不锈钢的固溶处理与稳定化处理

不锈钢的固溶处理与稳定化处理
不锈钢的固溶处理与稳定化处理

不锈钢的固溶处理与稳定化处理

不锈钢固溶处理的目的是获得单相奥氏体组织,提高耐蚀性。稳定化处理

的目的是使溶于奥氏体中的碳与钛以碳化钛的形式充分析出,而碳不再同铬形成碳化物,从而有效地消除了晶界贫铬的可能,避免了晶间腐蚀的产生。固溶温度一般980-1100℃.稳定化温度一般 850-900℃.

碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内(敏化温度区域)时,会有高铬碳化物(Cr23C6)析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。

固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本

溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。这种热处理方法为固溶热处理。

固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。

稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物(由于Ti和Nb 能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr的目的。

经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机械性能。

不锈钢管固溶处理退火处理的作用

不锈钢管固溶处理退火处 理的作用 The latest revision on November 22, 2020

不锈钢管固溶处理退火处理的作用奥氏体不锈钢通过固溶处理来软化,一般将不锈钢管加热到950~1150℃左右,保温一段时间,使碳化物和各种合金元素充分均匀地溶解于奥氏体中,然后快速淬水冷却,碳及其它合金元素来不及析出,获得纯奥氏体组织,称之为固溶处理。固溶处理的作用有3点。⑴使钢管组织和成分均匀一致,这对原料尤其重要,因为热轧线材各段的轧制温度和冷却速度不一样,造成组织结构不一致。在高温下原子活动加剧,σ相溶解,化学成分趋于均匀,快速冷却后就获得均匀的单相组织。 ⑵消除加工硬化,以利于继续冷加工。通过固溶处理,歪扭的晶格恢复,伸长和破碎的晶粒重新结晶,内应力消除,钢管抗拉强度下降,伸长率上升。 ⑶恢复不锈钢固有的耐蚀性能。由于冷加工造成碳化物析出,晶格缺陷,使不锈钢耐蚀性能下降。固溶处理后钢管耐蚀性能恢复到最佳状态。对于不锈钢而言,固溶处理的3个要素是温度、保温时间和冷却速度。固溶温度主要根据化学成分确定。一般说来,合金元素种类多、含量高的牌号,固溶温度要相应提高。特别是锰、钼、镍、硅含量高的钢,只有提高固溶温度,使其充分溶解,才能达到软化效果。但稳定化钢,如1Cr18Ni9Ti,固溶温度高时稳定化元素的碳化物充分溶解于奥氏体中,在随后的冷却中会以Cr23C6的形态在晶界析出,造成晶间腐蚀。为使稳定化元素的碳化物(TiC和NbC)不分解、不固溶,一般采用下限固溶温度。不锈钢俗话说就是不容易生锈的钢,实际上有一部分的不锈钢,既含有不锈性,又含有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是因为它表面上富铬氧化膜(钝化膜)的形成。其中不锈性和耐蚀性是相对的。实验证明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性就会随钢中铬含水量的增加而提高,则是成正比例的.当铬含量达到一定的百分比时,钢的耐蚀性就发生突变,即从易生锈到不易生锈,

不锈钢的热处理

合金元素对不锈钢组织和性能的影响 1铬 决定不锈钢耐蚀性的主要元素是铬。这是由于钢中含有足够量的铬时,钢在氧化性介质中就可形成以Cr2O3为基体的稳定的表面防护膜;同时,铬能够有效地提高固溶体(铁素体、马氏体或奥氏体)的电极电位,从而使钢不受腐蚀。铬对提高钢的电极电位是遵循n/8规律的。即当铬良达到n/8原子(1/8、2/8、3/8…或12.5%、25%、37.5%…)时,电极电位有一个跃增,见下图铬的原子浓度占1/8(即12.5%),若以质量计,为11.7%,所以铬不锈钢的含铬量都在12%以上。 2碳 碳的影响主要表现在两方面,一方面它是稳定奥氏体的元素,并且作用很大,相当于镍的30倍;另一方面,由于碳和铬的亲和力很强,它与铬可形成一系列的复杂碳化物,其成分随钢中含铬量的不同而异,含铬量少于10%

