精密和超精密加工试题库

精密和超精密加工试题库
精密和超精密加工试题库

1、精密和超精密加工目前包含的三个领域:超精密切削、精密和超精密磨削研磨和精密特种加工

2、超精密切削时积屑瘤的生成规律:1)在低速切削时,h0值比较稳定;在中速时值不稳定。2)在进给量f很小时,h0较大3)在背吃刀量a p<25um时,h0变化不大;在a p>25um时,h0将随a p的值增大而增大。

3、超精密切削时积屑瘤对切削过程的影响:积屑瘤高时切削力大,积屑瘤小时切削力小。

4、超精密切削时积屑瘤对加工表面粗糙度的影响:积屑瘤高度大,表面粗糙度大;积屑瘤小时表面粗糙度小。

5、超精密切削时极限最小切削厚度:超精密切削实际达到的最小切削厚度,是1nm。

6、超精密切削对刀具的要求:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r n值极小,能实现超薄切削厚度。3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。4)和工件的抗粘接性好,化学亲和性小,摩擦因数低,能得到极好的加工表面完整性。

7、为什么单晶金刚石被公认为理想的、不能替代的超精密切削的刀具材料。

天然金刚石有着一系列优异的特性,如硬度极高,耐磨性和强度高,导热性能好,和有色金属摩擦系数低,能磨出极其锋锐的切削刃等。

8、单晶金刚石有(100)、(110)、(111)三个主要晶面。

9、金刚石有人工目测定向、X射线定向和激光定向三种方法。

10、单晶金刚石的前面应选用(100)晶面。

11、试述金刚石刀具的固定方法包括机械夹固、用粉末冶金法固定和使用粘结或钎焊固定。

12、好磨难磨方向:习惯上把高磨削率方向成为“好磨方向”,把低磨削率方向称为“难磨方向”。

13、金刚石刀具适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。

14、单晶金刚石的破损机理主要产生于(111)晶面的解理。

15、单晶金刚石的磨损机理主要属机械磨损,其磨损的本质是微观解理的积累。

16、镜面:粗糙度值极小的超光滑表面。

17、固结磨料加工:将磨粒或微粉与结合剂粘在一起,形成一定的形状并具有一定强度,再采用烧结、粘接、涂敷等方法形成砂轮、砂条、油石、砂带等磨具。适用于精密和超精密砂轮磨削、精密和超精密砂带磨削、油石研磨、精密研磨等

18、游离磨料加工:在加工时,磨粒或微粉不是固结在一起,而是成游离状态、适用于磁性研磨、弹性发射加工、液体动力抛光等。

19、超精密磨削:指加工精度达到或高于0.1um,表面粗糙度小于Ra0.025um,是一种亚微米级的加工方法,并正向纳米级发展。

20、镜面磨削:指加工表面粗糙度达到Ra0.02~0.01um,表面光泽如镜的磨削方法。

21、ELID:电解在线修锐

22、砂带磨削的方式从总体上可以分为闭式和开式两大类。

23、砂带磨削的特点:1)弹性磨削 (弹性、柔性、减振、跑合与抛光)。2)冷态磨削 (散热时间长、切屑不易堵塞)。

3)高效磨削 (效率为铣削的10倍,为磨削的5倍) 。4)廉价磨削,制作简单,价格低廉,使用方便。 5)万能磨削,应用范围广,可用于内外表面及成形表面加工。

24、空气轴承的优缺点

优点:1)回转精度高、转速高,可达100,000r/min。2)转动平稳、几乎没有振动,因为完全空气润滑。3)不发热、即使在高速下,温升很小,变形小。4)摩擦阻力小、寿命长,因为几乎没有摩擦。5)因为不使用油,不存在密封和泄露问题。6)可靠性高、维护保养方便。

缺点:刚度低,承载能力不如液体静压轴承高,主要用于中、小型超精密加工机床。

26、超精密主轴有哪些驱动方式以及它们的优缺点:

1)电机通过带传递驱动机床主轴

优点:实现无级调速,使主轴尽可能和振动隔离

缺点:无法应用在采用T型总体布局的超精密机床上

2)电机通过柔性联轴器驱动机床主轴

优点:方便实现无级调速,提高超精密机床主轴的回转精度

缺点:主轴部件的轴向长度较长,使整个机床的尺寸加大

3)采用内装式同轴电动机驱动机床主轴

优点:提高主轴回转精度、主轴箱的轴向长度缩短、主轴箱成为独立机构、移动方便,具有结构紧凑、重量轻、惯性小、动态特性好等

缺点:电机发热,容易使主轴产生热变形

27、超精密车床有哪几种总体布局?各自的优缺点是什么?

