双向电泳技术研究进展

双向电泳技术研究进展
双向电泳技术研究进展

双向电泳的应用及研究进展

摘要:双向电泳是蛋白质组学研究中最常用的技术,具有简便、快速、高分辨率和重复性等优点。本文重点介绍了双向电泳的基本原理及其应用。同时对当前双向电泳技术面临的挑战和发展前景进行了讨论。

关键词: 双向电泳,应用,前景

Abstract:Two- dimensional electrophoresis is now the key technique in proteome research,have the advantage of simple and convenient、quick、high resolution and good repeatability. This article introduced the technical principle and research application ,delivered the prospect of the two- dimensional electrophoresis technique .

Key worlds:Two- dimensional electrophoresis,application,prospect

1双向电泳基本原理

1975年,意大利生化学家O’Farrell发明了双向电泳技术[1],双向电泳是指利用蛋白质的带电性和分子量大小的差异,通过两次凝胶电泳达到分离蛋白质群的技术。双向电泳技术依据两个不同的物理化学原理分离蛋白质。第一向电泳依据蛋白质的等电点不同,通过等电聚焦将带不同净电荷的蛋白质进行分离。在此基础上进行第二向的SDS聚丙烯酰胺凝胶电泳,它依据蛋白质分子量的不同将之分离。双向电泳所得结果的斑点序列都对应着样品中的单一蛋白。因此,上千种蛋白质均能被分离开来,并且各种蛋白质的等电点,分子量和含量的信息都能得到。

2双向电泳的应用

双向电泳的分辨率较高,自第一次应用该技术以来,其分辨率已从15 个蛋白质点发展到10 000多个蛋白质点。一般的双向电泳也能分辨1 000~3000 个蛋白质点。因此,近年来,双向电泳被广泛应用于农业、医学等研究领域。

2.1 在动物科学中的应用

在动物科学研究方面,双向电泳被广泛应用于小鼠血清蛋白、卵巢蛋白、兔晶状体蛋白质、昆虫离体细胞膜蛋白、户尘螨蛋白、家蚕雌性附腺及其Ng突变体蛋白质、大腹园蛛毒素蛋白质、家蚕蛋白质、牛精液蛋白、猪巨噬细胞蛋白等方面的研究。如钟小兰等[2]利用双向电泳技术分析肝郁症模型大鼠血清蛋白质组的差异表达。王治东等[3]采用蛋白质组学的双向电泳和蛋白质氨基酸序列分析技术研究了8Gy γ射线照射后24 h 小鼠血清蛋白质的变化。马翔等[4]通过双向电泳和质谱技术分析性成熟小鼠卵巢蛋白质组,并对其中的一种蛋白质进行免疫组化研究。刘奕志等[5]通过双向电泳和质谱鉴定有效分离和分析兔晶状体蛋白质组的特性,为白内障的防治带来新的前景。柳亦松等[6]以大腹园蛛粗毒为材料利用双向电泳技术获得蛋白质组双向电泳图谱,检测到500 个左右的蛋白质点,并对其中部分蛋白质点进行了质谱分析。靳远祥等[7]采用双向凝胶电泳和计算机辅助分析方法,分别对家蚕(Bombyx mori)限性黄茧品种雌蚕(黄茧)和雄蚕(白茧)的中部丝腺组织细胞蛋白质进行分离和比较分析。

2.2 在植物中的应用

在植物科学研究方面,双向电泳被广泛应用于水稻蛋白质、小麦蛋白质、茶树蛋白质、杉树蛋白质等方面的研究。如易克等[8]利用双向电泳技术对水稻种子胚乳蛋白进行了分析,获得了较好的电泳图谱,为探讨水稻灌浆期间与籽粒充实相关蛋白表达的变化,建立了一套适于水稻种子胚乳蛋白双向电泳分析技术。Picard 等利用双向电泳分析了亲缘关系较近的硬粒小麦不同株系的遗传多样性。林金科等[9]利用双向电泳技术分析了茶树蛋白质组,探索出一种可获得重复性好,清晰度高的蛋白质双向电泳图谱技术,并发现一种辨别茶树蛋白质样品质量好坏的简便方法。杨梅等[10]建立了适用于杉叶片蛋白质组研究的双向电泳技术,对杉木叶片蛋白质的溶解方法、上样量、IEF 及SDS-PAGE 电泳等关键步骤进行了优化。另外,梁文裕等[11]应用双向电泳技术分析了龙眼胚胎分化发育过程中蛋白质组分的变化。丁坤善等[12]建立了油松雌性不育系球果蛋白质双向

电泳技术体系。李慧玉等[13]对樟子松突变丛生枝蛋白质进行了双向电泳分析。

2.3 在医学中的应用

目前许多研究者利用双向电泳对人体的各种组织、器官、细胞进行了研究,为疾病的诊治及了解发病机制提供了新的手段,例如,在肿瘤的研究中,寻找与肿瘤发生、发展和抗药性有关的蛋白,孙庆、杨小玉等[14]对骨肉瘤组织和正常组织进行了双向电泳分析,得到较好的电泳图谱,建立和优化人骨肉瘤蛋白质组双向电泳图像分析方法。苏坚[15]采用二维电泳、图像分析、质谱技术等方法在相同条件下,对二烯丙基二硫(DADS)处理前后SW480细胞两种样品的总蛋白质进行双向电泳,其中167个匹配的蛋白质点存在表达量上的差异。与对照组相比,处理组蛋白质表达量下调的有69 个,利用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)对其中8个表达明显下调的蛋白质斑点进行分析鉴定,获得相应的肽质量指纹图谱(PMF),通过数据库搜索,确定了这8 个蛋白,这些差异蛋白质涉及细胞周期调控、细胞分化、细胞凋亡及细胞分裂增殖等众多事件。从而说明,DADS可能具有抑制结肠癌细胞生长,阻滞细胞周期,诱导细胞分化及凋亡的作用。