时,主要是渗碳体型碳化物(Fe,Cr)3C;在高铬钢中则形成复杂的碳化物(Cr,Fe)7C3或(Cr,Fe)23C6。因此,钢中含碳两越高,其抗腐蚀性就越低。对于不锈钢来说,要求耐蚀性是主要目底,故不锈钢的含碳量一般都较低,大多数仅为0.1~0.2%,一般不超过0.4%。只有在少数情况下,例如用作滚动轴承、弹簧和刃具时,由于要求高的硬度和耐磨性,才将含碳量提高至0.85%~0.95%(如9Cr18钢)。但为了保持一定的耐蚀性,这;类钢的含铬量也相应地要高些。 3镍 镍是形成奥氏体的合金元素,但镍的作用只有与铬配合时才会充分发挥出来,若单独使用镍而不使用铬,低碳镍钢要获得纯奥氏体的单相组织,含镍量需高达24%,事实上含镍量达到27%时才能提高钢的耐蚀性,故在不锈钢中没有单独以镍作为合金元素的。当镍和铬配合时,镍提高钢的耐蚀作用就显著地表现出来。 向铁素体不锈钢中加入少量的镍,即可使金相组织由单相铁素体转变为铁素体和奥氏体两相状态,这样就可通过热处理来改善和提高其机械性能。例如,单相铁素体的Cr17钢是不能通过热处理提高机械强度的,其抗拉强度只有400MN/m2左右,但加入2%镍的Cr17Ni2钢,经10000C油冷淬火和3000C回火后,抗拉强度可达1100MN/m2。这是由于镍的加入,组织具有γ→α的转变的缘故。

不锈钢和耐热钢热处理》热处理方法选择

《JB/T 9197-2005不锈钢和耐热钢热处理》热处理方法选择 《JB/T 9197-2005不锈钢和耐热钢热处理》是机械行业于2008年6月4日发布,11月1日实施的行业标准,其中规定了不锈钢和耐热钢热处理的方法及所用的设备、工艺、工艺材料、质量检验和安全技术。其中热处理方法的选择有: 一、热处理不可强化的不锈钢和耐热钢 1.要求提高抗腐蚀性能和抗塑性、消除冷作硬化的工件,应进行固溶处理。 2.对于形状复杂不宜固溶处理的工件,可边井于去应力退火。 3.含钦或妮的不锈钢,为了获得稳定的抗腐蚀性能,可进行稳定化退火。 二、热处理可强化的不锈钢和耐热钢 1.要求提高强度、硬度和抗腐蚀性能的工件,应进行淬火加低温回火处理。 2.要求较高的强度和弹性极限、而对抗腐蚀性要求不高的工件,应进行淬火加中温回火处理。 3.要求得到良好的力学性能和一定的抗腐蚀性能的工件,应进行淬火加高温回火处理。 4.要求消除加工应力、降低硬度和提高塑性的工件,可进行退火处理。 5.要求改善原始组织的工件,可进行正火加高温回火的预备热处理。 6.要求得到良好的力学性能和抗腐蚀性能的沉淀硬化型不锈钢工件,可进行固溶加时效,固溶加深冷处理或冷变形加时效等调整处理。 三焊接组合件 1.由热处理可强化的不锈钢和耐热钢构成的焊接组合件,根据工件图样的要求,可进行淬火加回火或去应力退火。 2.由热处理不可强化的不锈钢和耐热钢构成的焊接组合件,要求改善焊缝区域组织和抗腐蚀性能以及较充分地消除应力时,可进行固溶处理。对于形状复杂不宜进行固溶处理的焊接组合件,可采用去应力退火。 3.由热处理可强化与不可强化的不锈钢和耐热钢构成的焊接组合件,当要求以抗腐蚀性能为

