是今后一段时期单片机发展的主要途径。 2.微型单片化 现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样 单片机包含的单元电路就更多,功能就越强大。甚至单片机厂商还可以根据用户的要求量身定做,制造出具有. 自己特色的单片机芯片。此外,现在的产品普遍要求体积小、重量轻,这就要求单片机除了功能强和功耗低外,还要求其体积要小。现在的许多单片机都具有多种封装形式,其中SMD(表面封装)越来越受欢迎,使得由单片机构成的系统正朝微型化方向发展。 3.主流与多品种共存 现在虽然单片机的品种繁多,各具特色,但仍以80C51为核心的单片机占主流,兼容其结构和指令系统的有PHILIPS公司的产品,ATMEL公司的产品和中国台湾

MCS_51系列单片机中英文资料对照外文翻译文献综述

MCS-51系列单片机 中英文资料对照外文翻译文献综述 Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have, such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same.8051 daily representatives-51 serial one-chip computers. A one-chip computer system is made up of several following parts: (1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. (3) Procedure memory ROM/EPROM (4KB/8K B ), is used to preserve the

(完整word版)单片机外文文献翻译

中文资料原文 单片机 单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。

单片机外文翻译--STC89C52处理芯片

外文资料翻译 STC89C52 processi ng chip Prime features: With MCS - 51 SCM product compatibility, 8K bytes in the system programmable Flash memory, 1000 times CaXie cycle, the static operation: 0Hz ~ 33Hz, triple encryption program memory, 32 programmed I/O port, three 16 timer/counter, the eight uninterrupted dual-career UART serial passage, low power consumption, leisure and fall after fall electric power mode can be awakened and continuous watchdog timer and double-number poin ter, power ide ntifier. Efficacy: characteristics STC89C52 is one kind of low power consumption, high CMOS8 bit micro-co ntroller, 8K in system programmable Flash memory. Use high-de nsity nonv olatile storage tech no logy, and in dustrial 80C51 product in structi on and pin fully compatible. The Flash memory chips allows programs in the system, also suitable for programmable conventional programming. In a single chip, have clever 8 bits CPU and on li ne system programmable Flash, in crease STC89C52 for many embedded control system to provide high vigorous application and useful solutions. STC89C52 has following standard efficacy: 8k byte Flash RAM, 256 bytes, 32 I/O port, the watchdog timer, two, three pointer numerical 16 timer/counter, a 6 vector level 2 continuous structure, the serial port, working within crystals and horological circuit. In addition, 0Hz AT89S52 can drop to the static logic operation, support two software can choose power saving mode. Idle mode, the CPU to stop working, and allows the RAM, timer/c oun ters, serial, continu ous to work. Protectio n asa na patter n, RAM content is survival, vibrators frozen, SCM, until all the work under a continuous or hardware reset. 8-bit microcontrollers 8K bytes in the system programmable Flash AT89S52 devices. Mouth: P0 P0 mouth is a two-way ope n drain I/O. As export, each can drive eight TTL logic level. For P0 port to write "1", foot as the high impeda nee in put. When access to exter nal programs and nu merical memory, also known as

AT89C51单片机英文文献附带翻译

AT89C51的概况 一 AT89C51应用 单片机广泛应用于商业:诸如调制解调器,电动机控制系统,空调控制系统,汽车发动机和其他一些领域。这些单片机的高速处理速度和增强型外围设备集合使得它们适合于这种高速事件应用场合。然而,这些关键应用领域也要求这些单片机高度可靠。健壮的测试环境和用于验证这些无论在元部件层次还是系统级别的单片机的合适的工具环境保证了高可靠性和低市场风险。Intel 平台工程部门开发了一种面向对象的用于验证它的AT89C51 汽车单片机多线性测试环境。这种环境的目标不仅是为AT89C51 汽车单片机提供一种健壮测试环境,而且开发一种能够容易扩展并重复用来验证其他几种将来的单片机。开发的这种环境连接了AT89C51。本文讨论了这种测试环境的设计和原理,它的和各种硬件、软件环境部件的交互性,以及如何使用AT89C51。 1.1 介绍 8 位AT89C51 CHMOS 工艺单片机被设计用于处理高速计算和快速输入/输出。MCS51 单片机典型的应用是高速事件控制系统。商业应用包括调制解调器,电动机控制系统,打印机,影印机,空调控制系统,磁盘驱动器和医疗设备。汽车工业把MCS51 单片机用于发动机控制系统,悬挂系统和反锁制动系统。AT89C51 尤其很好适用于得益于它的处理速度和增强型片上外围功能集,诸如:汽车动力控制,车辆动态悬挂,反锁制动和稳定性控制应用。由于这些决定性应用,市场需要一种可靠的具有低干扰潜伏响应的费用-效能控制器,服务大量时间和事件驱动的在实时应用需要的集成外围的能力,具有在单一程序包中高出平均处理功率的中央处理器。拥有操作不可预测的设备的经济和法律风险是很高的。一旦进入市场,尤其任务决定性应用诸如自动驾驶仪或反锁制动系统,错误将是财力上所禁止的。重新设计的费用可以高达500K 美元,如果产品族享有同样内核或外围设计缺陷的话,费用会更高。另外,部件的替代品领域是极其昂贵的,因为设备要用来把模块典型地焊接成一个总体的价值比各个部件高几倍。为了缓和这些问题,在最坏的环境和电压条件下对这些单片机进行无论在部件级别还是系统级别上的综合测试是必需的。Intel Chandler 平台工程组提供了各种单片机和处理器的系统验证。这种系统的验证处理可以被分解为三个主要部分。系统的类型和应用需求决定了能够在设备上执行的测试类型。 1.2 AT89C51提供以下标准功能:

单片机的外文文献及中文翻译

SCM is an integrated circuit chip, is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM, read-only memory ROM, a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry, pulse width modulation circuit, analog multiplexer, A / D converter circuit) integrated into a silicon constitute a small and complete computer systems. SCM is also known as micro-controller (Microcontroller), because it is the first to be used in industrial control. Only a single chip by the CPU chip developed from a dedicated processor. The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which. The Z80 INTEL is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors will be parting ways. Are 8-bit microcontroller early or 4 bits. One of the most successful is the INTEL 8031, for a simple, reliable and good performance was a lot of praise. Then developed in 8031 out of MCS51 MCU Systems. SCM systems based on this system until now is still widely used. With the increased requirements of industrial control field, began a 16-bit microcontroller, but not ideal because the cost has not been very widely used. After 90 years with the great development of consumer electronics, microcontroller technology has been a huge increase. With INTEL i960 series, especially the later series of widely used ARM, 32-bit microcontroller quickly replace high-end 16-bit MCU status and enter the mainstream market. The traditional 8-bit microcontroller performance have been the rapid increase capacity increase compared to 80 the number of times. Currently, high-end 32-bit microcontroller clocked over 300MHz, the performance catching the mid-90s dedicated processor, while the average model prices fall to one U.S. dollar, the most high-end [1] model only 10 dollars. Modern SCM systems are no longer only in the development and use of bare metal environment, a large number of proprietary embedded operating system is widely used in the full range of SCM. The handheld computers and cell phones as the core processing of high-end microcontroller can even use a dedicated Windows and Linux operating systems. SCM is more suitable than the specific processor used in embedded systems, so it was up to the application. In fact the number of SCM is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will be integrated single chip. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse with a 1-2 in both the Department of SCM. Personal computer will have a large number of SCM in the work. General car with more than 40 microcontroller, a complex industrial control systems may even hundreds of single chip at the same time work! SCM is not only far exceeds the number of PC and other computing the sum, or even more than the number of human beings. Single chip, also known as single-chip microcontroller, it is not complete a certain logic chips, but to a computer system integrated into a chip. Equivalent to a

关于51单片机英文文献的英文翻译

利用单片机的定时器 6.1 前言 这一章包含一个描述的定时器系统微控制器,包括通用定时器,该定时器,和看门狗。 6.2 总体结构和功能,计时器系统 时间是必不可少的操作微控制器系统,可以生成信号的精确确定的期限,或外部事件计数。这原因,定时器子系统,是目前所有的微控制器的实现,和涵盖的范围广泛的功能包括: ?生成精确的时间间隔 ?测量时间的外部事件 ?计数外部事件。 多数微控制器提供专用定时器,或使用通用计时器实现以下功能: ?实时时钟 ?产生的脉冲宽度调制(脉宽调制)信号 ?看门狗检测程序失控情况。 虽然有很大的差异在不同的实现通用定时器在不同的微控制器,有许多相似在操作的原则和结构的定时器子系统。 图6.1显示了一个定时器系统总体框图,说明原则实施最单片机定时器。核心要素的定时器子系统是一个计数器,tcnt(8或16位在长度),这可能是读或写的软件(有时)。时钟tcnt 得到从系统时钟,除以一个可编程分频器,或外部时钟应用到一个单片机引脚。软件控制的计时器68使用6单片机定时器。

采用控制寄存器晶体管和信息方面的各种事件相关的计时器,可以读取状态寄存器tflg。几种工作模式是可能的计时器: 定时器溢出。在这种模式下,如果感兴趣的是当tcnt计数器达到它的最大数量和返回到零在下一个时钟脉冲。溢出信号这标志着这一事件是应用于中断控制逻辑(Ⅱ),这可能产生一个中断请求处理器。之间的时间间隔连续溢出控制通过修改输入时钟频率应用到tcnt,或以书面tcnt 一初始值的计算。 ?输入捕获。在这种经营模式,内容tcnt此刻的发生外部事件,定义边缘的一个输入信号,转移在捕获寄存器(民事),和一个中断请求可能会生成。由比较连续值捕获率,有可能确定之间的时间间隔的外部事件。 ?输出比较。在这种经营模式,内容tcnt不断比较了硬件的内容的光学字符识别(比较寄存器的输出)指数字比较器的比较。当一个寄存器的内容比赛中,一个中断请求可能会生成。或者,可以比较匹配通过编程改变现状的一个或多个输出线。 ?外部事件计数器。在这种经营模式,输入tcnt连接一个单片机输入线,和tcnt计数脉冲与外部事件。该软件是了解记录一些外部通过阅读tcnt事件。 6.3 特点鲜明的通用定时器HC 11 16位tcnt计数器HC 11可以依靠内部时钟,只有向上的。它可以读取软件,但不能被清除或书面。分频器是一个可编程的4位计数器,它将系统时钟的1,4,8,或16。有四个16位输出比较寄存器(光学字符识别),称为toc1,toc2,toc3,和toc4,三输入捕获寄存器(民事),称为tic1,tic2,和tic3,和一个额外的寄存器,可通过软件配置为五分之一 光学字符识别寄存器,笔名TOC五,或作为四分之一个输入捕获寄存器tic4。各种定时器功能相关的输入/输出线端口,如图所示在表6.1。 表6.1 替代功能的输入/输出线端口 1控制和状态寄存器的HC 11定时器虽然反tcnt,和分频器是独一无二的,在场的八民事/光学字符识别寄存器,各有不同的状态标志,相关的输入/输出线,随着可能产生不同的中断请求,

相关文档
最新文档