利用双向电泳技术建立和优化了人血清蛋白质图谱,为进一步开展疾病的血清蛋白质组学研究奠定基础。刘希成等[16]对人未做处理的血清以及去除白蛋白和免疫球蛋白G(IgG)的蛋白质组学方法进行比较和优化,质谱分析了9 个差异蛋白点,鉴定为8 种蛋白质,其中7 种为功能蛋白质。胡成效等[17]通过双向电泳分析系统性红斑狼疮(SLE)患者外周血单个核细胞蛋白质表达谱的变化,发现有11 个蛋白点在SLE 患者组表达上调,9 个表达下调,SLE 患者外周血单个核细胞蛋白质表达发生了明显改变,为从淋巴细胞蛋白质谱变化的整体角度上阐明SLE 发生的分子机制及免疫调控通路奠定了基础。赵慧辉[18]采用双向凝胶电泳和基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)对8 例心绞痛血瘀症患者血瘀症程度变化前后的血浆进行比较蛋白质组学研究,寻找心绞痛血瘀症相关蛋白。结果初步发现了凝聚素(Clusterin)、载脂蛋白A-Ⅰ(ApoA-Ⅰ)在血瘀症程度变轻后表达增加,而纤维蛋白原β链(Fibrinogen

βchain)、维生素D 结合蛋白(Vitamin D-Binding Protein)、结合珠蛋白β链(Haptoglobin βchain)等在血瘀症程度变轻后表达降低。以上这些物质均可能与心绞痛血瘀症相关,但结果有待运用其它生物学的方法进行具体的验证并探索其机制。另外双向电泳还应用在临床诊断、病理研究、药物筛选、新药开发、食品检测、甚至物种鉴定等方面。

3双向电泳技术的局限性及方法的改进

虽然双向电泳技术具有其他蛋白质分离技术无可比拟的分离能力,目前仍然存在着一些技术细节上的挑战和缺陷。主要有以下几个方面:

3.1蛋白样品制备效率偏低

样品制备是双向电泳的第一步,其成功与否是决定双向电泳分离能力高低的关键。在蛋白质样品提取过程中,一些低浓度蛋白质往往会相对过早丢失。此外,一些难溶的蛋白,尤其是膜蛋白的提取效率较低。目前一些公司如Bio-Rad研制出一种顺序提取试剂盒,专用于提取一些难溶的膜蛋白。

3.2疏水性膜蛋白的难于分离与检测

一般来说,疏水性膜蛋白比亲水性蛋白质更难操作。膜蛋白更易于聚集在管壁上,由于蛋白质组的研究常在nmol甚至fmol水平上进行,这种特性将会导致很大的损失,甚至完全丢失。另外,α-螺旋跨膜蛋白在变性的2-D胶上不能很好被有效分离。若要分离这些蛋白质,需要有机溶剂分馏法或者反相HPLC等技术的辅助。

3.3极端酸性或碱性蛋白质的难于分离

极性蛋白质尤其是碱性蛋白质在细胞中常与DNA结合,在信号转导中起着调控作用,因此分离这类蛋白质有着很重要的意义。在胶条水合时,选用窄范围IPGs(固相PH梯度胶条)如pH 3~7或pH 7~10水合上样会引起明显的横纹,影响蛋白点的分离。目前用杯上样水合可以提高分离效果。在杯上样时,一般将蛋白样品放在酸性窄范围IPGs的阴极端或在碱性窄范围IPGs的阳极端。

3.4蛋白质的动态分辨率有待提高

对于一根固定长度和pH范围的IPGs胶条,最多能分离几千个蛋白质。因此,

要将某一种组织的所有蛋白质在仅一个pH范围的IPGs上分离是不可能的。一般采用多个pH范围的IPGs进行分离。在样品水合上样前,需将蛋白样品按不同pH范围进行预分离,可以提高低丰度蛋白质的分辨率。

3.5自动化程度需进一步提高

在双向电泳进行过程中,有不少步骤需要手工操作,因此比较费时,而且易产生误差,造成低重复性。也不利于实现高通量分离蛋白质。目前,双向电泳后半部分操作如蛋白胶图的软件分析和蛋白点的切割和处理已实现半自动化,大大加速双向电泳进程。蛋白质组学理想的高通量全系统方法应包括以下部分:样品收集技术、高分辨电泳装置、自动化凝胶染色仪、半自动化图像分析软件、机器人模拟的斑点处理过程、MALDI-TOF和串联质谱仪,并且具有整合的生物信息学软件,可以链接到单个模块并进行畅通的样品处理、追踪、数据分析和数据归档。

3.6蛋白质定量的问题

在蛋白样品水合前,一般需要测定样品中蛋白含量。最常用方法用Bradford 法测定蛋白浓度。由于蛋白样品含有去污剂如SDS和还原剂DTT等物质,因此,用此法测定蛋白浓度线性关系差,测定结果出现偏差,给不同样品或处理条件下蛋白表达差异比较带来误差。目前,一些公司已经开发了蛋白定量测定试剂盒,提高样品中蛋白定量的准确性。

4 前景与展望

目前双向电泳技术尚未完善,手工操作较多,经验性强,且存在许多局限性,尽管如此,该技术目前仍然是蛋白质组研究中不可替代的分离方法,随着蛋白质组学的兴起,对技术有了新的要求和挑战。随着相关学科的发展和技术的进一步完善以及新仪器的开发,限制双向电泳的羁绊不断被突破,双向电泳将在今后的研究中以其独到的优势继续发挥不可替代的作用。

参考文献

[1] O'Farrell PH. Biol Chem,1975,250:4007~4021.