不锈钢管固溶处理退火处理的作用

不锈钢管固溶处理退火处理的作用 奥氏体不锈钢通过固溶处理来软化,一般将不锈钢管加热到 950~1150℃左右,保温一段时间,使碳化物和各种合金元素充分均匀地溶解于奥氏体中,然后快速淬水冷却,碳及其它合金元素来不及析出,获得纯奥氏体组织,称之为固溶处理。固溶处理的作用有3 点。⑴使钢管组织和成分均匀一致,这对原料尤其重要,因为热轧线材各段的轧制温度和冷却速度不一样,造成组织结构不一致。在高温下原子活动加剧,σ 相溶解,化学成分趋于均匀,快速冷却后就获得均匀的单相组织。 ⑵消除加工硬化,以利于继续冷加工。通过固溶处理,歪扭的晶格恢复,伸长和破碎的晶粒重新结晶,内应力消除,钢管抗拉强度下降,伸长率上升。 ⑶恢复不锈钢固有的耐蚀性能。由于冷加工造成碳化物析出,晶格缺陷,使不锈钢耐蚀性能下降。固溶处理后钢管耐蚀性能恢复到最佳状态。对于不锈钢而言,固溶处理的3 个要素是温度、保温时间和冷却速度。固溶温度主要根据化学成分确定。一般说来,合金元素种类多、含量高的牌号,固溶温度要相应提高。特别是锰、钼、镍、硅含量高的钢,只有提高固溶温度,使其充分溶解,才能达到软化效果。但稳定化钢,如1Cr18Ni9Ti,固溶温度高时稳定化元素的碳化物充分溶解于奥氏体中,在随后的冷却中会以Cr23C6 的形态在晶界析出,造成晶间腐蚀。为使稳定化元素的碳化物(TiC 和NbC)不分解、不固溶,一般采用下限固溶温度。不锈钢俗话说就是不容易生锈的钢,实际上有一部分的不锈钢,既含有不锈性,又含有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是因为它表面上富铬氧化膜(钝化膜)的形成。其中不锈性和耐蚀性是相对的。实验证明,钢在大气、水等弱介质中和硝酸等

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450℃~850℃(此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内(敏化温度区域)时,会有高铬碳化物(Cr23C6)析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。 不同的不锈钢固溶化的温度烧有不同, 304,316等奥氏体不锈钢一般是1050℃,奥氏体-铁素体双相不锈钢要高一点,可到1150℃. 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。我是搞火电的,回答可能不太全面,谁知道的可以继续补充。 在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物。这是因为Ti(或Nb)

sus304不锈钢固溶处理的具体工艺过程

sus304不锈钢固溶处理的具体工艺过程 标签:不锈钢处理具体工艺过程时间:2010-03-16 09:18:00 点击:回帖:0 上一篇:库存首次下滑钢材毛利见底回升下一篇:福科斯住宅小区防盗报警系统方案 18-8奥氏体不锈钢热处理工艺--- 由于含有较高的镍且在室温下呈奥氏体单相组织,所以它与Cr13不锈钢相北具有高的耐蚀性,在低温、室温及高温下均有较高的塑归和韧性,以及较好的冷作成型和焊接性。但室温下的强度较低,晶间腐蚀及应力腐蚀倾向较大,切削加工性较差。 奥氏体在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理:1)固溶处理;其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100C之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右。 2)除应力退火;为了消除冷加工后的残余应力,处理在较低的温度下进行。一般加热至250-425C,经常采用的是300-350C。对于不含钛或铌的钢不应超过450C,以免析出碳化铬而引起晶间腐蚀。 为了消除焊接后的残余应力,消除钢对应力腐蚀的敏感性,处理一般在较高的温度下进行。加热温度一般不低于850C。冷却方式,对于含有钛或铌的钢可直接在空气中冷却;对于不含有钛或铌的钢应水冷至500C以后再在空气中冷却。 3)稳定化处理;为了防止钛和铌的奥氏体不锈钢在焊接或固溶处理时,由于TiC和NbC减少而引起耐晶间腐蚀性能降低,需将这种不锈钢加热到一定温度后(该温度使铬的碳化物完圣溶于奥氏体,而TiC和NbC只部分溶解)再缓冷。在冷却过程中,使钢中的碳充分地与钛和铌化合,析出稳定的TiC和NbC,而不析出铬的碳化物,从而消除18-8奥氏体不锈钢的晶间腐蚀倾向,这种处理过程称之为稳定化处理。 18-8不锈钢稳定化退火,一般是加热到850-880C,保温2-6h,随后进行空冷或炉冷。

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450C?850 C (此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400C?850C的温度范围内(敏化温度区域)时,会有高铭碳化物 (Cr23C6)析出,当铭含量降至耐腐蚀性界限之下,此时存在晶界贫铭,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。 不同的不锈钢固溶化的温度烧有不同,304,316等奥氏体不锈钢一般是1050 C,奥氏体-铁素体双相不锈钢要高一点,可到1150 C . 固溶热处理:将奥氏体不锈钢加热到1100 C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的淬火'与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100 C。 我是搞火电的,回答可能不太全面,谁知道的可以继续补充

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875C以上温度时,能形成稳定的碳化物。这是因为Ti (或Nb)能优先与碳结合,形成TiC (或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti (或Nb)保护Cr的目的。含Ti (或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti , 1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875 C以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机 械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳 定化处理

