永磁直流电机故障诊断中电流信号分析与处理_刘曼兰

永磁直流电机故障诊断中电流信号分析与处理_刘曼兰
永磁直流电机故障诊断中电流信号分析与处理_刘曼兰

第37卷 第6期

2005年6月

 

哈 尔 滨 工 业 大 学 学 报

JOURNAL OF HARB I N I N STI T UTE OF TECHNOLOGY

 

Vol 137No 16June,2005

永磁直流电机故障诊断中电流信号分析与处理

刘曼兰

1,2

,呼向东2,崔淑梅

2

(1.哈尔滨工业大学机电工程学院,黑龙江哈尔滨150001,E 2mail:lan -p@sina .com;

2.哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001)

摘 要:在分析永磁直流电动机空载电枢电流特征的基础上,综合利用傅里叶分析、小波分析和数理统计等多种信号处理手段从永磁直流电机的启动电枢电流和稳态电枢电流信号中提取电机的故障特征并对其进行了故障机理分析.实验提取的故障特征与理论分析的一致性表明,永磁直流电机电枢电流中包含了稳态电流的平均值i av 、稳态电流标准差i std 、电流脉动频率f w 、起动电流峰值i m 、峰值点电流变化率k 等5个主要故障特征,将这5个量确立为故障诊断的特征参数是可行的.关键词:永磁电机;电流分析;信号处理;故障诊断中图分类号:TP307

文献标识码:A

文章编号:0367-6234(2005)06-0836-03

Curren t sgna l ana lysis and process used i n fault d i a gnosis of permanen t -magneti c DC m otor

L I U Man 2lan,HU Xiang 2dong,CU I Shu 2mei

(1.School of Mechanical and Electrical Engineering,Harbin I nstitute of Technol ogy,Harbin 150001,China,E 2mail:lan -p@sina .com;2.School of Electric Engineering and Aut omati on,Harbin I nstitute of Technol ogy,Harbin 150001,China )

Abstract:Fault features have been extracted fr om the ar mature current by several signals p r ocessing means in 2cluding Fourier analysis,wavelet analysis and statistical methods after analyzing the ar mature current charac 2teristics of the l ow po wer per manent -magnetic,and then the faults mechanis m was analyzed .The consistency bet w een the results of experi m entati on and the theoretical analysis shows that the main fault features are in 2cluded in the ar mature current described as the f oll owing:average static current i av ,standard deviati on i std ,the frequency of static current f w ,the peak value i m of starting current and the sl ope k of vicinal peak value point .So it is feasible t o take these five para meters above -menti oned as characteristic para meters f or failure diagnosis .

Key words:per manent -magnetic mot or;current analysis;signal p r ocessing;fault diagnosis

收稿日期:2004-06-10.

作者简介:刘曼兰(1971-),女,博士研究生;

崔淑梅(1964-),女,教授,博士生导师.

电机故障特征提取的常用方法中.直接观察和测量法[1]

多用于传统的电机故障诊断中,无法

满足现代电机生产厂家大批量生产的要求;参数

估计法[2]

的难点是需要建立电机的精确的动态模型,还需要通过该模型准确辨识出电机的电磁参数,导致各种故障之间的故障特征不明;基于信号处理方法[3,4]回避了抽取研究对象数学模型的难点,在故障诊断方法的应用日趋广泛.

大量故障电机的实验研究发现:小功率永磁直流电动机发生故障时,在其启动电流和稳

态电流中会有所呈现[5]

.本文从分析永磁直流

电动机电枢电流的特征入手[6]

,综合利用快速傅里叶分析(FFT )、小波分析和数理统计等多种信号处理手段从永磁直流电机的启动电枢电流和稳态电枢电流信号中提取出电机的故障特征,并运用该方法对实际电机进行了故障特征实验提取与理论分析.结果表明:本方法能够准确地提取小功率永磁直流电动机的生产线上几种典型故障的故障特征.

1 永磁直流电机电枢电流信号分析永磁直流电动机电枢电流的瞬态响应为

i a(t)=U

R a

e-t T M+1-e-t T M I

a

.

式中:U、i

a 、R

a

分别为电枢电压、电流、电阻;T

M

为电机的机电时间常数,且T

M

=JR a/C2(C为电机常数,J是电动机转子和同轴联接机构的转动

惯量);I

a

为永磁直流电动机电枢电流的稳态值,

空载时I

a

接近于零.本文研究永磁直流电动机的空载电枢电流,则上式可进一步简化为

i a(t)≈U

R

e-t T M.(1)

111 起动电流分析

由式(1)可知,起动电流下降的快慢与机电

时间常数T

M 有关,T

M

越大,电流下降越快.而T

M

又是由电机转动惯量J、电阻R和电机常数C所决定的.电机发生故障时,这些电磁参数必然会发生将在电机的起动电流中反映出来的变化.

另外,由于换向的存在,无论是在稳态还是动态,永磁直流电动机的电流都存在脉动.随着电机转速的提高,脉动的频率和幅度都随电机转速的提高而提高.当t=0时,起动电流近似为i

a

(0)≈U/R.如果选取接近于t=0的某一时刻,将该时

刻的电流近似认为i

m

≈U/R,比较该时刻的电流可近似知道电阻的变化.

由于起动电流按照指数规律快速下降,如果仅从起动电流的大小考虑,将很难提取出更多的故障特征.通过对多种故障电机的起动电流曲线观察可以发现,当电机发生故障时,起动电流下降速度往往发生不同程度的变化.由式(1)可得,电机起动过程峰值点附近电流变化速率约为

k=-(UC2)/(JR2).(2) 112 稳态电流信号分析

当电机发生故障时,一般情况下其稳态电流的直流分量大小要发生变化,这从稳态电流的均值上可以反映出来,稳态电流的均值可定义为

i av=1

N

∑N

k=0

i(k).

式中:N为采样点数.

当电机发生故障时,电机的转速也要发生变化,这从电流的脉动频率和脉动的幅度上体现出来.稳态电枢电流的脉动频率f

w

可通过FFT获得;电流的标准差体现了电流的幅值相对于均值的离散程度,也是电流信号纯波动(交流)分量的反映,因此,在很大程度上体现了电流的脉动幅度,稳态电流信号的标准差可定义为

i std=

1

N

∑N

k=0

(i(k)-i

av

)2.

因此,稳态电流的均值i

av

反映了电机电流的平均

大小,其标准差i

std

反映了电机电流脉动的程度,电流频谱峰值对应的频率反映了电流脉动的频率f w,电机起动过程电流的峰值和峰值点附近的斜

率分别反映了i

m

和电流变化速率k的大小.将这5个量确立为故障诊断的特征参数.