[2] 钟小兰,吕志平,等. 中华中医药杂志(原中国医药学报),2006,21(7):399~401.

[3] 王治东,陈肖华,等. 辐射研究与辐射工艺学报,2005,23(1):53~56.

[4] 马翔,钱云,等.北京大学学报(医学版),2004,36(6):581~586.

[5] 刘奕志,张敏. 中华眼科杂志,2004,40(2):113~117.

[6] 柳亦松,谢锦云,等. 生命科学研究,2006,8(2):170~121.

[7] 靳远祥,徐孟奎,等. 农业生物技术学报,2004,12(4):43l~435.

[8] 易克,田云,等. 湖南农业大学学报(自然科学版),2004,30(6):513~515.

[9] 林金科,郑金贵,等. 茶叶科学,2003,23(1):16~20.

[10] 杨梅,陈伟,等. 热带亚热带植物学报,2007,15(5):438~442

[11] 梁文裕,陈伟,等. 热带亚热带植物学报,2005,13(3):229~232.

[12] 秦新民,李惠敏,等. 广西植物,2004,24(6):566~569.

[13] 丁坤善,郑彩霞,等. 植物学通报,2005,22(2):190~19.

[14]孙庆,杨小玉,等. 中国实验诊断学,2006,10(7):730~732.

[15]苏坚,贺修胜,等. 中国药理学通报,2006,22(5):583~587.

[16]刘希成,田真,等. 现代生物医学进展,2007,7(3):325~355.

[17]胡成效,戴勇,等. 广东医学,2008,29(1):86~89.

[18]赵慧辉,王伟,等.北京中医药,2008,27(2):96~99.

毛细管电泳的基本原理及应用

毛细管电泳的基本原理及应用 摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。 关键词:毛细管电泳原理分离模式应用 1概述 毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。但他没有完全克服传统电泳的弊端[1]。现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen 发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。 毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。C E只需高压直流电源、进样装置、毛细管和检测器。 毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。

双向电泳技术在生物医学中的应用现状和应用前景

双向电泳技术在生物医学中的应用现状和应用前景 1 双向电泳技术 1.1双向电泳技术概述 双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别,产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。 双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。可见双向电泳在蛋白质组学研究中的重要性。就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。 1.2 双向电泳技术的原理 双向电泳技术是蛋白质组学研究的核心技术之一。它利用了各种蛋白质等电点和分子量的不同来分离复杂蛋白质组分,具有较高的分辨率和灵敏度,目前已成为复杂蛋白质组分检测和分析的最好的生化技术。IPG - DALT系统双向电泳技术原理简明:首先利用等电聚焦( isoelectric focusing ,IEF) 将蛋白质沿pH 梯度分离至各自等电点(isoelectric point ,pI),通过电荷分离蛋白质;然后沿垂直的方向以十二烷基磺酸钠-聚丙烯酰胺凝胶电泳( sodium dodecyl sulphate polyacryla -mide gel electrophoresis ,SDS-PAGE),通过分子量分离蛋白质。所得蛋白双维排列图中每个点代表样本中一个或数个蛋白质,而蛋白质的等电点、分子量和在样本中的含量也可显现出来。蛋白双向电泳的分辨率和灵敏度很高,一般可分离

蛋白质双向电泳

模块五蛋白质双向电泳 1. 实验目的 掌握双向电泳能根据等电点和分子量分离蛋白质的原理,第一向等电聚焦电泳(IEF)和第二向聚丙烯酰胺凝胶电泳(SDS-PAGE)操作步骤,掌握凝胶染色方法,掌握凝胶分析软件的使用,了解对分离出的特异蛋白质的进一步分析方法,了解利用电泳技术分析生物大分子的方法。 2. 实验原理 从广义上讲,双向电泳是将样品电泳后为了不同的目的在垂直方向再进行一次电泳的方法。目前蛋白质双向电泳常用的组合第一向为等电聚焦(载体两性电解质pH梯度或固相pH梯度),根据蛋白质等电点进行分离,第二向为SDS-PAGE,根据相对分子质量分离蛋白质。这样经过两次分离后,在凝胶上显示出的蛋白点可以获得蛋白质等电点和相对分子质量信息。双向电泳技术作为分离蛋白质的经典方法,目前得到了相当广泛的应用。在植物研究中,成功建立了拟南芥、水稻、玉米等植物种类的双向电泳图谱数据库,对推动植物蛋白质组研究起到重要作用。 第一向等电聚焦:等电聚焦(isoelectrofocusing,IEF)是在凝胶柱中加入一种称为两性电解质载体(ampholyte)的物质,从而使凝胶柱在电场中形成稳定、连续和线性pH梯度。以电泳观点看,蛋白质最主要的特点是它的带电行为,它们在不同的pH值环境中带不同数量的正电荷或负电荷,只有在某一pH时,蛋白质的净电荷为零,此pH即为该蛋白质的等电点(isoeletric point,PI)。在电场中,蛋白质分子在大于其等电点的pH环境中以阴离子形式向正极移动,在小于其等电点的pH 环境中以阳离子形式向负极移动。如果在pH梯度 环境中将含有各种不同等电点的蛋白质混合样品进行电泳,不管混合蛋白质分子的原始分布如何,都将按照它们各自的等电点大小在pH梯度某一位置进行聚集,聚焦部位的蛋白质质点的净电荷为零,测定聚焦部位的pH即可知道该蛋白质的等电点。 第二向SDS聚丙烯酰胺凝胶电泳:SDS是一种阴离子表面活性剂,当向蛋白质溶液中加入足够量的SDS时,形成了蛋白质-SDS复合物,这使得蛋白质从电荷和构象上都发生了改变。SDS使蛋白质分子的二硫键还原,使各种蛋白质-SDS复合物都带上相同密度的负电荷,而且它的量大大超过了蛋白质分子原的电荷量,因而掩盖了不同种蛋白质间原有的天然的电荷差别。在构象上,蛋白质-SDS复合物形成近似“雪茄烟”形的长椭圆棒,这样的蛋白质-SDS复合物,在凝胶中的迁移就不再受蛋白质原来的电荷和形状的影响,而仅取决于相对分子质量的大小,从而使我们通过SDS聚丙烯酰胺凝胶电泳(SDS - PAGE)来测定蛋白质的相对分子质量。 单体丙烯酰胺和交联剂N,N-甲叉双丙烯酰胺,在催化剂存在的条件下,通过自由基引发的聚合交联形成聚丙烯酰胺凝胶,这提供了蛋白质泳动的三维空间凝胶网络。在SDS - PAGE电泳时相对分子质量小的蛋白质迁移速度快,相对分子质量大的蛋白质迁移速度慢,这样样品中的蛋白质可以分开形成蛋白质条带。 3. 实验设备 垂直电泳仪,水平电泳仪,低温循环水浴,脱色摇床,扫描仪,ImageMaster 2D platinum version 5.0软件。电泳仪及其配套制胶设备、脱色摇床。