不锈钢的热处理

不锈钢的热处理 304是奥氏体型不锈钢,想通过热处理来改变切削加工性能是不现实的。其他钢种可以通过退火或正火来改变组织,从而改变切削加工性能,是因为其他钢在加热和冷却过程中发生组织转变,因为组织决定了性能,因此改变了切削加工性能,而奥氏体不锈钢,室温是奥氏体,加热到高温也是奥氏体,不发生组织转变,所以热处理不能够改变其切削加工性能的,奥氏体不锈钢的热处理通常只有固溶处理、再结晶退火和去应力退火之类的,固溶处理是改变耐蚀性的,再结晶退火是消除加工硬化恢复塑性的,去应力退火是消除加工过程中产生的应力的,所以,期望通过热处理改变奥氏体不锈钢的切削加工性是不现实的。每种材料有各自的特点,热处理工艺也不一定通用,玉米面包饺子肯定不行,虽然也是面粉。奥氏体不锈钢的切削加工,只能够通过改变刀具、切削加工工艺参数来解决。 铸钢件铸造成型后,通常都是要进行热处理的。因为热处理前铸件晶粒较粗大、组织方向性明显、力学性能较低,根据铸件的不同要求制定热处理工艺。 普通要求铸钢件,采用退火处理,软化易于加工;要求强度的要正火处理,要求硬度的要淬火处理;固溶处理,提高耐腐蚀性能。 铸造不锈钢一般为奥氏体.在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理: 固溶处理:其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100℃之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右 回火又称配火。金属热处理工艺的一种。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。②存在较大内应力。③力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。 回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。 调质即淬火和高温回火的综合热处理工艺。不锈钢做不了调质热处理,因为达不到硬度。 高碳铬不锈钢中的铬含量很高,导热性差,锻后应及时退火,以免发生裂纹。 比如95cr18钢球化退火工艺

304不锈钢的固溶热处理工艺之令狐文艳创作

304不锈钢的固溶处理热处理工艺 令狐文艳 摘要 研究了不同热处理工艺对304奥氏体不锈钢组织和性能的影响。304奥氏体不锈钢试块进行1050℃保温30min固溶处理,分别在水中和在空气中冷却。结果发现得出组织均为单相奥氏体,水中冷却不锈钢硬度更高,说明水冷后获得更大的内应力。原材料进行650℃保温60min敏化处理和800℃保温60min敏化处理,对比得出在800℃保温60min时更容易发生晶间腐蚀。因此,304不锈钢热处理时应避免在敏化温度区间内较高温度停留较长的时间。 奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、含Ni8%—10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,等元素,则具有良好的易切削性。此类钢除耐氧化性、酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、N,就可显著提高其耐晶间腐蚀性能。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用[1—5]。 304奥氏体不锈钢作为一种用途广泛的钢,具有良好的腐蚀

性、耐热性、低温强度和机械性能;冲压、弯曲等热加工性好,无热处理硬化现象,无磁性。用于家庭用品(餐具、橱柜、锅炉、热水器),汽车配件,医疗器具,建材,化学,食品工业,船舶部件。根据不同的要求,其常用的热处理工艺主要有:固溶处理、稳定化处理和去应力处理等[6,7],由其应用的广泛性,其热处理工艺的研究对生产有很好的指导意义。1实验方法实验原材料为304奥氏体不锈钢(国内牌号为0Cr18Ni9)化学成分为碳≤0.08%,硅≤1.00%,锰≤2.00%,磷≤0.045%,硫0.03%,镍8.0%—10.5%,铬18%—20%。原材料通过热轧而成,切割成直径20mm,高20mm 的圆柱体试样。对试样分别在1050℃,保温30min空冷和水冷进行固溶处理,在650℃并保温1h段后空冷和800℃并保温1h空冷至室温,进行敏化处理。对原材料和热处理试样采用洛氏硬度计和金相显微镜进行硬度和金相组织分析。 2实验结果与讨论 2.1原材料夹杂物的测定结果 按照国标《GB/T10561—2005钢中非金属夹杂物含量的测定》实验方法,对原材料非金属夹杂物如图1所示,在100倍下与标准图对比,可以得出原材料含有两类夹杂物。沿轧制方向排成一列为氧化铝类(B类),从粒度粗细和长度可以判断是细系,1.5级。形态比小,成黑色无规则分布的颗粒为球状氧化物类(D类),从粒度和数量可以判断是细系,1.5