2 电流信号处理与故障特征实验提取与分析

以额定电压为18V,空载转速为20000r/ m in,最大功率为500W的小功率永磁直流电动机为实验对象,来具体说明如何利用傅里叶分析、小波分析和数理统计等多种信号处理手段从永磁直流电机的启动电枢电流和稳态电枢电流信号中提取出电机的故障特征.其具体方法如下:

1)将电源电压设置为18V,采集电机在该电压下的起动电枢电流和稳态电枢电流,然后对采集到的电流利用小波包进行消噪处理;

2)利用FFT求稳态电枢电流的脉动频率[7];

3)求得稳态电枢电流的均值i av和标准差i std;

4)采用db9小波,对起动电流进行9层小波分解,并对分解得到的第9层低频细节进行重构;

5)利用最小二乘法原理,对重构的低频小波系数进行二次多项式拟合;

6)求得拟合曲线的最大值i m;

7)对二次多项式求导,求t=0时的导数k值.

按照上述方法可得电机在正常状态下的电流信号处理波形图.其中,图1、2中的图(a)为稳态电流进行小波包消噪处理后的波形;图(b)为对小波包消噪处理后的稳态电流进行FFT变换后的波形;图(c)为起动电流进行小波包消噪处理后的波形;图(d)为对起动电流进行9层小波分解,并对分解得到的第9层低频细节进行重构后的波形;图(e)为利用最小二乘法原理,对重构的低频小波系数进行二次多项式拟合后的波形;图(f)为对二次多项式求导,求得t=0时的导数k的值.

仅以永磁直流电机最常见的电刷磨损故障为例,采用上述电流信号处理的方法与步骤来提取电机故障状态的特征,并对其与正常状态的波形进行对比和故障机理分析.图2为电刷故障时的电流信号处理波形图.

?

7

3

8

?

第6期刘曼兰,等:永磁直流电机故障诊断中电流信号分析与处理

图1 

电机正常状态的电流信号处理波形

图2 电刷故障时波形

与正常波形图对比可知,稳态电流的均值

减小,但脉动幅度和脉动频率却比正常情况下有所增加;起动电流的最大值略有下降,且稍微变得平缓.

机理分析:空载永磁直流电动机满足如下稳态电压平衡方程和转矩平衡方程:

U =iR +C

Ω,(3)C i =T f +C f Ω.

(4)式中:T f 、C f 分别为电机摩擦转矩和粘摩擦系数.

电刷的磨损和电刷与弹簧的压力减小,一方面会使得T f 减小,由式(4)可知:T f 减小会使得转速上升,转速上升会导致元件的运动电动势增加.由式(3)可知:元件的运动电动势增加会使得电枢电流减小.另一方面,电刷的磨损和电刷与弹簧的压力减小还使得电枢电阻增大,这也使得电枢电流

(下转第844页)

回复磁导率对吸合力矩的影响见图7.由图

7可知,回复磁导率越大,吸合力矩也越大.但与图3相比较可看出,永磁工作点的改变对永磁力矩的影响远大于永磁回复磁导率对吸合力矩的影响.因此,在实际工作中可不考虑永磁回复磁导率对吸合力矩的影响

.

3 结 论

1)极化磁系统永磁起始工作点越高,永磁力

矩越大,当起始工作点上移到某一临界点后,永磁

力矩增大的幅度变小,所以为了获得较大的永磁力矩(即零安匝的吸合力矩),应尽量减小永磁充磁时的外磁路磁阻,从而获得较高的起始工作点;同时,应采取必要措施减小外界干扰去磁磁场,防止永磁起始工作点的下移;

2)永磁回复磁导率变大,极化磁系统的永磁力矩、极化力矩、电磁力矩也变大,但在磁导率的变化范围内对其影响很小,因此,在实际的工作中

可不考虑永磁回复磁导率对吸合力矩的影响.

参考文献:

[1]K ARAS AWA K .Technol ogy in p lace for the m iniaturiza 2

ti on,enhance sensitivity of polarized relays [J ].I EE,1989,36:2-4.

[2]佟为明,翟国富.低压电器继电器及其控制系统

[M ].哈尔滨:哈尔滨工业大学出版社,1999.

[3]翟国富,梁慧敏,郭成花,等.极化磁系统永磁力矩特

性曲线形状的分析与研究[J ].电机工程学报,2002,

22(11):110-114.

(编辑 王小唯)

(上转第838页)

下降.当电机达到稳态时,有式(4)所示的转矩平衡方程.方程式左边电流略为减小,但方程式右边的干摩擦转矩下降明显,使得电机转速有所上升.电机转速上升,元件的运动电动势增加,使得电流脉动幅度和频率都增加.从电机起动过程的电流最大值的表达式(1)可以看出,当电枢电阻R 增大时,会使最大电流i m 降低.从起动过程峰值点附近的电流变化速率表达式(2)可以看出,当R 增大时,k 将减小,其下降程度有所减缓.

3 结 论

1)永磁直流电机的动、稳态电枢电流中包含

的主要电机故障特征参数主要有稳态电流的平均值、稳态电流标准差、电流脉动频率、起动电流峰值、峰值点电流变化率.

2)利用傅里叶分析、小波分析和数理统计等多种信号处理手段能较为准确地从电机电枢电流信号中提取小功率永磁直流电动机的故障特征.

参考文献:

[1] GI O VANN IB MASSI M O D A.Knowledge -based ap 2

p r oach t o instru ment fault detecti on and is olati on [J ].

I EEE Transacti ons on I nstru mentati on and Measure 2ment,1995,44(12):1009-1016.

[2] L I U Xiangqun,Zhang Hongyue,L iu Jun .Fault detec 2

ti on and diagnosis of per manent —magnetic DC mot or based on parameter esti m ati on and neural net w ork[J ].I EEE Transacti ons on I ndustrial Electr onics,2000,47(10):1021-1030.

[3] W E N F,W I L LETT P,DE B S .Signal p r ocessing and

fault detecti on with app licati on t o CH -46helicop ter data [A ].

I EEE Aer os pace Conference Pr oceedings

[C ].B ig Sky,MT,2000.15-26.

[4] 胡昌华.控制系统故障诊断和容错控制的分析和

设计[M ].北京:国防工业出版社,2000.

[5] CU I Shu 2mei,L I U M anlan,CHA I Fen,et a l .The pa 2

rameters and perf or mances test of DC mot or with no -l oading method[A ].The 3rd

I nternati onal Sy mposiu m

on I nstru mentati on Science and Technol ogy[C ].Xian:

[s .n .],2004.959-965.

[6] CU I Shu mei,WANG Yue,CHA I Fen,et a l .V irtual

test system of per manent -magnetic DC mot or [J ].Journal of Harbin I nstitute of Technol ogy,2003,10(2):13-21.

[7] 黄 进,黄建华.基于小波分析的电机转矩转速特

性测试[J ].中小型电机,2001,2:49-53.

