简述热电阻的原理及构造

简述热电阻的原理及构造
简述热电阻的原理及构造

简述热电阻的原理及构造

摘要:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。本文通过介绍热电阻的结构以及系统组成详细的为大家介绍热电阻的测温原理,仅给大家做参考。

1.热电阻测温原理及材料

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,另外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

2.热电阻的结构

(1)精通型热电阻

从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响一般采用三线制或四线制。

(两线制:两根线及传输电源又传输信号,也就是传感器输出的负载和电源是串联在一起的,电源是从外部引入的,和负载串联在一起来驱动负载。三线制:三线制传感器就是电源正端和信号输出的正端分离,但它们共用一个COM端。四线制:电源两根线,信号两根线。电源和信号是分开工作的。)

(2)铠装热电阻

铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2~φ8mm。与普通型的热电阻相比较,它有以下优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面热电阻

端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

(4)隔爆型热电阻

隔爆型热电阻通过特殊结构的接线盒,把它外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒之内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。

3.热电阻测温系统的组成

热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。必须注意以下两点:

①热电阻和显示仪表的分度号必须一致

②为了消除连接导线电阻变化的影响,必须要采用三线制接法

热电阻顾名思义,它的电阻的阻值是随着温度变化而变化的,比如,用线性比较好的铂丝、铜丝作的电阻。工业用热电阻一般采用Pt100,Pt10,Pt1000、Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。

如用铂丝做成的热电阻,其分度号称Pt100。也就是说它的阻值在0度时为100欧姆,负200度时为18.52欧姆,200度时为175.86欧姆,800度时为375.70欧姆。

比如用铜丝作的热电阻,分度号Cu50。它在0度时,阻值是50欧姆,100度时是71.400欧姆。

热电阻公式都是Rt=Ro(1+A*t+B*t*t);Rt=Ro[1+A*t+B*t*t+C(t-100)*t*t*t] 的形式,t表示摄氏温度,Ro是零摄氏度时的电阻值,A、B、C都是规定的系数,对于Pt100,Ro就等于100。

分度号定义:代表温度范围,并且代表每种分度号的热电偶或热电阻具体多少温度输出多少伏特的电压或者毫伏的电压。

热电阻常用的接线方式及原理

热电阻温度测量原理及常用接线方式 热电阻(如PtIOO )是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换 成电阻量的温度传感器。 温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方 法得到电阻值(电压/电流),再将电阻值转换成温度值,从而实现温度测量。 热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。 由于热电阻本身的阻值较小, 随温度变化而引起的电阻变化值更小, 例如,铂电阻在零 度时的阻值R0=100 Q,铜电阻在零度时 R0=100 Qo 因此,在传感器与测量仪器之间的引线 过长会引起较大的测量误差。在实际应用时,通常采用所谓的两线、三线或四线制的方式, 如图所示。 图热电阻的接入方式 在图(a )所示的电路中,电桥输出电压 Vo 为 R r ) 当 R?Rt 、Rr 时, V o [(R t -R r ) 2 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 1. 二线制 (c )三线制 (d )四线制

二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 图中的两个R是固定电阻。R r是为保持电桥平衡的电位器。二线制的接入电路由于没有 考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(C)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 图中的两个R是固定电阻。R是为保持电桥平衡的电位器。三线制的接入电路由于考虑 了引线电阻和接触电阻带来的影响。R11、R12和R l3分别是传感器和驱动电源的引线电阻, 一般说来,R11和R12基本上相等,而R13不引入误差。所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R ii、R i2、R13和R14都是引线电阻和接触电阻。R ii和R12在恒流源回路,不会引 入误差。R13和R14则在高输入阻抗的仪器放大器的回路中,也不会带来误差。上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放

热电偶的工作原理及结构

热电偶工作原理及结构 检修岗位 1.懂工作原理 1.1热电偶测温原理 两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。 这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。汤姆逊定理---由温差引起的电势。 当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。 1.2热电偶三大定律 均质导体定律 由单一均质金属所形成 之封闭回路,沿回路上每一 点即使改变温度也不会有电 流产生。亦即,E = 0。