固溶处理

固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 solution treatment 1. 目的 编辑 主要是改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。 使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。 适用 多种特殊钢,高温合金,特殊性能合金,有色金属。 尤其适用:1.热处理后须要再加工的零件。 2.消除成形工序间的冷作硬化。 3.焊接后工件。 原理 序言 固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。 固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。 不锈钢固溶热处理 碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎像普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。

固溶热处理工艺

固溶热处理工艺:(1)加热及冷却制度: 钢号壁厚mm 在制品成品 式冷却方温度℃转速r/min 温度℃转速r/min 0Cr18Ni9 1Cr18Ni9 0Cr18Ni9Ti 1Cr18Ni9Ti 1Cr19Ni9 0Cr18Ni10Ti TP304 TP321 1~2 1050~1100 800~900 1020~1050 700~800 喷淋 薄壁管可 以风冷或 空冷 2~3 1050~1100 700~800 1020~1050 600~700 3~4 1050~1100 700~800 1020~1050 600~700 4~5 1080~1120 700~800 1020~1050 550~650 5~6 1080~1120 600~700 1020~1050 500~600 6~7 1080~1120 550~650 1020~1050 500~600 7~8 1080~1120 450~550 1020~1050 400~500 8~9 1080~1120 400~500 1020~1050 400~500 9~10 1080~1120 400~500 1020~1050 300~400 10~11 1080~1120 400~500 1020~1050 300~400 11~12 1080~1120 350~450 1020~1050 200~300 12~13 1080~1120 300~400 1020~1050 200~300 13~14 1080~1120 250~400 1020~1050 150~300 14~15 1080~1120 200~350 1020~1050 100~250 16~17 1080~1120 150~300 1020~1050 50~150 >17 1080~1120 100~250 1020~1050 50~150 00Cr19Ni10 1Cr18Ni12Mo2Ti 0Cr18Ni12Mo2Ti 0Cr17Ni12Mo2 00Cr17Ni14Mo2 TP304L TP316 TP316L TP316Ti 1~2 1050~1100 800~900 1040~1080 700~800 2~3 1050~1100 700~800 1040~1080 600~700 3~4 1050~1100 700~800 1040~1080 600~700 4~5 1080~1120 700~800 1040~1080 550~650 5~6 1080~1120 600~700 1040~1080 500~600 6~7 1080~1120 550~650 1040~1080 500~600 7~8 1080~1120 450~550 1040~1080 400~500 8~9 1080~1120 400~500 1040~1080 400~500 9~10 1100~1130 400~500 1040~1080 300~400 10~11 1100~1130 400~500 1040~1080 300~400 11~12 1100~1130 350~450 1040~1100 200~300 12~13 1100~1130 300~400 1040~1100 200~300 13~14 1100~1130 250~400 1040~1100 150~300 14~15 1100~1130 200~350 1040~1100 100~250 16~17 1100~1130 150~300 1040~1100 50~150 >17 1100~1130 100~250 1040~1100 50~150 注:¢∠133 时;时间为15~35 分钟¢≥133 时;时间为20~40 分钟 注:炉辊线速度约为0.15m / 100转/分 (1)必须经常用红外测温仪和自动记录仪表显示的温度进行校对,发现异常必须及时向有关人员汇报,并得到有关人员书面指示后方可继续生产操作。 (2)喷淋装置的上下喷淋冷却水量要足够大,而且要有适当的配比以保证快速冷却和最小的弯曲度。(3)成品热处理后,各项性能指标应符合的技术标准(常见钢种的强度指标和延伸指标见上表)。