(编辑 王小唯,刘 彤)

故障诊断技术发展现状

安全检测与故障诊断 题目:故障诊断技术发展现状 导师:秀琨 学生:典 学号:14114263

目录 1 引言 (3) 2 故障诊断的研究现状 (3) 1.1基于物理和化学分析的诊断方法 (3) 1.2基于信号处理的诊断方法对 (3) 1.3基于模型的诊断方法 (3) 1.4基于人工智能的诊断方法 (4) 2故障诊断研究存在的问题 (6) 2.1故障分辨率不高 (7) 2.2信息来源不充分 (7) 2.3自动获取知识能力差 (7) 2.4知识结合能力差 (7) 2.5对不确定知识的处理能力差 (7) 3发展方向 (8) 3.1多源信息的融合 (8) 3.2经验知识与原理知识紧密结合 (8) 3.3混合智能故障诊断技术研究 (9) 3.4基于物联网的远程协作诊断技术研究 (9) 4发展方向 (9)

1 引言 故障可以定义为系统至少有一个特性或参数偏离正常的围,难于完成系统预期功能的行为。故障诊断技术是一种通过监测设备的状态参数,发现设备的异常情况,分析设备的故障原因,并预测预报设备未来状态的技术,其宗旨是运用当代一切科技的新成就发现设备的隐患,以达到对设备事故防患于未然的目的,是控制领域的一个热点研究方向。它包括故障检测、故障分离和故障辨识。故障诊断能够定位故障并判断故障的类型及发生时刻,进一步分析后可确定故障的程度。故障检测与诊断技术涉及多个学科,包括信号处理、模式识别、人工智能、神经网络、计算机工程、现代控制理论和模糊数学等,并应用了多种新的理论和算法。 2 故障诊断的研究现状 1.1基于物理和化学分析的诊断方法 通过观察故障设备运行过程中的物理、化学状态来进行故障诊断,分析其声、光、气味及温度的变化,再与正常状态进行比较,凭借经验来判断设备是否故障。如对柴油机常见的诊断方法有油液分析法,运用铁谱、光谱等分析方法,分析油液中金属磨粒的大小、组成及含量来判断发动机磨损情况。对柴油机排出的尾气(包含有NOX,COX 等气体) 进行化学成分分析,即可判断出柴油机的工作状态。 1.2基于信号处理的诊断方法对 故障设备工作状态下的信号进行诊断,当超出一定的围即判断出现了故障。信号处理的对象主要包括时域、频域以及峰值等指标。运用相关分析、频域及小波分析等信号分析方法,提取方差、幅值和频率等特征值,从而检测出故障。如在发动机故障领域中常用的检测信号是振动信号和转速波动信号。如以现代检测技术、信号处理及模式识别为基础,在频域围,进行快速傅里叶变换分析等方法,描述故障特征的特征值,通过采集到的发动机振动信号,确定了试验测量位置,利用加速传感器、高速采集卡等采集了发动机的振动信号,并根据小波包技术,提取了发动机故障信号的特征值。该诊断方法的缺点在于只能对单个或者少数的振动部件进行分析和诊断。而发动机振动源很多,用这种方法有一定的局限性。 1.3基于模型的诊断方法 基于模型的诊断方法,是在建立诊断对象数学模型的基础上,根据模型获得的预测形态和所测量的形态之间的差异,计算出最小冲突集即为诊断系统的最小诊断。其中,最小诊断就是关于故障元件的假设,基于模型的诊断方法具有不依赖于被诊断系统的诊断实例和经验。将系统的模型和实际系统冗余运行,通过对比产生残差信号,可有效的剔除控制信号对

信号设备故障分析与处理

信号设备故障分析与处理 一、任务在安全的基础上提高运输效率。安全是铁路运输的生命线,是铁路管理水平、人员素质、设备质量、技术装备等的综合反映。作为铁路主要技术装备的铁路信号设备,在保证行车安全、提高运输效率、传递行车信息等方面起到了不可替代的作用。改革开放以来尤其是近几年,铁路部门在积极引进国外先进技术的同时,也自主研发了一大批新技术、新设备,铁路信号设备正在向数字化、网络化、综合化、智能化发展,促进了铁路的提速和扩能,推进了铁路的跨越式发展。 二、素质要求信号工作的好坏直接关系到人民生命财产的安全。信号设备一旦发生故障,将对铁路运输带来直接影响。因此,要处理好信号设备故障,必须要有高度的事业心、强烈的责任感和熟练的业务技能。当信号设备发生故障时,能应急处理,较快地判断出故障的大致范围,查找方法正确,处理方法得当,做到机智、沉着、果断、迅速、准确。要达到这些要求,必须刻苦钻研技术,熟悉设备性能、位置,熟悉电路,熟悉处理方法;必须有实事求是的科学态度。在处理信号设备故障时,既会有成功的经验,也会有失败的教训,

要学会及时总结正反两个方面的经验教训,逐步摸索和积累经验,找出规律,防止信号设备故障的重复发生。1.要熟悉管内设备的分布情况以及电源的配置,电缆走向、端子的使用规律等。2.要熟悉管内设备的原理、性能、规格及技术标准.3.要熟悉管内设备的电路图,跑通电路图、看懂配线图.4.要会正确使用各类工具仪表。5.要遵守处理故障时的有关规定,并按程序进行。6.要能熟练地运用各种查找故障的方法。 三、故障处理方法(一)信号设备故障的分类1、按故障的稳定性分(1)稳定型设备故障。设备故障发生后,设备故障状态下的电气特性保持稳定(电流、电压)。如轨道电路、道岔表示、信号机红灯点灯等。

故障诊断思考题答案介绍

Ps:特别鸣谢找答案的童鞋:顶哥、军哥、白总、渠子、愣公、小唐、553宿 舍、562宿舍、各位镁铝。 希望在以后的考试中学神们或者有资料的童鞋能够多多资源共享,为大家整理资料。共同度过大四的考试,不求高分,只求不挂。 过程装备检测与诊断思考题答案 1.故障诊断技术的基本体系? 2.定期维修优缺点(p6--p7) 1.机械故障诊断的特性?(p2--p4) 2.开展机械故障诊断技术的社会和经济意义?(p4--p6) 3.故障诊断技术的发展方向? 1.过程装备故障的主要分类? 2.常见的故障监测技术有哪些?(p13--p16)