电泳的基本原理

电泳的基本原理 电泳是指带电颗粒在电场的作用下发生迁移的过程。许多重要的生物分子,如氨基酸、多肽、蛋白质、核苷酸、核酸等都具有可电离基团,它们在某个特定的pH值下可以带正电或负电,在电场的作用下,这些带电分子会向着与其所带电荷极性相反的电极方向移动。电泳技术就是利用在电场的作用下,由于待分离样品中各种分子带电性质以及分子本身大小、形状等性质的差异,使带电分子产生不同的迁移速度,从而对样品进行分离、鉴定或提纯的技术。 电泳过程必须在一种支持介质中进行。Tiselius等在1937年进行的自由界面电泳没有固定支持介质,所以扩散和对流都比较强,影响分离效果。于是出现了固定支持介质的电泳,样品在固定的介质中进行电泳过程,减少了扩散和对流等干扰作用。最初的支持介质是滤纸和醋酸纤维素膜,目前这些介质在实验室已经应用得较少。在很长一段时间里,小分子物质如氨基酸、多肽、糖等通常用滤纸或纤维素、硅胶薄层平板为介质的电泳进行分离、分析,但目前则一般使用更灵敏的技术如HPLC等来进行分析。这些介质适合于分离小分子物质,操作简单、方便。但对于复杂的生物大分子则分离效果较差。凝胶作为支持介质的引入大大促进了电泳技术的发展,使电泳技术成为分析蛋白质、核酸等生物大分子的重要手段之一。最初使用的凝胶是淀粉凝胶,但目前使用得最多的是琼脂糖凝胶和聚丙烯酰胺凝胶。蛋白质电泳主要使用聚丙烯酰胺凝胶。 电泳装置主要包括两个部分:电源和电泳槽。电源提供直流电,在电泳槽中产生电场,驱动带电分子的迁移。电泳槽可以分为水平式和垂直式两类。垂直板式电泳是较为常见的一种,常用于聚丙烯酰胺凝胶电泳中蛋白质的分离。电泳槽中间是夹在一起的两块玻璃板,玻璃板两边由塑料条隔开,在玻璃平板中间