奥氏体不锈钢的热处理工艺

奥氏体不锈钢的热处理工艺 依据化学成分、热处理目的的不同,奥氏体不锈钢常采用的热处理方式有固溶化处理、稳定化退火处理、消除应力处理以及敏化处理等。 1 固溶化处理 奥氏体不锈钢固溶化处理就是将钢加热到过剩相充分溶解到固溶体中的某一温度,保持一定时间之后快速冷却的工艺方法。奥氏体不锈钢固溶化热处理的目的是要把在以前各加工工序中产生或析出的合金碳化物,如(FeCr)23C6等以及σ相重新溶解到奥氏体中,获取单一的奥氏体组织(有的可能存在少量的δ铁素体),以保证材料有良好的机械性能和耐腐蚀性能,充分地消除应力和冷作硬化现象。固溶化处理适合任何成分和牌号的奥氏体不锈钢。 2 稳定化退火 稳定化退火是对含稳定化元素钛或铌的奥氏体不锈钢采用的热处理方法。采用这种方法的目的是利用钛、铌与碳的强结合特性,稳定碳,使其尽量不与铬结合,最终达到稳定铬的目的,提高铬在奥氏体中的稳定性,避免从晶界析出,确保材料的耐腐蚀性。 奥氏体不锈钢稳定化处理的冷却方式和冷却速度对稳定化效果没有多大影响,所以,为了防止形状复杂工件的变形或为保证工件的应力最小,可采用较小的冷却速度,如空冷或炉冷。 3 消除应力处理 确定奥氏体不锈钢消除应力处理工艺方法,应根据材质类型、使用环境、消除应力目的及工件形状尺寸等情况,注意掌握一些原则。 去除加工过程中产生的应力或去除加工后的残留应力。可采用固溶化处理加热温度并快冷,I类、II类奥氏体不锈钢可采用较缓慢的冷却入式。为保证工件最终尺寸的稳定性。可采用低的加热温度和缓慢的冷却速度。为消除很大的残留应力。消除在工作环境中可能产生新应力的工件的残余应力或为消除大截面焊接件的焊接应力,应采用因溶化加热温度,III 类奥氏体不锈钢必须快冷。这种情况最好选用I类或II类奥氏体不锈钢,加热后缓慢冷却,消除应力的效果更好。为消除只能采用局部加热方式工件的残留应力。应采取低温度加热并缓慢冷却的方式。 4 敏化处理 敏化处理实际上不属于奥氏体不锈钢或其制品在生产制造过程中应该采用的热处理方法。而是作为在检验奥氏体不锈钢抗晶间腐蚀能力进行试验时所采用的一个程序。 敏化处理实质上是使奥氏体不锈钢对晶间腐蚀更敏感化的处理。对—些特殊使用场合,为更严格地考核材料的抗晶间腐蚀能力,在某些标准中,对奥氏体尽锈钠的敏化制度规定得更为苛刻,依据工件将来使用的温度及材料的含碳里以及是否含钳元素等因素而采用不同的敏化制度。有的还对敏化处理的升、降温速度加以控制。所以,在判定奥氏体不锈钢晶间腐蚀倾向性大小时,应注意采用的敏化制度。 5 奥氏体不锈钢的冷加工强化及去应力处理 奥氏体不锈钢不能用热处理方法强化,但可以通过冷加工变形得以强化(冷作硬化、形变强化),会使强度提高、塑性下降。奥氏体不锈钢或制品(弹簧,螺栓等)经冷加工变形强化后,存在较大的加工应力,这种应力的存在导致在应力腐蚀环境中使用时,增加了应力腐蚀的敏

304不锈钢可以热处理加硬吗

304不锈钢可以热处理加硬吗 304不锈钢,是美国的标准叫法。SUS304则是日本的叫法。也就是我国的0Cr18Ni9 ,常温下为奥氏体,淬火工艺无法实现硬化,可采用渗氮处理表面强硬化,但深度是很有限的。 304一类的奥氏体不锈钢,不能通过高温热处理提高硬度,一般采用固溶处理,提高耐蚀性与降低硬度。 奥氏体提高硬度有以下方法: 一、QPQ处理,硬度高,但表面呈黑色,无本色,耐蚀性较好 二、对于变形大的产品,可以采用时效处理,基本上在基体的基础上提高200(Hv)视变形程度而定 三、形变硬化 410一类的马氏体不锈钢: 采用高温热处理可以提高硬度,也可采用退火工艺降低硬度 17-4一类的沉淀硬化型不锈钢 先固溶,再时效可提高硬度 316不锈钢可以热处理调质吗?要求抗拉强度大于800N/mm2。 不锈钢热处理知识 淬火 (C) 将金属或其制品加热到给定温度,并保温一定时间,然后快速冷却(常在水、油中冷却),称为淬火。一般经淬火处理后硬度大大增加,但塑性降低。 回火 将经过淬火的金属重新加热到给定温度,并保温一定时间后进行冷却的工艺叫回火。其目的是消除淬火所产生的内应力,降低硬度和脆性,获得所需要的机械性能(高温回火也叫调质)。 正火 将金属加热到一定的温度,并保温一定时间,然后在空气中冷却,这种工艺叫正火。正火可以细化组织,消除内应力,改善机械性能和切削加工性能。 退火 (M) 将金属加热到一定的温度,并保温一定时间,然后缓慢冷却,这种工艺叫退火。退火可消除内应力,降低硬度和脆性,增加塑性,改善切削加工性能。 时效 金属或其制品在热处理或铸造、锻造等加工后,在室温下(自然时效)或较高温度(人工时效)下搁置较长时间的一种热处理。其作用是消除内应力,稳定组织、强化机械性能。 渗碳 将碳渗入金属件表面层,以增加其淬火后硬度的化学热处理工艺叫渗碳。经渗碳及淬火处理