3.浴盆曲线的特点是什么? 1常用设备故障状态的识别方法? 答:(1)信息比较诊断法(2)参数变化诊断法(3)模拟实验诊断法(4)函数诊断法(5)故障树分析诊断法(6)模糊诊断法(7)神经网络诊断法。 2故障树分析法是如何定义的? 答:故障树分析法简称FTA,它是以研究系统中最不希望发生的故障状态(结果)出发,按照一定的逻辑关系从总体到部件一层层地进行逐级细化,推理分析故障形成的原因,最终确定故障发生的最初基本原因、影响程度和发生概率。 3模糊诊断的具体过程是什么? 答:就是对故障征兆所给的数据,组成征兆向量A的隶属函数μA(B),用经验、统计或实验数据建立故障征兆和故障原因之间的模糊关系矩阵R,然后通过模糊关系矩阵方程和逻辑运算求得故障原因B。 4试定义能量信号、功率信号、时限和频限信号? 答:(1)在所讨论的区间(—∞,∞),若信号函数x(t)平方可积,则W为有限值,这种信号称为能量信号;(2)许多信号在区间(—∞,∞)内能量不是有限值,而平均功率P是不等于零的有限值,这种信号称为功率信号;(3)时域有限信号是在有限时间区间(t1,t2)内有定义,而在区间外恒等于零;频域有限信号是指信号经过傅里叶变换,在频域内占据一定带宽(f1,f2),在带宽外恒等于零。 5常见的故障监测技术 答:(1)故障信号监测诊断技术(2)声信号监测诊断技术(a声音监听法,b声谱分析法,c声强法)(3)温度信号监测诊断技术(4)润滑油的分析诊断技术(5)其他无损检测诊断技术。 6专家系统故障诊断方法 答:一、基于规则的诊断推理:包括正向推理、反向推理、和混合推理 二、基于模型的诊断推理 三、基于案例的诊断推理 四、不精确推理 7盆浴曲线的特点 浴缸曲线是指产品从投入到报废为止的整个寿命周期内,其可靠性的变化呈现一定的规律。如果取产品的失效率作为产品的可靠性特征值,它是以使用时间为横坐标,以失效率为纵坐标的一条曲线。因该曲线两头高,中间低,有些像浴缸,所以称为“浴缸曲线”。 浴缸曲线实践证明大多数设备的故障率是时间的函数,典型故障曲线称之为浴缸曲线,曲线的形状呈两头高,中间低,具有明显的阶段性,可划分为三个阶段:早期故障期,偶然故障期,严重故障期。

信号点灯电路及检测方法

信号点灯电路常见故障及其检测处理方法 信号机是铁路信号设备的重要组成部分之一,在运输生产工作中,它起着指挥列车和车列运行的重要作用,在铁路运输系统中,它为提高区间和车站通过能力及编解效率提供了强有力的安全保障。随着铁路扩大内涵再生产的不断深入,铁路信号设备也在随其发生着巨大的变化。根据地区发展和站场的实际情况,所设置的信号机类型也大不相同,因此,在控制信号机显示状态的点灯电路中所接入的条件也不相同。用来提供不同的显示,以满足和适应不同地区的各种需要。信号机按用途分为进站、出站、通过、进路、预告、遮断、驼峰、驼峰辅助、复示、调车十种。本论文中将主要介绍一种信号机点灯电路--进站信号机点灯电路。 一、信号点灯电路的安全措施 信号点灯电路采用了双重系统,具有主灯丝断丝后,自动转换副丝的功能,又有较完善的故障自诊功能,点灯电路出现故障可以从控制台上的信号复示器点亮的状态以及电铃响铃报警得到发现。另外,信号点灯电路要保证断线时灭灯,允许灯光灯要使信号显示降级使用。如绿灯或黄灯灯灭要自动改点红灯。禁止灯光灭灯时要禁止信号机再开放。因此,在每一个信号灯泡上都串联一个灯丝继电器,用以监督灯泡的完整性。由于禁止灯光信号和允许灯光不能同时点亮,因此,并非每一个灯泡都需要一个灯丝继电器,而是根据每架信号机同时能点亮几个灯泡,就设置几个灯丝继电器。这样既能监督灯泡的完整性又能节省材料。 如果信号灯因混线点亮了平时不该点亮的灯光,将会给行车带来严重的危害,为此必须采取防护措施。在信号点灯电路中采取了两种故障--安全方法。一是位置法,另一种是双极折断法。位置法是将控制条件加在电源负载(即灯泡、变压器)之间,双极折断法是将控制条件加在正、负电源上。这样一处混电不能使灯光出现错误及升级显示。即满足了故

信号点灯电路

信号点灯电路 一、 进站信号机点灯电路 1、平时,LXJ 落下,进站信号机显示红灯,电路图如图中红线所示: 电路为: 2201564143111263612220XJZ RD DJ LXJ HB LXJ RD XJF -----------. 2正线通过时,LXJ 、ZXJ 和TXJ 均吸起,进站信号机显示一个绿灯,电路图如图中绿线所示: 电路为: 3、正线接车时,LXJ 和ZXJ 均吸起,进站信号机显示一个黄灯,电路图为图中蓝色线所示: 电路为: 4、站线接车时,LXJ 显示两个黄色灯光,首先接通第二个黄灯电路,其电路为图中红色线所示 电路为: 该电路2DJ 吸起证明第二黄灯完好,之后接通第一黄灯点灯电路,其电路如图中蓝色线所示: 电路为: 5、建立通过第一个车场到下一个车场去时: 由于ZXJ 和LUXJ 励磁吸起,TXJ 都失磁落下,所以接通的是LB 绿灯和2UB 黄灯电路,该点灯电路先接通第二黄灯电路,后接通绿灯电路,其第二黄灯电路为如图中蓝色线所示: 电路为: 该电路2DJ 吸起证明第二黄灯完好,然后接通绿灯点灯电路,其电路为图中蓝色线所示: 其电路为: 6、引导接车:LXJ 失磁落下,而引导信号继电器YXJ 励磁吸起,因此,这时接通的是HB 红灯电路和YBB 月白灯电路,红灯电路为图中红线所示: 电路为: 2201564143111263612220XJZ RD DJ LXJ HB LXJ RD XJF -----------. 月白灯电路为图中蓝色线所示: 其电路为: 7、经18#及其以上道岔侧向位置时,进站信号机显示黄闪和黄色灯光,先接通二黄灯电路,后接通黄灯闪光电路。黄闪电路为: 电路为: 二、 出站兼调车信号机点灯电路 (一)两方向出站兼调车信号机点灯电路 1、信号机设置机构: ○1、位于正线上方的出站兼调车信号机采用高柱信号机,设有三个信号机构5个灯位。灯光由上至下排列为U 、L 、H 、2L 和B 。

故障诊断第二章习题

第二章第一节信号特征检测 一、填空题(10) 1.常用的滤波器有、低通、带通、四种。 2.加速度传感器,特别是压电式加速度传感器,在及的振动监测与诊断中应用十分广泛。 3.传感器是感受物体运动并将物体的运动转换成的一种灵敏的换能器件。 4.振动传感器主要有、速度传感器、三种。 5.把模拟信号变为数字信号,是由转换器完成的。它主要包括和两个环节。 6.采样定理的定义是:。采样时,如果不满足采样定理的条件,会出现频率现象。 7.电气控制电路主要故障类型、、。 8.利用对故障进行诊断,是设备故障诊断方法中最有效、最常用的方法。 9.振动信号频率分析的数学基础是变换;在工程实践中,常运用快速傅里叶变换的原理制成,这是故障诊断的有力工具。 10.设备故障的评定标准常用的有3种判断标准,即、相对判断标准以及类比判断标准。可用制定相对判断标准。 二、选择题(10) 1.()在旋转机械及往复机械的振动监测与诊断中应用最广泛。 A位移探测器B速度传感器 C加速度计D计数器 2.当仅需要拾取低频信号时,采用()滤波器。