电泳技术的现状和发展

?述评?电泳技术的现状和发展 沈霞 早期的电泳技术是由瑞典Uppsala大学物理化学系Svedberg教授提出了荷电的胶体颗粒在电场中移动 的现象称其为电泳(electrophoresis)。于1937年,由Arne T iselius教授———诺贝尔奖金获得者,利用此电泳现 象,发明了最早期的界面电泳(m oving boundary),用于蛋白质分离的研究,开创了电泳技术的新纪元。此后, 各种电泳技术及仪器相继问世,先进的电泳仪和电泳技术的不断发展,使它在生物化学实验技术中占重要地 位,按电泳的原理有三种形式的电泳分离系统:原则上按电泳的原理来分,即移动界面电泳(m oving boundary electrophoresis)、区带电泳(zone electrophoresis)和稳态电泳(steady state electrophoresis)或称置换(排代)电泳(dis2 placement electrophoresis)。在自由移动界面电泳,是带电分子的移动速率通过观察界面的移动来测定,该方法已成为历史。代之以采用支持介质的区带电泳。 区带电泳因所用支持体的种类、粒度大小和电泳方式等不同,其临床应用的价值也各有差异。固体支持 介质可分为两类:一类是滤纸、醋酸纤维素薄膜、硅胶、矾土、纤维素等;另一类是淀粉、琼脂糖和聚丙烯酰胺 凝胶。由于它们具微细的多孔网状结构,故除能产生电泳作用外,还有分子筛效应,小分子会比大分子跑得 快而使分辨率提高。它的最大优点是几乎不吸附蛋白质,因此电泳无拖尾的现象。低浓度的琼脂糖电泳相 当于自由界面电泳,蛋白质在电场中可自由穿透,阻力小,分离清晰,透明度高,能透过200~700nm波长的 光线,故电泳结束后无须进行“透明”,可减少操作步骤及由此引起的实验误差,又因底板无色泽,也提高了对 着色区带的检测敏感性,为此第一类支持介质现已被第二类支持介质所替代。 稳态电泳或称置换电泳的特点是分子颗粒的电泳迁移在一定时间后达到稳态,如等电聚焦和等速电泳。 区带电泳是临床检验领域中应用最广泛的技术,有重要临床意义,尤其是结合了其他新技术,更扩大了 其应用范围,提高了检测技术,现对该技术的现状与发展作一评述。 一、正确解释电泳结果,有助于临床疾病判断的参考 新鲜血清经电泳后可精确地描绘出患者蛋白质的全貌,一般常见的是白蛋白降低,某个球蛋白区域升 高,提示不同的临床意义。如急性炎症时,可见α1,α2区百分率升高;肾病综合征、慢性肾小球肾炎时呈现白蛋白下降,α2球蛋白升高,β球蛋白也升高;缺铁性贫血时可由于转铁蛋白的升高而呈现β区带增高,而慢性 肝病或肝硬变呈现白蛋白显著降低,γ球蛋白升高2~3倍,示免疫球蛋白多克隆增高,甚至可见β2γ融合的 桥连现象,还可在γ区呈现细而密的寡克隆区带;对单一克隆浆细胞异常增殖所产生的无抗体活性的均一的 免疫球蛋白称M蛋白(m onoclonal protein)的检测,血清蛋白电泳是其首选的实验诊断方法。可在电泳区带的α ~γ区呈现致密而深染,高度集中的蛋白克隆增生区带,称其为M蛋白区带,扫描后形成高而狭窄的单株2 峰,若此峰在γ区其峰高与峰底宽之比>2∶1,且由于正常免疫球蛋白合成限制造成背景染色浅。由M蛋白 所导致的一组疾病如:多发性骨髓瘤、巨球蛋白血症、重链病、游离轻链病、半分子病、良性单株丙球血症和双M蛋白血症等,目前这类疾病已不属罕见。血清蛋白电泳对这类疾病的早期诊断,疗效观察和预后判断均有十分重要的意义。 二、电泳技术与免疫技术相结合,大大扩大了其临床应用的范围 让电流来加速抗原与抗体的扩散并规定其运行方向,从而加快了沉淀反应的速度。免疫电泳技术的种 类很多,如:对流免疫电泳(CIEP)、火箭免疫电泳(RIE)、电免疫扩散(EI D)。在原有的几种免疫电泳方法的基 础上,又不断地派生出一些新的技术,如:免疫电泳(IEP)技术,1969年Alper与Johns on推荐免疫固定电泳作者单位:200092上海第二医科大学附属新华医院检验科

电泳设备基本原理

电泳设备基本原理
阴极电泳涂料所含的树脂带有碱性基团,经酸中和后成盐而溶于水。通直流 电后,酸根负离子向阳极移动,树脂离子及其包裹的颜料粒子带正电荷向阴极移 动,并堆积在阴极上,这便是电泳涂装的基本原理(俗称镀漆)。电泳涂装是一 个很杂乱的电化学反响,一般以为至少有电解、电泳、电堆积、电渗这四种效果 一起发作。 1、 电解
任何一种导电液体在通电时发作分化的现象,如水的电解 能分化成 H2 和 O2。 2、 电泳
在导电介质中,带电荷的胶体粒子在电场的效果下向相反电极移动的现 象,如阴极电泳中带正电荷的胶体粒子(R3N H)夹藏和吸附颜料粒子由电泳进 程移向阴极。 3、电堆积
漆粒子在电极上的堆积现象。电堆积的第一步是 H2O 的电化学分化,这一 反响至使在阴极外表区发作高碱性(OH)界面层,当阳离子(树脂和颜料)与 OH 反响变成不溶性时,就发作涂膜的堆积。 4、电渗
刚堆积到被涂物外表的涂膜是半浸透的膜,在电场的继续效果下,涂膜内 部所含的水分从涂膜中渗分出来移向槽液,使涂膜脱水,这种现象称电渗。电渗 使亲水的涂膜变为涂膜,脱水而使涂膜细密化。
制造进程 它包含四个进程:
1 )电解(分化) 在阴极反响开始为电解反响,生成氢气及氢氧根离 子 OH ,此反响构成阴极面构成一高碱性边界层,当阳离子与氢氧根效果成为 不溶于水的物质,涂膜堆积,方程式为:H2O→OH+H 2 )电泳动(泳动、搬迁)阳离子树脂及 H+ 在电场效果下,向阴极移动, 而阴离子向阳极移动进程。 3 )电堆积(分出) 在被涂工件外表,阳离子树脂与阴极外表碱性效果, 中和而分出不堆积物,堆积于被涂工件上。 4 )电渗(脱水) 涂料固体与工件外表上的涂膜为半透明性的,具有大都 毛细孔,水被从阴极涂膜中排渗出来,在电场效果下,引起涂膜脱水,而涂膜则 吸附于工件外表,而完结整个电泳进程。
工艺特色 电泳外表处理工艺的特色: 电泳漆膜具有涂层饱满、均匀、平坦、润
滑的长处,电泳漆膜的硬度、附着力、耐腐、冲击功能、浸透功能显着优于其它 涂装工艺。
(1)选用水溶性涂料,以水为溶解介质,节省了很多有机溶剂,大大下降了 大气污染和环境危害,安全卫生,一起避免了火灾的危险;
(2)涂装功率高,涂料丢失小,涂料的利用率可达 90%~95%; (3)涂膜厚度均匀,附着力强,涂装质量好,工件各个部位如内层、洼陷、 焊缝等处都能取得均匀、滑润的漆膜,处理了其他涂装办法对杂乱形状工件的涂