1)十字形滑板工作台布局2)T形布局3)R— 布局4)偏心圆转角布局5)立式结构布局

28、简述精密和超精密机床使用的床身和导轨材料,并说明各自的优缺点

1)优质耐磨铸铁

优点:早期应用较多,工艺性好,可减振、热胀低

2)花岗岩

优点:尺寸稳定、热胀低、硬度高、可减振、不生锈,缺点:工艺性差、连接不便、吸潮

缺点:吸湿后产生变形,影响精度

3)人造花岗岩

优点:铸造成型,吸湿性低,对振动的衰减能力强

29、精密加工对微量进给装置的性能要求:1)微量进给和粗进给应分开,以提高微位移精度、分辨率和稳定性。2)运动部分应是低摩擦、高稳定,以实现高的重复精度。3)末级传动元件刚度高。4)微量进给装置机构内部连接可靠,尽量采用整体结构或刚性连接。5)工艺性好,容易制造。6)应具有好的动态特性,高的频率响应。7)微量进给装置能实现自动控制。

30、离线检测的含义和特点:

定义:工件加工完毕后,从机床上取下,在机床旁或在检测室中检测

特点:检测条件较好,不受加工条件限制,精度比较高

31、在位检测的含义和特点:

定义:工件加工完毕后,在机床上不卸下工件的情况下进行检测

特点:可免除离线检测时由于定位基准所带来的误差,其检测结果更接近实际加工情况

32、在线检测的含义和特点:

定义:工件在加工过程中同时进行检测

特点:1)能连续检测加工过程中误差的变化,了解误差的分布和发展,为误差补偿创造条件。2)检测结果能反映实际加工情况,费用高。3)测量仪器需要安装在机床上,检测条件不好。4)会受到加工过程条件的限制。5)大多采用非接触传感器。

33、误差补偿的含义及各种方式:

定义:在机械加工过程中产生的误差采取修正、抵消、均化、“钝化”等措施,使误差减小或消除。

形式:1)实时和非实时误差补偿2)软件与硬件误差补偿3)单项与综合误差补偿4)单维与多维误差补偿

34、误差补偿系统的组成及各组成部分作用:1)误差信号检测:确定误差项目,误差产生的原因。2)误差信号处理:去除干扰信号,分离不需要的误差信号。3)误差信号建模:建立加工误差与补偿控制量之间的关系——数学模型。4)补偿控制:补偿控制量;对于数控系统,补偿控制量就是正负脉冲数。5)补偿执行机构:具体执行补偿动作,微位移机构,要求位移精度高、分辨率高、频率响应快、刚度高等。

35、误差补偿的过程:1)反复检测误差出现的状况,分析其数值和方向,寻找其规律,找出影响误差的主要因素,确定误差项目。2)进行误差信号的处理,去除干扰信号,分离不需要的误差信号,找出工件加工误差与在补偿点补偿量之间的关系,建立相应的数学模型。3)选择或设计合适的误差补偿控制系统和执行机构,以便在补偿点实现补偿运动。4)验证误差补偿的效果,进行必要的调试,保证达到预期要求。

36、微位移系统应用于微进给、误差补偿和精密调整。

37、试述研磨加工的机理和特点:

机理:1)硬脆材料的研磨过程中,被加工材料的去除是依靠磨粒的滚轧作用或微切削作用。2)金属材料研磨时,磨粒的研磨作用可看作是相当于普通切削和磨削深度极小时的状态。

特点:1)微量进给2)按进化原理成形3)多刃多向切削

38、试述抛光加工的机理和特点:

机理:1)塑性生成切屑。2)磨料和抛光器与工件间的流动摩擦作用,使工件表面的凸凹变平。3)在加工液中进行化学性溶析。4)磨料与工件间直接化学反应。

特点:1)工作原理与研磨类似,加工表面质量更高。2)磨料更细。3)研具为软质材料。4)即使抛光脆性材料也不产生裂纹。

39、精密研磨、抛光时主要工艺因素有工艺设备、研具、磨粒、加工液、加工参数和加工环境。

40、微细加工:主要指1mm以下的微细尺寸零件,加工精度为0.01~0.001mm的加工,即微细度为0.1mm级的亚微米级的微细零件的加工。

41、微小尺寸加工和一般尺寸加工的不同:1)精度的表示方法2)微观机理3)加工特征

42、三束加工是指电子束、离子束和激光束。

44、精密和超精密加工的外部支撑环境的诸方面及控制要求:

45、空气洁净度的含义:空气中含尘埃量多少的程度

46、空气清洁度等级

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

精密和超精密加工论文

精密和超精密加工论文 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μ;m,表面粗糙度为Ra0.1~0.01μ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μ;m,最好可到Ra0.025μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μ;m,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μ;m,表面粗糙度Ra0.1μ;m。化学抛光加工的表面粗糙度一般为Ra≤0.2μ;m。电化学抛光可提高到Ra0.1~0.08μm。 超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。 超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对

精密与超精密加工试题和答案

1.精密和超精密加工的精度范围分别为多少?超精密加工包括哪些领域? 答:精密与超精密加工的精度随着科学技术的发展不断提高,以目前的加工能力而言,精密加工的精度范围是0.1~1μm,加工表面精度Ra在0.02~0.1μm之间。超精密加工的精度高于0.1μm,加工表面精度Ra小于0.01μm。 超精密加工领域: 1)超精密切削, 2)超精密磨削, 3)超精密研磨和抛光。 2.超精密切削对刀具有什么要求?天然单晶金刚石、人造单晶金刚石、人造聚 晶金刚石和立方氮化硼刀具是否适用于超精密切削? 答:超精密切削对刀具的要求: 1) 刀具刃口锋锐度ρ 刀具刃口能磨得极其锋锐,刃口圆弧半径ρ极小,能实现超薄切削厚度,减小切削表面弹性恢复和表面变质层。ρ与切削刃的加工方位有关,普通刀具5~30μm,金刚石刀具<10nm;从物理学的观点,刃口半径ρ有一极限。 2) 切削刃的粗糙度。 切削时切削刃的粗糙度将决定加工表面的粗糙度。普通刀刃的粗糙度Ry0.3~5 μm,金刚石刀具刀刃的粗糙度Ry0.1~0.2 μm,特殊情况Ry1nm,很难。 3) 极高的硬度、极高的耐磨性和极高的弹性模量,保证长的刀具寿命。 4) 刀刃无缺陷,足够的强度,耐崩刃性能。 5) 化学亲和性小、与工件材料的抗粘结性好、摩擦系数低,能得到极好的加工表面完整性。 单晶金刚石硬度极高。自然界最硬的材料,比硬质合金的硬度高5~6倍。摩擦系数低。除黑色金属外,与其它物质的亲和力小。能磨出极锋锐的刀刃。最小刃口半径1~5nm。耐磨性好。比硬质合金高50~100倍。导热性能好,热膨胀系数小,刀具热变形小。因此,天然单晶金刚石被一致公认为理想的、不能代替的超精密切削刀具。人造单晶金刚石已经开始用于超精密切削,但是价格仍然很昂贵。金刚石刀具不适宜切黑色金属,很脆,要避免振动而且价格昂贵,刃磨困难。 人造聚晶金刚石无法磨出极锋锐的切削刃,切削刃钝圆半径ρ很难达到<1μm,它只能用于有色金属和非金属的精切,很难达到超精密镜面切削。立方氮化硼现在用于加工黑色金属,但还达不到精密镜面切削。 3.超精密磨削主要用于加工哪些材料?为什么超精密磨削一般多采用超硬磨 料砂轮? 答:超精密磨削主要用于加工难加工材料,如各种高硬度、高脆性金属材料,其中有硬质合金、陶瓷、玻璃、半导体材料及石材等。 这主要是由超硬磨料砂轮的特点决定的 超精密磨削是一种极薄切削,切屑厚度极小,磨削深度可能小于晶粒的大小,磨削就在晶粒内进行,因此磨削力一定要超过晶体内部非常大的原子、分子结合力,从而磨粒上所承受的剪切应力就急速地增加,可能接近被磨材料的剪切强度极限。磨粒切削刃处受到高温和高压作用,要求磨粒材料有很高的高温强度和高温硬度。普通磨料,在高温高压和高剪切应力的作用下,磨粒将会很快磨损或崩裂,以随机方式不断形成新切削刃,虽然使连续磨损成为可能,但得不到高精度低表面粗糙度的磨削质量。因此,在超精密磨削时,一般采用人造