A高通B低通 C带通D带阻 3.()传感器,在旋转机械及往复机械的振动监测与诊断中应用十分广泛。 A压电式加速度B位移传感器C速度传感器 D 以上都不对 4.数据采集、谱分析、数据分析、动平衡等操作可用()实现。 A传感器B数据采集器C声级计D滤波器 5.()是数据采集器的重要观测组成部分。 A. 滤波器 B. 压电式传感器C数据采集器D数据分析仪 6.传感器是感受物体运动并将物体的运动转换成模拟()的一种灵敏的换能器件。 A力信号B声信号C光信号 D. 电信号 7.在对()进行电气故障诊断时,传感器应尽可能径向安装在电机的外壳上。 A单相感应电机B三相感应电机 C二相感应电机D四相感应电机 8.从理论上讲,转速升高1倍,则不平衡产生的振动幅值增大()倍。 A1 B2 C3 D4 9.频谱仪是运用()的原理制成的。 A绝对判断标准B阿基米德 C毕达哥拉斯D快速傅立叶变换

信号机点灯电路故障分析及处理

信号机点灯电路故障分析及处理 姓 名 学 号 2009 院、系、部 电气工程系 班 号 方09 日 期 2012年12月21日 ※※※※※※※※※ ※※ ※ ※ ※ ※ ※※※※※※※※※ 2009级 铁道信号

信号机是铁路信号设备的重要组成部分之一,在运输生产工作中,它起着指挥列车和车列运行的重要作用,在铁路运输系统中,它为提高区间和车站通过能力及编解效率提供了强有力的安全保障。随着铁路扩大内涵再生产的不断深入,铁路信号设备也在随其发生着巨大的变化。根据地区发展和站场的实际情况,所设置的信号机类型也大不相同,因此,在控制信号机显示状态的点灯电路中所接入的条件也不相同。用来提供不同的显示,以满足和适应不同地区的各种需要。信号机按用途分为进站、出站、通过、进路、预告、遮断、驼峰、驼峰辅助、复示、调车十种。本论文中将主要介绍一种信号机点灯电路--进站信号机点灯电路故障分析及处理方法。 关键词:铁路信号信号机点灯电路故障分析

一、进站信号机点灯电路 (1) 二、信号机点灯电路故障 (2) (一)区分室内外故障 (2) (二)信号机点灯电路故障分析 (2) 三、信号点灯电路故障实例的处理 (3) (一)故障实例 (3) 1. 故障查找步骤 (3) 2. 故障查找结果 (3) 3. 故障说明 (3) 结论 (4) 参考文献 (5)

一、进站信号机点灯电路 进站信号机点灯电路中,黄、绿和红用一个灯丝继电器监督,叫做第一灯丝继电器,而第二个黄灯与引导白灯用一个继电器监督,叫做第二灯丝继电器,平时进站信号机点红灯。点灯变压器HB有输出,初级线圈电流大,所以与初级线圈串联在一起的灯丝继电器在吸起状态,表示灯泡完好。当红灯灭灯时,灯丝继电器将因红灯HB二次侧开路,一次侧电流大大减少而失磁落下,并用其落下接点,使控制台相应的信号复示器闪红光。凡是同时点两个允许灯光时,在灯光电路中都接在第二个灯丝继电器2DJ前接点。接入2DJ前接点的目的:当第二个黄灯灭灯时,使绿灯或第一个黄灯也必须跟着灭灯,以便用第一个灯丝继电器的前接点断开列车信号继电器LXJ电路,使信号自动改点红灯。在信号开放时,在LXJ励磁吸起后,一方面用它的第四组和第六组后接点切断红灯变压器初级线圈,使红灯灭灯;另一方面通过它的第四组和第六组前接点把点灯电源接向允许灯光电路,使允许灯光点亮,至于点哪个灯光,取决于建立什么性质的进路: 1.在建立通过进路时,ZXJ和TXJ都励磁吸起,所以接通绿灯LB电路,使绿灯点亮; 2.在建立通过第一个车场而在下一个车场停车的接车进路时,由于ZXJ和LUXJ励磁吸起,TXJ落下,接通LB和2UB电路,使绿灯和第二个黄灯同时点灯; 3.在建立正线停车的接车进路时,由于ZXJ励磁吸起而LUXJ和TXJ都落下,所以接通的提黄灯变压器UB电路,使第一个黄灯点亮; 4.在建立向站线接车时,ZXJ、LUXJ和TXJ都落下,这时接通的是黄灯变压器UB和2UB电路,使第一个黄灯和第二个黄灯同时点亮; 5.引导接车时,由于LXJ落下,而引导信号继电器YXJ励磁吸起,这时接通红灯变压器HB和引导白灯变压器YBB电路,红灯和月白灯同时点亮。(注:在引导白灯变压器电路中接有LXJ第六组后接点和LXJF第七组后接点,这样就不会出现绿灯或黄灯与月白灯同时点亮的乱显示。)