电泳原理.pdf

电泳原理 阳极电泳用水溶性树脂是一种高酸值的羧酸盐,在水中溶解后以分子和离子平衡 状态存在于直流电场中,通电后,由于两极的电位差,离子定向移动,阴离子沉积在阳极表面,而阳离子在阴极表面获得电子还原成胺,它是一个电化学反应,包括电泳、电解、电沉 积和电渗四个同时进行的过程。 1.电泳:在直流电压作用下,分散在介质中的带电胶体粒子在电场作用下向与其所 带电荷相反的电极方面移动,叫电泳。 2.电沉积:阴离子树脂放出电子沉积在阳极表面,形成不溶水的漆膜,此过程叫电 沉积。 3.电渗:电泳逆过程,当阴离子树脂在阳极上,吸附在阳极上的介质在内渗力的作 用下,从阳极穿过沉积的漆膜进入漆液,称电渗。 4.电解:电流通过漆液时水便发生电解阴极放出氢气,阳极放出氧气,此过程 即为电解。 电泳涂料 有人说,电泳涂料可划分为三代,第一代为环氧树脂涂料,第二代为丙烯酸树脂涂料, 第三代为聚氨酯涂料。由于环氧涂料主要应用于汽车底盘,第三代主要用于阴极电泳漆,涂覆于首饰表面,故目前主要介绍第二代,即丙烯酸树脂涂料。此树脂如一团乱麻,羧基藏于里,胺基接于外,其中最先的羧基有70%被胺基取代,因其树脂中存在-COONHR,使树脂成为水溶性。铝型材表面涂覆的丙烯酸树脂多采用胺基树脂为固化剂进行交联固化,同时, 涂料分子均匀性对工艺操作有很大影响,一般说,乳化越好,分子越均匀。 涂装工艺流程 1 .除油:如有酸回收装置,推荐采用碱性除油,因碱性除油后,铝型材表面比较光亮,且 不会与后面的碱蚀发生副作用,如用碱性除油,其主要成份是 Na 2 CO 3 和NaOH。 2 .水洗:自来水洗去前道工序的酸或碱。 3 .蚀:加入碱蚀剂的碱蚀工序,会降低型材表面光亮度,但效果并不十分明显,主要应注意不可使槽中Al 3 含量过大,温度过高,否则易产生洗不去的花斑,涂漆烘干后呈黄色。 二道水洗:最好有喷淋或加大溢流,以保证清洗彻底。 除灰:用HNO 3 效果较好,但要注意加强水洗(最少二道+喷淋)。 水洗:自来水用H 2 SO 4 除灰,一道水洗即可,用HNO 3 除灰,需二道水洗 氧化:H 2 SO 4 氧化一般为20min,使氧化膜达到9u,某些公司推销的所谓的 高温氧化剂,其主要成份是一种混酸,建议不要使用,对氧化膜的色泽、硬度、可着色性均 无好处。 水洗:自来水二道加大溢流。 着色:用单锡盐、单镍盐、锡镍复合盐均可,注意不要有色差,因为色差会在 电泳涂漆后加大。 水洗:最好加喷淋,以期尽量减少对后道工序酸的带入量。 热纯水洗:要求电导率<100us/cm,温度70-80℃,PH=4-6,尤其是银白涂漆型材或氧化中电压较大的型材应在此槽中处理较长的时间,PH值可用三乙胺进行调整。

(完整版)微电子技术发展现状与趋势

本文由jschen63贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 微电子技术的发展 主要内容 微电子技术概述;微电子发展历史及特点;微电子前沿技术;微电子技术在军事中的应用。 2010-11-26 北京理工大学微电子所 2 2010-11-26 北京理工大学微电子所 3 工艺流程图 厚膜、深刻蚀、次数少多次重复 去除 刻刻蚀 牺牲层,释放结构 多 工艺 工工艺 2010-11-26 工 5 微电子技术概述 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和;微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向;衡量微电子技术进步的标志要在三个方面:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 2010-11-26 北京理工大学微电子所 6 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功以这种组件为基础的混合组件; 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路;由于MOS电路在高度集成和功耗方面的优点,70 年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 2010-11-26 北京理工大学微电子所 7 微电子技术的发展特点 超高速:从1958年TI研制出第一个集成电路触发器算起,到2003年Intel推出的奔腾4处理器(包含5500 万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%;辐射面广:集成电路的快速发展,极大的影响了社会的方方面面,因此微电子产业被列为支柱产业。

电泳

电泳技术简介 带电颗粒在电场作用下,向着与其电性相反的电极移动,称为电泳(electrophoresis, EP)。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。1937 年瑞典学者A.W.K.蒂塞利乌斯设计制造了移动界面电泳仪,分离了马血清白蛋白的3种球蛋白,创建了电泳技术。 目录 什么是电泳 电泳种类 电泳原理 电泳 展开 什么是电泳 电泳种类 电泳原理 电泳 展开 电泳Electrophoresis 什么是电泳 在确定的条件下,带电粒子在单位电场强度作用下,单位时间内移动的距离(即迁移率)为常数,是该

电泳图谱 带电粒子的物化特征性常数[1]。不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。分开的距离与外加电场的电压与电泳时间成正比。 在外加直流电源的作用下,胶体微粒在分散介质里向阴极或阳极作定向移动,这种现象叫做电泳。利用电泳现象使物质分离,这种技术也叫做电泳。胶体有电泳现象,证明胶体的微粒带有电荷。各种胶体微粒的本质不同,它们吸附的离子不同,所以带有不同的电荷。 电荷移动规律 利用电泳可以确定胶体微粒的电性质,向阳极移动的胶粒带负电荷,向阴极移动的胶粒带正电荷 电泳仪 。 一般来讲, 金属氢氧化物、金属氧化物等胶体微粒吸附阳离子,带正电荷 非金属氧化物、非金属硫化物等胶体微粒吸附阴离子,带负电荷。 因此,在电泳实验中,氢氧化铁胶体微粒向阴极移动,三硫化二砷胶体微粒向阳极移动。利用电泳可以分离带不同电荷的溶胶。 例如,陶瓷工业中用的粘土,往往带有氧化铁,要除去氧化铁,可以把粘土和水一起搅拌成悬浮液,由于粘土粒子带负电荷,氧化铁粒子带正电荷,通电后在阳极附近会聚集出很纯净的粘土。工厂除尘也用到电泳。利用电泳还可以检出被分离物,在生化和临床诊断方