超精密加工技术论文

论述精密与超精密加工的工作环境 前言 超精密加工技术综合应用了机械技术发展的新成果及现代电子技术、测量技术和计算机技术等,是尖端技术产品发展中不可缺少的关键环节…。同时,超精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。从某种意义上说,超精密加工对先进制造技术特别是纳米技术对整个社会生产力水平的提高起到举足轻重的地位,也成为衡量一个国家科技发展的标准之一。 目前超精密加工还没有确切的定义,一般是指达到绝对加工精度为0.1μm或表面粗糙度为Ra 0.0lμm以及达到加工允差和加工尺寸之比为106的加工技术。超精密加工对环境的要求十分严格,纳米加工对环境的要求就更加苛刻。只有对它的支撑环境加以严格控制,才能保证加工精度。加工所需的支撑环境主要包括空气环境、热环境、振动环境、声环境和磁环境等几个方面。本文着重介绍温度环境以及振动环境两个方面的环境因素以及一般的解决措施。 一、温度控制 随着科学技术的飞速发展和国际竞争的加剧,超精密加工技术越来越成为工业化国家长远发展的根本支撑。保证良好的稳定加工条件是实现超精密加工的关键之一。据文献统计,在精密加工、超精密加工中机床热变形引起的加工误差占总误差的40%~70%。超精密加工60mm长的铝合金工件,温度变化1℃将产生1.35μm的误差。若确保0.1μm级加工精度,环境温度变化至少应控制在0.1℃范围内。 国外比较成功的经验是将机床加工部位或其特征部位实现局部恒温化,进行积极的温度控制,例如美国LLNL实验室把超精密机床放置在铝制框架和耐热塑料制成的掩蔽间中,从天棚顶向下吹入流量为20m3/min的恒温空气,采用冷却水-空气热交换方式的温控系统,达到±0.04℃的温控精度。 温度控制主要的2种传热介质是油和空气,油的热容比较高且不可压缩,所以油喷淋温度可以比气喷淋达到更高的控制精度,美国LLNL实验室使用恒温油对放在局部恒温玻璃罩内的一台双轴超精密金刚石车床进行喷射,可以使加工区域内的温度保持在20℃±0.06℃。然而,对于由于气浮运动所具有的低摩擦和高精度的突出特点,很多超精密机床和超精密机构采用了气喷淋的温度控制系统。本文介绍的气喷淋系统在较低的成本下,实现了超精密环境±0.05℃的温度控制精度。 环境规划 我们实现的超精密加工环境见图1。其一般控制区域为一无窗的房间,以避免日光的影响。房内未设置暖气,因为在冬季,暖气会引起很大的局部过热。该房间有一玻璃门与外界隔离。此区域的控制用较大功率的空调实现,其温度控制精度在3℃以内,设定温度比玻璃隔间内低4℃~5℃。操作人员在此区域内活动。 精密控制区域用双层玻璃与一般控制区隔开。使用石英电热管加热,最高功率达3kW。