由2种均质金属材料A 与B所形成的热电偶回路中,热电势E与接点处温度t1、t2的相关函数关系,不受A与B之中间温度t3与t4之影响。 中间金属定律 在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。 在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。

如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A 与C、C与B之2组热电偶。接合点温度保持t1与t2的情况下,E AC + E CB = E AB。 中间温度定律 如右图所示任意数的异种金属A、B、C???G所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的 E=0。

热电偶热电阻的区别

热电偶/热电阻的区别 热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于: 一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。 二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度)。 热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。 三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。 四、PLC对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC都直接接入4~20ma信号,而热电阻和热电偶一般都带有变送器才接入PLC。要是接入DCS的话就不必用变送器了!热电阻是RTD信号,热电偶是TC信号! 五、PLC也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。 六、热电偶有J、T、N、K、S等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。 热电阻是电阻信号,热电偶是电压信号。 七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10)、铜电阻Cu50(负50-150度)。 热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S,测量范围0~1300度)、镍铬——镍硅(分度号K,测量范围0~900度)、镍铬——康铜(分度号E,

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

热电阻工作原理

热电阻工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类 (1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。 (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点: ①体积小,内部无空气隙,热惯性上,测量滞后小; ②机械性能好、耐振,抗冲击; ③能弯曲,便于安装; ④使用寿命长。

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

实验二十一__热电偶的原理及现象实验

热电偶的原理及现象 一、实验目的:了解热电偶测温原理。 二、基本原理:1821年德国物理学家赛贝克(T?J?Seebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。 热电偶测温原理是利用热电效应。如图21—1所示,热电偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接 的一端是接触热场的T端称为工作端或测量端, 也称热端;未焊接的一端处在温度T0称为自由端 或参考端,也称冷端(接引线用来连接测量仪表的图21—1热电偶 两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。热电偶一般用来测量较高的温度,应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 本实验只是定性了解热电偶的热电势现象,实验仪所配的热电偶是由铜—康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它们封装在悬臂双平行梁上、下梁的上、下表面中,二个热电偶串联在一起,产生热电势为二者之和。 三、需用器件与单元:机头平行梁中的热电偶、加热器;显示面板中的F/V表(或电压表)、-15V电源;调理电路面板中传感器输出单元中的热电偶、加热器;调理电路单元中的差动放大器;室温温度计(自备)。 四、实验步骤: 1、热电偶无温差时差动放大器调零:将电压表量程切换到2V档,按图21—2示意接线,检查接线无误后合上主、副电源开关。将差动放大器的增益电位器顺时针方向缓慢转到底(增益为101倍),再逆时针回转一点点(防电位器的可调触点在极限端点位置接触不良);再调节差动放大器的调零旋钮,使电压表显示0V左右,再将电压表量程切换到200mV档继续调零,使电压表显示0V。并记录下自备温度计所测的室温tn。

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点 热电偶工作原理 将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。 热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无 关。 热电偶工作原理图 热电阻工作原理 工业用热电阻分铂热电阻和铜热电阻两大类。 热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。 热电偶、热电阻特点 热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有

热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小, ·准确度高, ·测温范围广, ·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。 b、缺点 ·测量准确度难以超过0.2℃, ·必须有参考端,并且温度要保持恒定。·在高温或长期使用时,因受被测介质影响或气氛腐蚀作用(如氧化、还原)等而发生劣化。热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有40μV左右。由此可见,热电阻的灵敏度较热电偶高一个数量级。 ·测温范围广,稳定性好。在振动小而适宜的环境下,可在很长时间内保持0.1℃以下的稳定性。 ·无需参考点。温度值可由测得的电阻值直接求出。 ·输出线性好。只用简单的辅助回路就能得到线性输出,显示仪表可均匀刻度。 b、缺点 ·采用细金属丝的热电阻元件抗机械冲击与振动性能差。 ·元件结构复杂,制造困难大,尺寸较大,因此,热响应时间长。·不适宜测量体积狭小和温度瞬变区域。

热电阻与热电偶的测量原理及区别

热电阻与热电偶的测量原理及区别 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50——+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端