电泳的基本原理

电泳的基本原理 mm,近年来新研制的电泳槽,胶面更小、更薄,以节省试剂和缩短电泳时间。制胶时在凝胶溶液中放一个塑料梳子,在胶聚合后移去,形成上样品的凹槽。水平式电泳,凝胶铺在水平的玻璃或塑料板上,用一薄层湿滤纸连接凝胶和电泳缓冲液,或将凝胶直接浸入缓冲液中。由于pH值的改变会引起带电分子电荷的改变,进而影响其电泳迁移的速度,所以电泳过程应在适当的缓冲液中进行的,缓冲液可以保持待分离物的带电性质的稳定。E =V/L为了更好的了解带电分子在电泳过程中是如何被分离的,下面简单介绍一下电泳的基本原理。在两个平行电极上加一定的电压(V),就会在电极中间产生电场强度(E),上式中L是电极间距离。在稀溶液中,电场对带电分子的作用力(F),等于所带净电荷与电场强度的乘积:F=q*E上式中q是带电分子的净电荷,E是电场强度。这个作用力使得带电分子向其电荷相反的电极方向移动。在移动过程中,分子会受到介质粘滞力的阻碍。粘滞力(F’)的大小与分子大小、形状、电泳介质孔径大小以及缓冲液粘度等有关,并与带电分子的移动速度成正比,对于球状分子,F’的大小服从Stokes定律,即:F’=6πrηυ式中r是球状分子的半径,η是缓冲液粘度,υ是电泳速度(υ= d / t,单位时间粒子运动的距离,cm / s )。当带电分子匀速移动时:F =

F’,∴qE =6πrηυ电泳迁移率(m)是指在单位电场强度 (1V/cm)时带电分子的迁移速度:所以: v/E=Q/6πrη这就是迁移率公式,由上式可以看出,迁移率与带电分子所带净电荷成正比,与分子的大小和缓冲液的粘度成反比。用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量时,实际使用的是相对迁移率mR。即:上式中:d-带电粒子泳动的距离,t -电泳的时间,V-电压,L-两电极交界面之间的距离,即凝胶的有效长度。因此,相对迁移率mR就是两种带电粒子在凝胶中泳动迁移的距离之比。 带电分子由于各自的电荷和形状大小不同,因而在电泳过程中具有不同的迁移速度,形成了依次排列的不同区带而被分开。即使两个分子具有相似的电荷,如果它们的分子大小不同,由于它们所受的阻力不同,因此迁移速度也不同,在电泳过程中就可以被分离。有些类型的电泳几乎完全依赖于分子所带的电荷不同进行分离,如等电聚焦电泳;而有些类型的电泳则主要依靠分子大小的不同即电泳过程中产生的阻力不同而得到分离,如SDS-聚丙烯酰胺凝胶电泳。分离后的样品通过各种方法的染色,或者如果样品有放射性标记,则可以通过放射性自显影等方法进行检测。

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理

SDS-PAGE电泳的基本原理及浓缩胶浓缩样品的原理 SDS-PAGE(十二烷基硫酸钠-聚丙烯酰胺凝胶电泳)是目前最常用的分离蛋白质的电泳技术 SDS-聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS,SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS-蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。当分子量在15KD到200KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=K-bX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上求得分子量。 SDS-PAGE电泳成功的关键是什么? ①溶液中SDS单体的浓度 SDS在水溶液中是以单体和SDS-多肽胶束的混合形式存在,能与蛋白质分子结合的是单体。为了保证蛋白质

与SDS的充分结合,它们的重量比应该为1∶4或1∶3。②样品缓冲液的离子强度因为SDS结合到蛋白质上的量仅仅取决于平衡时SDS单体的浓度,不是总浓度,而只有在低离子强度的溶液中,SDS 单体才具有较高的平衡浓度。所以,SDS电泳的样品缓冲液离子强度较低,常为10-100 mM。③二硫键是否完全被还原只有二硫键被完全还原以后,蛋白质分子才能被解聚,SDS才能定量地结合到亚基上从而给出相对迁移率和分子质量对数的线性关系。Sample buffer 中的β-巯基乙醇的浓度常为4-5%,二硫苏糖醇的浓度常为2-3%。前者有挥发性,最好使用前加入。 SDS-PAGE缓冲液系统的选择,Tris-Glycine、Tris-Tricine、Tris-硼酸盐或者其他? 一般来说,在被分析的蛋白质稳定的pH范围,凡是不与SDS发生相互作用的缓冲液都可以使用,但缓冲液的选择对蛋白带的分离和电泳的速度是非常关键的。Tris-甘氨酸系统是目前使用最多的缓冲系统。Tris-甘氨酸系统是目前使用最多的缓冲系统。如果要测定糖蛋白的分子量,最好采用Tris-硼酸盐缓冲系统,对于分子质量小于15 kDa的蛋白样品,可以使用SDS-尿素系统,也可以采用Tris-tricine缓冲系统。 积层胶(或称浓缩胶)的作用原理?