精密和超精密加工

1、精密和超精密加工的三大领域:超精密切削、精密和超精密磨削研磨、精密特种加工。 2、金刚石刀具进行超精密切削时,适合加工铝合金、无氧铜、黄铜、非电解镍等有色金属 和某些非金属材料。 3、最硬的刀具是天然单晶金刚石刀具。金刚石刀具的的寿命用切削路程的长度计算。 4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性 能状态、切削时的环境条件等直接相关。 5、影响超精密切削极限最小切削厚度最大的参数是切削刃钝圆半径r n。 6、金刚石晶体有3个主要晶面,即(100)、(110)、(111),(100)晶面的摩擦因数曲线有 4个波峰和波谷,(110)晶面有2个波峰和波谷,(111)晶面有3个波峰和波谷。 以摩擦因数低的波谷比较,(100)晶面的摩擦因数最低,(111)晶面次之,(110)晶面最高。 比较同一晶面的摩擦因数值变化,(100)晶面的摩擦因数差别最大,(110)次之,(111)晶面最小。 7、实际金刚石晶体的(111)晶面的硬度和耐磨性最高。 推荐金刚石刀具的前面应选(100)晶面。 8、(110)晶面的磨削率最高,最容易磨;(100)晶面的磨削率次之,(111)晶面磨削率最 低,最不容易磨。 9、金刚石的3个主要晶面磨削(研磨)方向不同时,磨削率相差很大。现在习惯上把高磨 削率方向称为“好磨方向”,把低磨削率方向称为“难磨方向”。 10、金刚石磨损本质是微观解离的积累;破损主要产生于(111)晶面的解离。 11、金刚石晶体定向方法:人工目测定向、X射线晶体定向、激光晶体定向。其中激光晶体 定向最常用。 12、金刚石的固定方法有:机械夹固、用粉末冶金法固定、使用粘结或钎焊固定。 13、精密磨削机理包括:微刃的微切削作用,微刃的等高切削作用,微刃的滑挤、摩擦、 抛光作用。 14、超硬磨料砂轮修整的方法有:车削法、磨削法、滚压挤轧法、喷射法、电加工法、超 声波振动修整法。电解在线修锐法(ELID—electrolytic in—process dressing),原理是利用电化学腐蚀作用蚀出金属结合剂。. 15、砂带磨削的方式包括闭式砂带磨削和开式砂带磨削,又称为“弹性”磨削、“冷态”磨 削、“高效”磨削、“廉价”磨削、“万能”磨削。 16、超精密机床主轴的驱动方式主要有:电动机通过带传动驱动机床主轴、电动机通过柔 性联轴器驱动机床主轴、采用内装式同轴电动机驱动机床主轴。 17、今年生产的中小超精密机床多采用T形机床总体布局。 18、保证零件加工精度的途径: ○1靠所用的机床来保证,即机床的精度要高于工件所要求的精度,这是“蜕化”原则,也称之为“母性”原则。 ○2在精度比工件要求较低的机床上,利用误差补偿技术,提高加工精度,使加工精度比机床原有精度高,这是“进化”原则,也称之为“创造性”原则。 19、提高现有设备加工精度的途径:误差的隔离和消除和误差的补偿。 20、加工精度的检测分为:离线检测、在位检测和在线检测。 21、误差补偿的形式或方法包括:误差的修正、校正、抵消、均匀化、钝化、分离等。 22、误差补偿系统的组成:误差信号的检测、误差信号的处理、误差信号的建模、补偿控 制和补偿执行机构。

精密与超精密加工

摘要: Cu,Al 这两种金属及其合金对我们来说并不陌生,在我们的日常生活用品中,工厂,工件工艺品以及国家电力电网,航空航天等领域都有铜,铝的身影。不可否认的是,这两种金属对我们的生活生产有着很重要的影响。但就这两种金属而言,在自然界中总是以他们的化合物形式存在。随着工业化的推进,Cu化合物,Al化合物的形式越来越多样化,精度要求也越来越高,于是,对这些金属化合物的加工方法逐渐向着精密与超精密方向发展。 正文: Cu,Al及合金的精密与超精密加工方法的新展 Cu更Al在自然界是广泛分布的,而 Al是自然界中分布第二广的金属,由于其化学性质比较活泼,在外界总是以化合物的形式存在,Al2Co3,AlCl3,...都是其广泛存在的形式。Al还具有密度轻,导电性良好的特点,因此应用范围很大。在轻工业,有日用五金,家用电器;在电气行业,有高压输电线,变压器线圈,感应电动机;在电子行业的电视机,收音机,机械制造业、汽车行业、冶金行业、建筑行业、包装材料也有很多应用。 而Cu的化学性质不活泼,接近于惰性金属,但在自然界中也总是以化合物的形式存在。在空气中放一段时间,和铝一样,在其表面也有一层致密的氧化膜。Cu以其很好的导电性,良好的延展性以及耐腐蚀性,在输电线,印刷版,船舶上有很大的应用。 正是由于这些金属合金的广泛运用,因此其材料加工的精密程度就备