固溶处理和时效处理

固溶处理和时效处理 1、固溶处理 所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。适用 多种特殊钢,高温合金,特殊性能合金,有色金属。 尤其适用:1.热处理后须要再加工的零件。 2.消除成形工序间的冷作硬化。 3.焊接后工件。 原理 序言 固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处

理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。 不锈钢固溶热处理 碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。 淬火 钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms 以下进行马氏体转变的热处理工艺。 通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。 淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨

(完整word版)热处理试题

1.何谓钢的球化退火,其目的是什么? 主要适用于哪些钢材? 是使钢中碳化物球状化而进行的退火 目的:降低硬度、改善切削加工性,为以后淬火做准备,减小工件淬火畸变和开裂;主要用于共析钢、过共析钢的锻轧件及结构钢的冷挤压件等。 2.简述淬火冷却方法(至少说出五种)。 1)水冷:用于形状简单的碳钢工件,主要是调质件;2)油冷:合金钢、合金工具钢工件。3)延时淬火:工件在浸入冷却剂之前先在空气中降温以减少热应力;4)双介质淬火:工件一般先浸入水中冷却,待冷到马氏体开始转变点附近,然后立即转入油中缓冷;5)马氏体分级淬火:钢材或工件加热奥氏体化,随之浸入稍高或稍低于钢的上马氏体点的液态介质(盐浴或碱浴)中,保持适当时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺。用于合金工具钢及小截面碳素工具钢,可减少变形与开裂;6)热浴淬火:工件只浸入150-180℃的硝烟或碱浴中冷却,停留时间等于总加热时间的1/3-1/2,最后取出在空气中冷却;7)贝氏体等温淬火:钢材或工件加热奥氏体化,随之快冷到贝氏体转变温度区域(260-400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺。用于要求变形小、韧性高的合金钢工件 3.简述淬透性概念及其影响因素。 钢在淬火时能够获得马氏体的能力即钢被淬透的深度大小称为淬透性。其影响因素有:1. 亚共析钢含碳量↑,C曲线右移,过共析钢含碳量↑,C曲线左移;2.合金元素(除Co外)使C 曲线右移;3.奥氏体化温度越高、保温时间越长,碳化物溶解越完全,奥氏体晶粒越粗大,使C 曲线右移;4.原始组织越细,使C曲线右移,Ms点下降;5.拉应力加速奥氏体的转变,塑性变形也加速奥氏体的转变。 4.钢的回火分哪几类?说出低温回火的适用性(目的)。 (1)低温:150-250℃,用于工模具、轴承、齿轮等。(2)中温:250-500℃,用于中等硬度的零件、弹簧等。(3)高温:500-700℃,用于各种轴累、连杆、螺栓等。 低温回火的适用性(目的):消除淬火应力、稳定尺寸、减少变形和开裂,一定程度上减少残余奥氏体量。 5.什么是碳氮共渗中的黑色组织?它的危害性是什么?防止措施是什么 黑色组织是指碳氮共渗表层中出现的黑点、黑带和黑网。它会使工件弯曲疲劳强度、接触疲劳强度降低,耐磨性下降。为防止黑色组织的出现,渗层中氮含量不宜过高,也不宜过低。通过提高淬火温度或增强冷却能力抑制屈氏体网的出现。 6.简述零件感应加热淬火的基本原理。 是利用通入交流电的加热感应器在工件中产生一定频率的感应电流,感应电流的集肤效应使工件表面层被快速加热到奥氏体区后,立即喷水冷却,工件表层获得一定深度的淬硬层。 7.什么叫喷丸强化?对材料表面形貌与性能有什么影响? 利用高速喷射的细小弹丸在室温下撞击受喷工件的表面,使受层材料在再结晶温度下产生弹、塑性变形,并呈现较大的残余压应力,从而提高工件表面强度、疲劳强度和抗应力腐蚀能力的表面工程技术。8.为什么亚共析钢经正火后,可获得比退火高的强度与硬度? 由于正火的冷却速度比退火的冷却速度快,因而可以抑制铁素体的析出,增加珠光体量,且得到的珠光体组织更细小,所以可获得比退火高的强度与硬度。 9.高速钢刀具深冷处理为什么能提高刀具使用寿命? 高速钢刀具深冷处理后获得4%左右(体积分数)稳定残留奥氏体,稳定残留奥氏体中存在大量内部位错缠结而使其自身强化;深冷处理过程中转变的片状不完全孪晶马氏体,含碳及合金元素量较高,于是强化了α固溶体;深冷处理并回火后能析出比常规热处理尺寸小而多的片状MC型碳化物,使高速钢抗回火性、塑韧性和耐磨性提高。 10.简述激光热处理的原理,与感应加热淬火相比优点是什么?