热电阻温度计的结构和原理

热电阻温度计的结构和原理 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。 热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、 体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有

负的电阻温度特性,当温度升高时,电阻值减小热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数k,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就 是把热敏电阻两端电压值经a/d转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。1、热电阻测温原

理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加 这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。2、热电阻的类型1)普通型热电阻从热电阻的测温 2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击; ③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于bla--b3c级区内具有爆炸危险场所的温度测量。铠

热电阻的工作原理

上学的时候,学习物理的时候,老师都给我们讲过什么是热电阻,它不仅广泛应用于工业测温,而且被制成标准的基准仪。它的原理很简单,也正如此,常常不受重视,所以发生让人摸不着头脑的问题时,往往会直接采取直接更换热电阻来处理,增加了维护成本。接下来,我为大家介绍下它的工作原理。 热电阻是中低温区最常用的一种温度检测器。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。金属热电阻常用的感温材料种类较多,最常用的是铂丝。工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍等。

热电阻工作原理:热电阻是中低温区常用的一种测温元件。热电阻利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。热电阻的受热部分(感温元件)是用细金属丝均匀的缠绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度最高。 热电阻的结构特点:热电阻通常和显示仪表、记录仪表和电子调节器配套使用。它可以直接测量各种生产过程中从-200℃至+ 600℃范围内的液体、蒸汽和气体介质及固体表面的温度。 安徽皖控自动化仪表有限公司成立于2012年,是专业从事工业自动化仪表研究开发、制造的专业厂家之一,注册资金5510万元。自公司成立以来被评为高新技术企业、规模企业、成立有滁州市工业在线检测仪表工程技术研研究中心、获得青年文明号、民营科技企业的称号,市认定企业技术中心证书、高新技术产品认证证书、市科技进步奖。展望未来,安徽皖控自动化仪表有限公司将会不断创新,通

热电偶的原理、结构、选型、常见故障及解决方法

热电偶的原理、结构、选型及常见故障和原因、解决方法等 一、热电偶测温原理 两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势,这种现象称为热电效应,该电动势称为热电势。这两种不同材料的导体或半导体的组合称为热电偶,导体A、B称为热电极。两个接点,一个称热端,又称测量端或工作端,测温时将它置于被测介质中;另一个称冷端,又称参考端或自由端,它通过导线与显示仪表相连。 电偶体结构图 接触电势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。两种导体接触时,自由电子由密度大的导体向密度小的导体扩散,在接触处失去电子一侧带正电,得到电子一侧带负电,扩散达到动平衡时,在接触面的两侧就形成稳定的接触电势。接触电势的数值取决于两种不同导体的性质和接触点的温度。两接点的接触电势e AB(T)和e AB(T0)可表示为 式中:K——波尔兹曼常数; e——单位电荷电量;NAT、NBT和N AT0、N BT0——温度分别为T和T0时,A、B两种材料的电子密度。 温差电势是同一导体的两端因其温度不同而产生的一种电动势。同一导体的两端温度不同时,高温端的电子能量要比低温端的电子能量大,因而从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正

电,低温端因获得多余的电子而带负电,因此,在导体两端便形成接触电势。 热电偶回路中产生的总热电势为 eAB(T, T0)=eAB(T)+eB(T,T0)-eAB(T0)-eA(T,T0) 在总热电势中,温差电势比接触电势小很多,可忽略不计,则热电偶的热电势可表示为:eAB(T,T0)=eAB(T)-eAB(T0) 对于已选定的热电偶,当参考端温度T0恒定时,eAB(T0)=c为常数,则总的热电动势就只与温度T成单值函数关系,即eAB(T,T0)=eAB(T)-c=f(T) 这一关系式在实际测量中是很有用的,即只要测出eAB(T,T0)的大小,就能得到被测温度T,这就是利用热电偶测温的原理。 二、热电偶基本定律 1、均质导体定律:由两种均质导体组成的热电偶,其热电动势的大小只与两材料及两接点温度有关,与热电偶的大小尺寸、形状及沿电极各处的温度分布无关。即如材料不均匀,当导体上存在温度梯度时,将会有附加电动势产生。这条定理说明,热电偶必须由两种不同性质的均质材料构成。 2、中间导体定律:利用热电偶进行测温,必须在回路中引入连接导线和仪表,接入导线和仪表后会不会影响回路中的热电势呢?中间导体定律说明,在热电偶测温回路内,接入第三种导体时,只要第三种导体的两端温度相同,则对回路的总热电势没有影响。 3、中间温度定律:在热电偶测温回路中,t c为热电极上某一点的温度,热电偶AB在接点温度为t、t0时的热电势eAB(t, t0)等于热电偶AB在接点温度t、t c 和tc、t0时的热电势eAB(t, t c)和eAB(tc, t0)的代数和,即eAB(t,t0)=eAB(t,t c)+eAB(tc,t0 该定律是参考端温度计算修正法的理论依据,在实际热电偶测温回路中, 利用热电偶这一性质, 可对参考端温度不为0℃的热电势进行修正。 三、热电偶的结构形式 为了适应不同生产对象的测温要求和条件,热电偶的结构形式有普通型热电偶、铠装型热电偶和薄膜热电偶等。