受关注。 一直以来,像铜,铝这样的金属材料可以用金刚石刀具切削,电化学加工法来溶解,氧化金属氧化物表面,使金属及其合金表面获得更高的加工精度。众所周知,精密加工通常是指加工精度在0.1~1um,加工表面粗糙度Ra在0.02~0.1um之间的加工方法称为精密加工,而将加工精度高于0。1um,加工表面粗糙度Ra小于0.01um的加工方法称为超精密加工。 比如铜及其合金的加工已经高度自动化,称为现代化大工业的重要组成部分。在现代生产中,铜的真空熔炼与铸锭方法可以生产电真空无氧铜、镍合金、含有易氧化烧损的铜合金。非真空感应熔炼、卧式连续铸造加工技术近十年来有巨大发展,主要表现为卧式连铸锡磷青铜的生产工艺。在特殊加工技术中,高精度异形铜带,内氧化弥散强化无氧铜,大面积杂断面异形铸造技术的发展就是现代铜加工技术精密化方向的展现。 纵观国内外40多年超精密机床发展史,可以总结出两大特点:一是大学和研究所保持着对超精密机床研究的持续热情,对高技术进行超前研究,对超精密机床产业化和商品化起着推动的作用;二是超精密机床的模块化、系统化是其进入市场的重要技术手段。 当今超精密机床技术的发展趋势是:技术上不断朝着加工的极限方向发展,向更高精度、更高效率方向发展,向大型化、微型化方向发展;功能上向加工检测补偿一体化方向发展;结构上向多功能模块化方向发展;功能部件上向新原理、新方法、新材料应用方面发展,总体来

精密和超精密加工基础试题

《精密超精密加工技术》期末试题 1~6题为必答题(每题10分)。 1.精密和超精密加工的精度范围分别为多少?超精密加工包括哪些领 域? 答:精密加工的精度范围为1μm~0.1μm、表面粗糙度为0.1μm~0.025μm;超精密加工的精度范围为高于0.1μm、表面粗糙度小于0.025μm。 超精密加工领域包括: (1)超精密切削加工。如采用金刚石刀具进行超精密切削,可进行各种镜面、反射镜、透镜等大型器件的精密加工。它成功地解决了激光核聚变系统和天体望远镜中地大型抛物面加工。 (2)超精密磨削和研磨抛光加工。如高密度硬磁盘地涂覆表面加工和大规模集成电路基片的加工,以及高等级的量块加工等。 (3)精密特种加工。如在大规模集成电路芯片上,采用电子束、离子束的刻蚀方法制造图形,目前可以实现0.1μm线宽。 2.超精密切削对刀具有什么要求?天然单晶金刚石、人造单晶金刚石、人 造聚晶金刚石和立方氮化硼刀具是否适用于超精密切削? 答:超精密切削对刀具性能的要求:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和尺寸耐用度。2)切削刃钝圆半径要极小,这样才能实现超薄切削厚度。3)切削刃无缺陷,因为切削时刃形将复印在加工表面上,切削刃无缺陷能得到超光滑的镜面。4)和工件材料的抗粘结性好、化学亲和性小、摩擦因数低,能得到极好的加工表面完整性。 天然单晶金刚石有着一系列优异的特性,如硬度强度耐磨性极高导热性好,与有色金属摩擦因数低,刀具钝圆半径极小等。虽然价格昂贵,仍被公认为理想不能替代的超精密切削刀具材料。 人造单晶金刚石现在已能工业生产,并已开始用于超精密切削,但它的价格仍很昂贵。 人造聚晶金刚石无法磨出极锋锐的切削刃,钝圆半径很难小于1微米,因此它只能用于有色金属和非金属的精切,很难达到超精密镜面切削。

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势 核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT电子信息高技术领域和军用、民用工业有广泛应用。同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度 Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μm,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μm,表面粗糙度Ra0.1μm。化学抛光加工的表面粗糙度一般为Ra≤0.2μm。电化学抛光可提高到Ra0.1~0. 08μm。