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

ZPW—2000A区间信号机点灯电路的分析阐述

ZPW—2000A区间信号机点灯电路的分析阐述 文章希望以ZPW-2000A区间信号机点灯电路的消灯故障问题为切入点,来具体的分析并且找出影响灯丝使用监督继电器的电流数值偏低下的重要原因。我们要通过一系列的处理方法使灯丝使用监督继电器的电流数值达到标准值,与此同时,我们还要对ZPW-2000A区间信号机点灯电路的微机监测和采样电路进行细致的维修。用来保障电路维修人员的检查ZPW-2000A区间信号机点灯电路的故障成功率,尽力的使电路检修人员的检修时间小缩短,提高车在行驶过程中的安全性及可靠性。 标签:ZPW-2000A区间;信号机点灯电路;安全性和可靠性 关于ZPW-2000A区间信号机点灯电路的相关问题,文章从四个方面进行阐述,这四个方面分别是:ZPW-2000A区间信号机点灯电路的相关问题的阐述;ZPW-2000A区间信号机点灯电路的相关问题的原因分析;ZPW-2000A区间信号机点灯电路的相关问题的改进方法及措施;ZPW-2000A区间信号机点灯电路的相关问题的改进后的效果。下面来具体的进行分析。 1 ZPW-2000A区间信号机点灯电路的相关问题 目前我国自主研发的闭塞设备就是ZPW-2000A区间全自动闭塞设备。这种设备也是我国的铁路系统的自主产权设备。这种全自动的闭塞设备拥有很多的优点,例如,它拥有文星的性能,丰富的信息量等,通过这种全自动闭塞设备的使用,铁路系统的区间信号设备由从前的三种显示,变成了现在的四种显示。这种转变在实际的应用中就是将传统的红,黄,绿三种颜色指示变成了四种颜色的显示,这其中加入了绿黄这种颜色显示。当我们的设备开启使用之后,不但在效率上提升了铁路的运输;更从稳定性上提升了铁路系统的安全性能,降低了信号的室外故障率,从而降低了信号的维修次数。但是有一个问题在设备开启使用之后,就一直困扰着我们,那就是连续的在区间信号设备出现消灯的问题故障,这种故障已经在很大的程度上影响到了铁路系统的运输安全,干扰了铁路系统的生产能力,所以,我们应该立即分析问题出现的原因并且给予及时的整改。 2 ZPW-2000A区间信号机点灯电路的相关问题的原因 关于ZPW-2000A区间信号机点灯电路的相关问题的原因分析,我们从两个方面进行阐述:ZPW-2000A区间信号机点灯电路的电路原理;ZPW-2000A区间信号机点灯电路的原因分析。 2.1 ZPW-2000A区间信号机点灯电路的电路原理 在这种设备在ZPW-2000A区间信号机点灯电路中时,DJ线路的吸起检查2DJ线路的条件,反之,2DJ线路的吸起检查并不检查DJ线路条件,根据这种情况,当我们的信号设备显示黄绿的时候,颜色为绿色的显示灯显示的却是黄色

轴承故障诊断中的信号处理技术研究与展望

!专题综述# 轴承故障诊断中的信号处理技术研究与展望 董建宁,申永军,杨绍普 (石家庄铁道学院机械工程分院,河北石家庄050043) 摘要:讨论了各种信号处理技术在滚动轴承故障诊断中的应用,如平稳信号处理技术、非平稳信号处理技术,非高斯和非白色噪声信号处理技术、非线性信号处理技术、奇异值分解技术以及各种智能诊断技术。详细比较了各种信号处理技术的特点、应用范围和研究进展,并指出了今后的若干研究方向,为轴承的故障诊断和在线监测提供了依据。 关键词:滚动轴承;故障诊断;信号处理 中图分类号:T H133.33;T N911.7文献标识码:B文章编号:1000-3762(2005)01-0043-05 Study and Prospect on S ignal Process Technique of Bearing Fault Diagnosis DONG Jian-ning,SHEN Yong-jun,YANG Shao-pu (Department of M echincal Eng ineering,Shijiazhuang Railway Inst itute,Shijiazhuang050043,China) Abstract:T he application of several signal process techniques are discussed in failur e diagnosis of the rolling bearing, such as steady signal,non-steady sig nal,non-g auss-s and non-w hite no ise signal,non-linear signal process tech-nique,oddity value decompositio n technique and so me kinds of intelligent diagnosis technique.T he characterist ics,ap-plied area and development trend of the signal process techniques ar e compared in detail.A nd t he study dir ections in t he futur e are pointed out. Key words:ro lling bearing;fault diagnosis;signal process 对重要轴承进行工况监视与故障诊断,不但可以防止机械工作精度下降,减少或杜绝事故发生,而且可以最大限度地发挥轴承的工作潜力,节约开支,在工程上具有重要意义。 本文以轴承系统为研究对象,重点介绍轴承的振动诊断技术中常见的信号处理方法。现代信号分析和处理的本质可以作一个/非0字高度概括:研究和分析非线性、非因果、非最小相位系统、非高斯、非平稳、非整数维信号和非白色的加性噪声[1]。其中非最小相位和非因果信号处理技术目前尚未在故障诊断中得到应用。现介绍其他信号处理技术在轴承故障诊断中的应用情况。 收稿日期:2004-03-12;修回日期:2004-04-22 基金项目:河北省科学技术研究与发展计划项目(01547019D) 作者简介:董建宁,(1977-),女,研究生,专业方向:滚动轴承的故障诊断技术研究。1平稳信号处理技术 111平稳信号的Fourier谱分析技术 目前振动信号分析工程上常用的信号处理方法是FFT频谱分析。在对轴承的故障诊断中,将振动信号进行频谱分析,查看谱图中有无明显的故障频率谱峰存在,从而可以判断轴承是否完好。这种方法具有很大的局限性,诊断出来的轴承一般都已有较严重的损害,并且对轴承早期故障的分析不够灵敏。 112平稳信号的时间序列分析 对于直接进行频谱分析比较困难的情况,如采集的信号序列较短,或者Fourier变换不能将相互靠近的两个频率分开,采用时间序列分析(也称参数模型的谱分析)是一种较好的方法。常用的时间序列模型有ARMA模型、AR模型以及MA 模型。关于各种模型的特点、算法以及适用领域 ISSN1000-3762 CN41-1148/T H 轴承 Bear ing 2005年第1期 2005,No.01 43-47

故障诊断流程分析

自主创新实践报告 设计题目机床故障检测流程分析 学生姓名卢朦 专业机电一体化 班级机电1101 指导教师赵曾贻

摘要 机电设备故障诊断技术已发展为一门独立的跨学科的综合信息处理技术,本文介绍了目前机电设备故障诊断所使用的几种常用的传统技术和方法,分析了目前存在的突出问题,通过分析指出,引入跨学科的理论和技术,把先进的理论与实践应用相结合,进一步完善目前的技术,将是今后主要的发展方向。 关键词:机电设备,故障诊断,发展

目录 摘要 (2) 第一章.故障诊断技术的发展历程及我现状 (4) 1.1故障诊断的发展历程 (4) 1.2故障诊断的现状 (5) 第二章.常用的检测技术方法及问题 (6) 2.1常用的检测方法 (6) 2.2存在的问题 (7) 第三章.基于检测树的铣床故障检测方案 (9) 3.1VFP6.0软件介绍 (9) 3.2VFP关系数据库 (10) 3.3故障表合并整理,知识挖掘 (10) 第四章.设计实验过程 (11) 4.1IDEF系列一级IDEF3过程图 (11) 4.2故障树建构(图4.2.1-4.2.5) (11) 第五章.实现结果及使用说明 (14) 第六章.展望未来 (15)