304固溶热处理

18-8奥氏体不锈钢热处理工艺--- 由于含有较高的镍且在室温下呈奥氏体单相组织,所以它与Cr13不锈钢相北具有高的耐蚀性,在低温、室温及高温下均有较高的塑归和韧性,以及较好的冷作成型和焊接性。但室温下的强度较低,晶间腐蚀及应力腐蚀倾向较大,切削加工性较差。 奥氏体在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理: 1)固溶处理;其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100C之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右。 2)除应力退火;为了消除冷加工后的残余应力,处理在较低的温度下进行。一般加热至250-425C,经常采用的是300-350C。对于不含钛或铌的钢不应超过450C,以免析出碳化铬而引起晶间腐蚀。 为了消除焊接后的残余应力,消除钢对应力腐蚀的敏感性,处理一般在较高的温度下进行。加热温度一般不低于850C。冷却方式,对于含有钛或铌的钢可直接在空气中冷却;对于不含有钛或铌的钢应水冷至500C以后再在空气中冷却。 3)稳定化处理;为了防止钛和铌的奥氏体不锈钢在焊接或固溶处理时,由于TiC和NbC减少而引起耐晶间腐蚀性能降低,需将这种不锈钢加热到一定温度后(该温度使铬的碳化物完圣溶于奥氏体,而TiC和NbC只部分溶解)再缓冷。在冷却过程中,使钢中的碳充分地与钛和铌化合,析出稳定的TiC和NbC,而不析出铬的碳化物,从而消除18-8奥氏体不锈钢的晶间腐蚀倾向,这种处理过程称之为稳定化处理。 18-8不锈钢稳定化退火,一般是加热到850-880C,保温2-6h,随后进行空冷或炉冷。 304,简单的18-8型不锈钢,牌号1Cr18Ni9。 加热介质:空气 加热温度:1100-1150度 升温速度:200-300度/小时 加热系数:1.5-3分钟/毫米 冷却介质:清水 注意事项:1.防止增碳。工件及夹具入炉前清洗油污,注意炉内清洁。2.防止晶间腐蚀。不要用盐浴炉加热。3.稳定化处理。此钢没有加入防止晶间腐蚀的钛和铌,不需要稳定化处理。 经固溶处理的奥氏体型不锈钢的力学性能

不锈钢及其热处理知识

不锈钢及其热处理知识 美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中: ①奥氏体型不锈钢用200和300系列的数字标示, ②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某些较普通的奥氏体不锈钢是以201、 304、 316以及310为标记, ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以410、420以及440C为标记,双相(奥氏体-铁素体), ④不锈钢、沉淀硬化不锈钢以及含铁量低于50%的高合 大家知道固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。 钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。 不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体组织结构,加热时不发生相变,称为铁素体型不锈钢。 当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。 镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。 不锈钢有两种分类法:一种是按合金元素的特点,划分为铬不锈钢和铬镍不锈钢;另一种是按在正火状态下钢的组织状态,划分为M不锈钢、F不锈钢、A不锈钢和A一F双相不锈钢。 一、马氏体不锈钢典型的马氏体不锈钢钢号有1Cr13~4Cr13和9Cr18等 1Cr13钢加工工艺性能良好。可不经预热进行深冲、弯曲、卷边及焊接。2Crl3冷变形前不要求预热,但焊接前需预热,ICrl3、2Cr13主要用来制作耐蚀结构件如汽轮机叶片等,而3Cr13、4Cr13主要用来制作医疗器械外科手术刀及耐磨零件;9Cll8可做耐蚀轴承及刀具。二、铁素体不锈钢铁素作不锈钢的含Cr量一般为13%~30%合碳量低于0.25%。有时还加入其它合金元素。金相组织主要是台铁素体,加热及冷却过程中没有α<=>γ转变,不能用热处理进

相关文档
最新文档