超精密加工技术论文

超精密加工技术简介论文 学校:XXXXX 学院:XXXX 班级:XXXXX 专业:XXXXX 姓名:XXXX 学号:XXXX 指导教师:XXX

目录 目录 .......................................................................................................................................... - 2 - 一、概述................................................................................................................... - 1 - 1、超精密加工的内涵...................................................................................... - 1 - 2.、发展超精密加工技术的重要性................................................................. - 1 - 二、超精密加工所涉及的技术范围....................................................................... - 2 - 三、超精密切削加工............................................................................................... - 3 - 1、超精密切削对刀具的要求.......................................................................... - 3 - 2、金刚石刀具的性能特征.............................................................................. - 3 - 3、超精密切削时的最小切削厚度.................................................................. - 3 - 四、超精密磨削加工............................................................................................... - 4 - 1、超精密磨削砂轮.......................................................................................... - 4 - 2、超精密磨削砂轮的修整.............................................................................. - 4 - 3、磨削速度和磨削液...................................................................................... - 5 - 五、超精密加工的设备........................................................................................... - 5 - 六、超精密加工的支撑环境................................................................................... - 6 - 1、净化的空气环境.......................................................................................... - 6 - 2、恒定的温度环境.......................................................................................... - 6 - 3、较好的抗振动干扰环境.............................................................................. - 7 - 七、超精密加工的运用领域................................................................................... - 7 - 八、超精密加工的现状及未来发展....................................................................... - 7 - 1、超精密加工的现状...................................................................................... - 7 - 2、超精密加工的发展前景.............................................................................. - 8 - 总结:....................................................................................................................... - 9 - 参考文献:.....................................................................................错误!未定义书签。

精密和超精密加工论文

精密和超精密加工论文(6000个字) 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

超精密加工技术的发展现状与趋势

超精密加工技术的发展现状与趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但 这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加 工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 1.1砂带磨削 用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 1.2精密切割 也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 1.3珩磨 用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、 韧性好的有色金属。 1.4精密研磨与抛光 通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求 的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方 法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配 偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 二、精密加工的发展现状 2.1精密成型加工的发展现状与应用 精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形 技术在工业发达国家受到高度重视,并投入大量资金优先发展。70年代美国空军主持制

精密和超精密加工

精密和超精密加工 1、微细加工:指制造微小尺寸零件的生产加工技术 2、电子束加工:利用电子束的高能量密度进行钻孔,切槽,光刻等工作 3、空气洁净度:指空气中含尘埃量多少的程度 4、恒温精度:指相对于空气平均温度所允许的偏差值 5、镜面磨削:一般指加工表面粗糙度达到Ra0.02-0.01um,表面光泽如镜的磨削方法 6、解理现象:是某些晶体特有的现象,晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象。 7、进化原则:即在精度比工件要求较低的机床上,利用误差补偿技术,提高加工精度,使加工精度比机床原有精度高。也称创造性原则。 8、研磨加工:是指利用硬度比被加工材料更高的微米级磨粒,在硬质研磨盘作用下产生的微切削和滚扎作用实现被加工表面的微量材料去除,使工件的形状,尺寸精度达到要求值,并降低表面粗糙度、减小变质层的加工方法。 1、最近出现的隧道扫描显微镜的分辨率是0.01nm,是目前世界上精度最高的测量仪,可用于测量金属和半导体零件表面的原子分布的形貌。最新研究,在扫描隧道显微镜下可移动原子实现精密工程最终目标--原子的精密加工 2、用金刚石刀具进行超精密切削,用于加工铝合金,无氧铜,黄铜,非电解镍等有色金属和某些非金属材料 3、使用切削液后,以消除了积屑瘤对加工表面粗糙度的影响,这时切屑速度已和加工表面粗糙度无关,这种情况和普通切削时钢的规律不同 4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度,使用的超精密机床的机能状态,切削的环境条件等都直接有关 4、金刚石有较大的热容量和良好的导热性,不适宜磨削,钢铁材料,不能加工黑色金属材料 5、无论是正电压或者负电压,传感器的伸长量是相同的 6、保证零件加工精密途径 1)靠所用机床保证即机床精度高于工件所要求精度,{蜕化原则母性原则}2)精度比工件要求较低的机床利用误差补偿技术提高加工精度,使加工精度化机床原有精度高{进化原则,创造性原则} 1、精度和超精度的三个领域 1)超精密切削 2)精密和超精密磨削研磨 3)精密特种加工 2、金刚石具有两个比较重要的问题 1)晶面的选择 2)金刚石刀具的研磨质量--切削刀钝圆半径rn