第一章.故障诊断技术的发展历程及我现状 1.1故障诊断的发展历程 机电设备故障诊断技术是目前国内外一项发展迅速、备受欢迎的重要技术,是一门了解和掌握设备在使用过程中的工作状态,检测设备故障隐患,确定其整体和局部是否正常,早期发现设备的故障及其产生原因,并对故障发生部位、性质做出估计,能够预报故障发展趋势的技术。由于它可及时发现机器故障和预防设备恶性事故发生,从而避免人员伤亡、环境污染和造成巨大经济损失,还可为设备维修管理提供依据,具有保障生产正常运行、防止突发事故、节约维修成本等显著特点,在确保设备安全运行,提高产品质量和产量,节约维修费用,降低成本,在现代化大生产中发挥着重要作用,越来越受到人们普遍重视。 现代化生产中机械设备的故障诊断技术越来越受到重视,人们投人大量精力进行研究,机电设备故障诊断技术取得了很大的进展:探索出一系列新的理论方法与技术应用于实际,增加了对设备故障判断的效率,奠定了对设备实施故障诊断分析与修复的坚实基础,产生了明显的经济效益和社会效益。 机电设备诊断技术最初来自军事上的需要,在第二次世界大战初期问世。当时能用仪表进行设备状态参数测定,相继又开发了快速、多功能自动监测仪器;20世纪60年代以来,随着航天工业的发展,可靠性理论的应用,使设备诊断技术迅速发展;70年代,随着微电子技术的发展,计算机技术、传感器技术的应用,机械设备故障诊断技术更加完善,主要用于航天、核电等部门;20世纪末已经在冶金矿山、交通运输、化工、发电、农业和机械制造等部门的机械设备上开始应用设备诊断技术,其发展日新月异,经济效益日益明显;进入新世纪,这一技术迅速渗透到国民经济各部门,应用已相当普及,设备故障诊断技术水平的提高,开始向智能化方向发展。 回顾历史,不难看出机械故障诊断技术的发展经历了3个阶段:诊断结果取决于领域专家的感官及专业知识和经验对诊断信息判断的初级阶段;以传感器、动态监测技术为手段,基于计算机信号处理的现代诊断技术;实现诊断系统智能化,向监测、诊断、管理和调度的集成化发展。 美国从1967年在美宇航局和海军研究所的倡导下,由企业和大学参加成立了机械故障诊断技术的研究组织,开展机械设备的故障机理,检测、诊断和预测等

故障诊断及相关应用_信号处理大论文

故障诊断及相关应用 摘要 故障诊断技术是一门以数学、计算机、自动控制、信号处理、仿真技术、可靠性理论等有关学科为基础的多学科交叉的边缘学科。故障诊断技术发展至今,已提出了大量的方法,并发展成为一门独立的跨学科的综合信息处理技术,是目前热点研究领域之一。我国的一些知名学者也在这方面取得了可喜的成果。 关键字:故障诊断,信息处理 1故障诊断技术的原理及基本方法 按照国际故障诊断权威,德国的Frank P M教授的观点,所有的故障诊断方法可以划分为3种:基于解析模型的方法、基于信号处理的方法和基于知识的方法。 1.1基于解析模型的故障诊断方法 基于解析模型的方法是发展最早、研究最系统的一种故障诊断方法。所谓基于解析模型的方法,是在明确了诊断对象数学模型的基础上,按一定的数学方法对被测信息进行诊断处理。其优点是对未知故障有固有的敏感性;缺点是通常难以获得系统模型,且由于建模误差、扰动及噪声的存在,使得鲁棒性问题日益突出。 基于解析模型的方法可以进一步分为参数估计方法、状态估计方法和等价空间方法。这3种方法虽然是独立发展起来的,但它们之间存在一定的联系。现已证明:基于观测器的状态估计方法与等价空间方法是等价的。相比之下,参数估计方法比状态估计方法更适合于非线性系统,因为非线性系统状态观测器的设计有很大困难,通常,等价空间方法仅适用于线性系统。 1.1.1参数估计方法 1984年,Iserman对于参数估计的故障诊断方法作了完整的描述。这种故障诊断方法的思路是:由机理分析确定系统的模型参数和物理元器件参数之间的关系方程,由实时辨识求得系统的实际模型参数,进而由关系方程求解实际的物理元器件参数,将其与标称值比较,从而得知系统是否有故障与故障的程度。但有时关系方程并不是双射的,这时,通过模型参数并不能求得物理参数,这是该方法最大的缺点。目前,非线性系统故障诊断技术的参数估计方法主要有强跟踪滤波方法。在实际应用中,经常将参数估计方法与其他的

信号设备故障处理

信号设备故障处理 一、故障分类 1、按故障数量分类:单一故障和叠加故障。 ①、单一故障:同一性质的电路中只存在一个故障,此类故障现象较为明显,在日常工作中经常发生,故障现象比较容易分析。 ②、叠加故障:同一性质的电路中存在一个以上的故障,此类故障在设备使用中较为少见,在施工及新开通的设备中较为多见。此类故障较复杂,体现出的现象也各不相同,分析起来较复杂。 2、按故障现象分类:非潜伏性故障和潜伏性故障 ①、非潜伏性故障:通过信号设备的自检能力,在发生故障之后能以一定的形式表现出来,比如道岔不动、无表示、轨道电路红灯等。 ②、潜伏性故障:只有在使用该部分电路或器材时,才能发现的故障,不能直接通过自检体现出来,比如方向电路的辅助办理、反向发车表示器断丝,此类故障危害较大。 二、故障处理原则 1、信号设备发生故障时应积极组织修复,有以下三种情况: ①、遇一般故障尚未影响设备使用时,信号维修人员应

在联系登记后会同车站值班员进行试验,判明情况,查找修复。调度集中区段要转为非常站控。 ②、如在试验中发现严重缺陷,危及行车安全一时无法排除,应通知车站值班员(应急值守员),并登记停用。 ③、遇已影响设备使用的故障,信号维修人员应首先登记停用设备,然后积极查找原因、排除故障、尽快回复使用。如不能判明原因。应立即上报,听从上级指示处理(上报现象、处理情况)。 2、当发生与信号设备有关联的机车车辆脱轨、冲突、颠覆等重大事故时,信号维修人员应会同值班站长记录设备状态,派人监视保护事故现场,但不得擅自触动设备,并立即报告电务段,以免影响事故的调查和分析。 3.、发生影响行车的设备故障时,信号维修人员应将接发列车进路的排列情况、调车作业情况、控制台显示情况、列车运行时分、设备位臵状态及故障处理情况作详细记录作为原始记录备查。 三、故障处理程序 信号故障处理程序具体分七个步骤。 1、准备工具仪表,了解情况。当故障发生后,首先要了解故障发生的大概情况,问明是否影响行车,当已影响行车时,通知车务人员采取应急措施如改变进路、引导接车等,并及时向分公司值班室汇报简要情况。准备好必要的工具、