热电偶测量温度原理.

1、2两点的温度不同时,回路中就会产生热电势,因而?就有电流产生,电流表就会?发生偏转,这一现象称为热?电效应(塞贝克效应),产生的电势、电流分别叫热电?势、热电流。 热电偶温度计属于接触式温度测量仪表。是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。显示仪表所测电势只随被测温度而t变化。 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对

热电阻原理

热电阻原理--热电阻工作原理--pt100热电阻--热电偶和热电阻的区别 热电阻工作原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 热电阻材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻种类 (1)精密型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制。 (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点: ①体积小,内部无空气隙,热惯性上,测量滞后小; ②机械性能好、耐振,抗冲击; ③能弯曲,便于安装; ④使用寿命长。 (3)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把其外壳内部

热电阻与热电偶的区别

热电阻与热电偶 1. 外形: 热电阻接三根线,热电偶接两根线 2. 材料 热电阻可以用普通的线,热电偶一定要用补偿线。 热电阻使用贵金属制造,价格稍高一点,一般来说相差不大 3. 测温时间 热电阻检测温度似乎更快一些。 4. 测温原理 热电阻是通过电阻大小的变化来反映温度的变化;热电偶是通过电势的变化来反映温度变化 (热电阻是基于随温度的升高电阻而增大的原理工作的,而热电偶是基于随温度的升高输出电势而增大的原理工作的。) 热电阻是根据导体(测温电阻)的电阻值随温度而变化的特性而工作的。 热电偶是由两种不同材料的金属制作出来的,其中一头两种金属焊接在一起,作为测温端(热端),另一头两根线(冷端)接入仪表。当冷端与热端有温度差时,热电偶回路中就会有电势产生,根据该电势差查该种型号热电偶的分度表,就能知道热端的温度。 5. 精度 热电阻精度高一点,热电偶的测温范围一般比热电阻宽。 6. 信号类型 一个是变化的毫伏电压,一个是变化的电阻.。) 7. 处理这两种信号的温控仪(智能型除外 热电阻是利用电阻的温度特性来测量温度的.热电偶是一种把温度转换成电压信号的温度传感器.热电阻性能稳定,特别是铂电阻,性能很稳定,常用作标准测温器件.在-259.34至630.74度之间,可以用铂电阻温度计作为温度测量的基准.热电偶是由两种自由电子浓度不同的金属(合金)组成,其端点焊接在一起.热电偶的特点是测量温度的范围宽,但灵敏度不高,且产生的热电势较低,抗干扰能力较弱. 8. 输入功能:

输入信号为小电压,常为毫伏电压(热电偶),毫伏电压范围为:–100mV ~+100mV,主要用于热电偶信号的测量。 TCB铂铑30 铂铑60: 0℃~1820℃对映0~14mV TCT铜-铜镍: -270℃~400℃对映-6.3~21mV TCEEA镍铬-铜镍: -270℃~1000℃对映-10~77mV TCJ铁-铜镍: -210℃~1200℃对映-8.1~69.536mV TCKEU镍铬-镍硅: -270℃~1372℃对映-6.5~55mV TCN镍铬硅-镍硅: -270℃~1300℃对映-4.4~48mV TCR铂铑13-铂热电偶: 0℃~1700℃对映0~21mV TCS铂铑10: -50℃~1770℃对映-0.3~19mV 输入信号为电阻(热电阻)信号,可用于热电阻或应变片电阻信号的测量,测量范围为1~500Ω,接线方式为三线制接线。 RTDPt100 18.49~391Ω对映-200~850度 RTDPt10 1.849~39.1Ω对映-200~850度 RTD Cu100 78~166Ω对映-50~150度 RTD Cu10 7.8~16.6Ω对映-50~150度 RTD Cu50 39~82Ω对映-50~150度

热电偶测温原理及其应用

热电偶测温原理及其应用 重点 1、掌握热电偶测温原理 2、了解热电偶测量电路及其补偿方法 3、了解热电偶应用 一、热电偶简介 热电温度记录仪常以热电偶作为测温元件. 它广泛用来测量 -200 ℃ ~1300 ℃范围内的温度,特殊情况下,可测至2800 ℃的高温或 4K 的低温。 它具有结构简单,价格便宜,准确度高,测温范围广等特点。 由于热电偶将温度转化成电量进行检测,使温度的测量、控制、以及对温度信号的放大变换都很方便,适用于远距离测量和自动控制。 在接触式测温法中,热电温度计的应用最普遍。 二、热电偶测温原理

1.定义: 由两种导体组合而成,将温度转化为热电动势的传感器叫做热电偶。2. 测温原理 : 热电偶的测温原理基于热电效应。 将两种不同材料的导体 A 和 B 串接成一个闭合回路,当两个接点 1 和 2 的温度不同时,如果 T > T0(如上图 12-1热电效应),在回路中就会产生热电动势,在回路中产生一定大小的电流,此种现象称为热电效应。 热电动势记为 E AB,导体 A 、 B 称为热电极。接点 1 通常是焊接在一起的,测量时将它置于测温场所感受被测温度,故称为测量端(或工作端,热端)。 接点 2 要求温度恒定,称为参考端(或冷端)。 3.热电效应 导体 A 和 B 组成的热电偶闭合电路在两个接点处分别由e AB (T) 与e AB (T0 )两个接触电势,又因为 T > T0,在导体 A 和 B 中还各有一个温差电势。所以闭合回路总热电动势 E AB (T,T0 ) 应为接触电动势和温差电势的代数和,即: 4.闭合回路总热电动势

对于已选定的热电偶,当参考温度恒定时,总热电动势就变成测量端温度T 的单值函数,即E AB( T, T 0 )= f ( T ) 。这就是热电偶测量温度的基本原理。 在实际测温时,必须在热电偶闭合回路中引入连接导线和仪表。 三、有关热电偶测温的基本原则 由一种均质导体组成的闭合回路,不论导体的横截面积,长度以及温度分布如何均不产生热电动势。 如果热电偶的两根热电极由两种均质导体组成,那么,热电偶的热电动势仅与两接点的温度有关,与热电偶的温度分布无关; 如果热电极为非均质电极,并处于具有温度梯度的温场时,将产生附加电势,如果仅从热电偶的热电动势大小来判断温度的高低就会引起误差。 1、均质导体定则 : 2、中间导体定则: 在热电偶回路中接入第三种材料的导体,只要两端的温度相等,该导体接入就不会影响热电偶回路的总热电动势。

热电阻温度计的结构和原理

ZYl200A智能型全自动新型墙体砖液压成型机是中冶重工在ZYl200机型的基础上开发出的一款高端产品,该产品吸收了ZYl200机型的技术优点,创新设计采用进口工业机器人码垛,配备柔性夹砖机械手,减少了码砖的中间环节,大大提高了生产效率。 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。

热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有负的电阻温度特性,当温度升高时,电阻值减小 热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数K,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就

是把热敏电阻两端电压值经A/D 转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1、热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 2、热电阻的类型 1)普通型热电阻 从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 2)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 3)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 4)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

相关文档
最新文档