精密加工和超精密加工技术期末复习资料

考试复习题库 一、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、精密和超精密加工目前包含的三个领域:(超精密切削)、(精密和超精密磨削研磨)和(精密特种加工)。 2、金刚石晶体的激光定向原理是利用金刚石在不同的(结晶方向)上因晶体结构不同而对激光放射形成不同的(衍射图像)进行的。 3、金刚石刀具在超精密切削时所产生的积屑瘤,将影响加工零件的(表面质量)和(尺寸精度)。 4、目前金刚石刀具主要用于(铝、铜及其合金等软金属)材料的精密与超精密加工,而对于(黑色金属、硬脆)材料的精密与超精密加工,则主要应用精密和超精密磨料加工。 5、金刚石刀具在超精密切削时所产生的积屑瘤,将影响加工零件的(表面质量)和(尺寸精度)。 6、金刚石有(人工目测定向)、(X射线定向)和(激光定向)三种方法。 7、由于金刚石的脆性,在保证获得较小的加工表面粗糙度前提下,为增加切削刃的强度,应采用(较大)的刀具楔角β,故刀具的前角和后角都取得(较小)。 8、金刚石刀具适合加工(铝合金)、无氧铜、黄铜、(非电解镍)等有色金属和某些非金属材料。 9、单晶金刚石有(100 )、(110 )、(111 )三个主要晶面。 10、研磨金刚石晶体时,(110 )晶面摩擦因数最大,(100 )晶面次之,(111 )晶面最小。 11、在高磨削率方向上,(110 )晶面的磨削率最高,最容易磨;(100 )晶面的磨削率次之,(111 )晶面磨削率最低,最不容易磨。 12、单晶金刚石的(破损)机理主要产生于(111 )晶面的解理。 13、单晶金刚石的磨损机理主要属(机械磨损),其磨损的本质是(微观解理)的积累。 14、超硬磨料在当前是指(金刚石)和(立方氮化硼)以及它们为主

精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。 2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。 3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。 4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。 5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。 6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。 7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面: 1)超精密切削、磨削的基本理论和工艺。 2)超精密设备的关键技术、精度、动特性和热稳定性。 3)超精密加工的精度检测、在线检测和误差补偿。 4)超精密加工的环境条件。 5)超精密加工的材料。 8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。 9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。 10、为实现超精密切削,刀具应具有如下性能: 1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。 2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。 3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。 4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。 11、SPDT——金刚石刀具切削和超精密切削。 12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。 13、金刚石晶体定向方法有:人工目测定向;X射线晶体定向;激光晶体定向。 14、单晶金刚石刀具都用于超精密切削。衡量金刚石刀具质量的好坏,首先看其是否能加工出高质量的超光滑表面,其次是看它能否有较长的切削时间保持切削刃锋锐,切出极高质量的加工表面。 15、设计超精密切削用金刚石刀具最主要的问题有三个:优先切削部分的几何形状,前、后面选择最佳晶面,确定刀具结构和金刚石在刀具上的固定方法。 16、金刚石刀具粗研磨的主要任务是去除余量,这时的主要问题是如何提高研磨效率。 17、提高研磨质量,使切削刃研制更为锋锐,影响精研刀具质量的因素有:磨料粒度;研磨盘质量;研磨方向;精抛。 18、精密和超精密加工是利用细粒度的磨粒和微粉对黑色金属、硬脆材料等进行加工。 19、精密和超精密磨料加工可分为固结磨料和游离磨料两大类加工方式。 20、涂覆磨具结构包括基底、粘接膜、粘接剂(底胶)、粘接剂(覆胶)、磨粒。 21、磨床应满足以下要求:1)高几何精度;2)低速进给运动的稳定性;3)减少振动。

相关文档
最新文档