信号机点灯故障

信号机点灯故障

信号点灯电路故障分析 一.电路工作原理 信号点灯电路如图7-1所示。以两方向出站信号机为例。 信号点灯电路用来控制信号机的显示,直接向司机发出行车命令。信号显示的正确与否,直接影响行车安全。所以,信号机点灯电路是具有严密性、可靠性的安全电路。点灯电路中,设有断线保护,采用了位置法和双断法的混线保护措施。依据联锁条件的要求,信号机的允许灯光灭灯时,要使信号显示降级;正线信号机的禁止灯光灭灯时,要禁止信号机再开放允许信号(正线)。所以,每架信号机都设有灯丝继电器,用以监督信号灯泡的完整。 信号机的点灯电源,一般由室内通过电源屏分为4束供出,在电源屏、组合架的零层、组合的侧面都设置了熔断器防护。点灯电源通过电缆送到室外。信号机内设有点灯变压器,将点灯电压降为12V之后,点亮信号灯泡。 矮型出站信号机,共有4种显示状态,这4种显示状态,是由出站兼调车的LXJ、DXJ、ZXJ、2LQJ进行控制的。电路的逻辑关系是:

图7-1 信号点灯电路 1.信号机的平时状态: LXJ↓ DJ↑,信号机点亮红灯 DXJ↓ 2.只有一个离去区段空闲时: LXJ↑ ZXJ↑ DJ↑,信号机点亮黄灯 2LQJ↓ 3.两个离去区段都空闲时: LXJ↑ ZXJ↑ DJ↑,信号机点亮绿灯 2LQJ↑ 4.开放调车信号时: LXJ↓ DJ↑,信号机点亮白灯

DXJ↑ 注:如果有两个发车方向 LXJF↑ LXJ↑ 2DJ↑ZXJ↓DJ↑ ZXJ↓ 2DJ↑ 信号机点亮两个绿灯时,从逻辑关系式可以看出,主信号继电器ZXJ用来区分向主要线路发车还是向次要线路发车。ZXJ吸起说明向主要线路发车,点一个绿灯或黄灯;ZXJ失磁落下说明向次要线路发车,点两个绿灯。2LQJ用来区分点绿灯或黄灯。2LQJ吸起,点亮一个绿灯,2LQJ 失磁落下,则点亮一个黄灯。 二.信号机故障时控制台的现象 信号点灯电路采用了双重系统,具有主灯丝断丝后自动转换副灯丝的功能,以及较完善的故障自诊功能。点灯电路出现故障时可以从控制台信号复示器点灯状态、电铃响铃报警发现。

基于噪声分析的机械故障诊断方法研究

基于噪声分析的机械故障诊断方法研究 摘要 基于噪声分析的机械故障诊断方法可以非接触地获得机械信号,适用于众多不便于使用振动传感器的场合,如某些高温、高腐蚀环境,是一种常用而有效地故障诊断方法。但在实际应用中,由于不相干噪声和环境噪声的影响,我们需要的待测信号往往被淹没在这些混合噪声中,信号的信噪比较低。 盲源分离作为数字信号处理领域的新兴技术,能利用观测信号恢复或提取独立的各个机械信号,在通讯、雷达信号处理、图像处理等众多领域具有重要的实用价值及发展前景,已经成为神经网络学界和信号处理学界的热点研究课题之一。 本文分析总结了盲源分离技术的相关研究现状,对盲源分离的原理、算法、相关应用作了探讨和研究。并就汽轮机噪声问题运用了盲源分离技术进行机械故障诊断,试验表明,该方法能将我们需要的故障信号从混合信号中分离出来,成功实现汽轮机部件的故障诊断。 关键词:声信号,机械故障诊断,独立分量分析 Investigation of Mechanical Fault Diagnosis Based on Noise Analysis Abstract You can obtain a non-contact method of mechanical fault diagnosis based on noise analysis of mechanical signals , not suitable for many occasions to facilitate the use of vibration sensors , such as certain high temperature , highly corrosive environment , is a common and effective fault diagnosis method . However, in practice , the effects of noise and extraneous ambient noise , the signal under test often need to be submerged in the mixed noise , lower signal to noise ratio . Blind source separation as an emerging field of digital signal processing technology to take advantage of the observed signal recovery or extraction of various mechanical signals independently in many communications, radar signal processing , image processing has important practical value and development prospects , has become a neural network one of the hot research topic in academic circles and signal processing . In this paper summarizes the research status of blind source separation techniques , the principles of blind source separation algorithms, related applications and research were discussed . Turbine noise problems and to use the blind source separation techniques for mechanical fault diagnosis, tests showed that the method we need fault signal can be separated from the mixed signal , fault diagnosis of steam turbine components successfully . Key Words:Mechanical Fault Diagnosis,Independent Component Analysis

(设备管理)信号设备故障分析与处理教案

信号设备故障分析与处理教案 安全是铁路运输的生命线是铁路管理水平人员素质、设备质量、技术装备的综合反映。随着我国铁路现代化的发展、列车运行速度、行车密度、行车牵引重量等都在不断提高,行车安全的重要性也就更加突出。所以认真贯彻安全笫一、预防为主的方针,提高从业人员的素质、保证运输生产的安全显的尤其重要。 笫一章:故障分类 一、按故障性质分类:信号事故和信号障碍 信号事故:凡因亏违反规章制度、劳动纪律、技术设备不良及其他原因在行车中造成人员伤亡、设备损坏、经济损失、影响正常行车或危及行车安全的均构成信号事故。 信号障碍:信号设备发生故障但未构成行车事故的称为信号障碍。信号障碍又分为信号责任障碍和信号非责任障碍。 信号责任障碍:信号设备谁修不良造成设备故障,影响正常使用时,构成信号责任障碍。信号非责任障碍:指无法防止的雷害及自然灾害,及无法检查发发现的电务器才材质不良造成设备故障,影响使用时构成信号非责任障碍, 二、按故障原因分类:材质、维修、其它。 1、材质不良,包括元器件变质和制造工艺缺陷 元器件变质:信号电气元件使用一段时间后,可能发

生质变、特性变化,包括电机拉力下降、二极管击穿、表示杆断裂等。 工艺缺陷:制造工艺落后、材料不当、出厂把关不严造成故障,包括点灯单元不良、灯泡断丝、付丝不通、接收器不良。 2、维修不良:包括技术业务差和责任心不强 技术业务差:缺乏专业技能,对设备状态性能的检修标准不清楚,测试方法不正确,道岔标调不会,轨道电压调整不会,相位调整不会等等。 责任心不强:巡检走过场,值表漏项,简化作业程序,本身懂业务但就是不按标准执行,造成信号故障。 3、其他:自然灾害、外部门 自然灾害:雷害、雨雪、等阻线被盗 外部门:断轨、工务螺丝断,但需要注意工电结合部故障不属于其他,而是列入维修不良。 三、按故障特征分类:机械故障和电气故障 机械故障:机械设备的材质发生变化、固定螺丝松动,如道岔机械卡阻、道岔不解锁、不落锁、表示杆缺口变化、工电结合部捣固不良、杆件不方等引发的故障。 电气故障:各种配线不良及电子器材性能不良引发故障。 四、按故障数量分类:单一故障和叠加故障

相关文档
最新文档