汽车涂装技术的现状与发展

汽车涂装技术的现状与发展 涂装材料、涂装工艺、涂装设备、涂装管理是汽车涂装的四大要素,相互之间相辅相成,促进了涂装工艺和技术的进步与发展。21世纪被称为面向环境的新世纪,环境保护倍受全球关注,并已成为人类最迫切研究的课题。汽车及其零部件的涂装是汽车制造过程中能耗最高且产生三废最多的环节之一。因此,减少涂装公害、降低涂装成本、提高涂装质量一直是涂装技术发展的主题。 新涂装材料的应用 新涂装材料的应用是涂装技术进步的先导,在不断满足涂层性能要求的前提下,始终以应用可减少公害、降低涂装成本的材料为主要发展目标。 由生物可降解性活性剂配制的脱脂剂、无镍磷化液、无亚硝酸盐磷化液、无铬钝化剂、低温脱脂剂(处理温度43℃)、性能与常规相同的低温(35℃)少渣(比常规低10%~30%)磷化液、无铅无锡阴极电泳涂料及低温固化(160℃10min)、低加热减量(4%以下)、低VOC挥发量(0.4%~0.8%)型阴极电泳涂料在欧美及日本已经推广应用多年。在北美和欧洲,可替代传统中涂的二次电泳涂料已经开始应用。 在欧洲,有些汽车公司已经在近几年新建涂装线上全部采用水性涂料,VOC 排放量已低于法规要求的35g/m2(德国TA-Luft,1995年)。从20世纪90年代开始,所有新建涂装线底漆全部采用了电泳底漆或粉末涂料,中涂采用水性涂料或高固体分材料,面漆采用水性底色加高固体分清漆。目前,粉末清漆已经开始应用于轿车的车身涂装。继粉末罩光漆工业化应用后,粉末金属底色也已经商业化。在北美,粉末中涂已经工业化应用多年,同时水性面漆底色近几年普及得非常快,高固体分中涂和面漆应用也相当普遍。欧美的紫外光(UV)固化涂料在汽车涂装中的应用技术已经接近成熟。日本也在积极开发和推广水性涂料、高固体分及超高固体分罩光漆。

IEF-SDS PAGE双向电泳技术

双向电泳 一、材料 样品:人神经母细胞瘤细胞SK-N-SH 二、试剂 SDS-PAGE所需试剂 1、30%Acry-Bis (w/v) 29.2%Acry29.2g 0.8%Bis0.8g 加水至100ml溶解,棕色试剂瓶4℃贮存,PH<7,数月后重配 2、10%的SDS贮液(w/v) RT保存,因SDS在4℃会析出 3、Tris-HCl buffer ①1.5M的PH8.8的Tris-HCl buffer——分离胶buffer 100ml含Tris18.171g,加DDW至80ml,用浓HCl调PH8.8,再定容至100ml,4℃保存 ②1.0M的PH6.8的Tris buffer——浓缩胶buffer: 50ml 含Tris6.057g,加DDW至40ml,用浓HCl调PH6.8,再定容至50ml,4℃保存 4、TEMED 以游离碱形式发挥作用,催化AP形成自由基,故PH较低时,聚合反应受抑制,易吸湿,被氧化,从无色变为黄色,故因密闭4℃保存 5、10%AP 1g的AP溶于10ml水中,4℃保存,隔周新鲜配置 6、PH8.3 电泳缓冲液1L,RT保存 终浓度 Tris碱3g 250mM Gly(25.05)14.4g 250mM SDS 1g 0.1% (192mM) 加水至1L,可不调PH 7、甘油液4℃31ml 丙三醇 5.5ml DDW 25.5ml

8、考马斯亮蓝染液CBB (RT,50%甲醇+冰醋酸+R250) 总体积100ml 终浓度 甲醇Methanal 45ml 45% 水45ml 冰醋酸10ml 10% R250 0.25g 0.1% 改进:(0.12% G250, 10% (NH4)2SO4, 10% H3PO4, 20% 甲醇) 100ml H2O+100ml H3PO4(先混匀,产热的)+100g粉末状(NH4)2SO4(边搅拌边加)先溶解,然后加入1.2g G250再溶解(不能真正溶解),定容至800ml,边搅拌边加200ml甲醇,终体积1000ml(可至少保存半年)。 9、脱色液 7.5ml的冰醋酸 5ml的甲醇 加水至100ml 或者用含有少量NaCl的清水进行脱色 IEF 试剂 10、一向裂解液Lysis buffer ,-80℃贮存 总体积MW 10ml 终浓度 urea 60.06 4.2042g 7M 硫脲(thiourea) 76.12 1.5224g 2M CHAPS 614.89 0.4g 4% DTT 154.25 0.108 70mM Amphylyte PH3~9.5 200μl Tris-base 121.14 0.048456g 40mM 临用前加EGTA (100mM) 400μl 4mM PMSF(100mM) 200μl 2mM 11、一向管胶覆盖液Overlay buffer ,-80℃贮存 Lysis buffer 稀释一倍即可 12、上下槽电泳液(现配) 上槽阴极液(20mM的NaOH):10ml 1M的贮液加水至500ml 下槽阳极液(10mM的H3PO4):5ml 1M的贮液加水至500ml 注:若分离碱性蛋白,上下槽电极液互换 13、平衡缓冲液:一向管胶之后的balance buffer 2% SDS 10%甘油 5%β-巯基乙醇/DTT 62.5mM的Tris-HCl (PH6.8) 微量溴酚蓝

毛细管电泳发展历史

毛细管电泳的发展历史 中文摘要 本文简要的回顾了毛细管电泳的发展历史,对其发展和应用现状进行概述,并对未来的发展提出一些设想,作为我们研究课题的重点,特别对毛细管电泳安培检测技术进行了较为详细的评述。从电导检测、电位检测和安培检测的三种方法用于毛细管电泳这项分离技术的发展过程,到基础理论的研究、检测池的设计与改进、电极的改进及其应用的简单介绍到未来的发展动向等方向逐一涉及,一般的药物、氨基酸和糖类的分析到目前应用的热点进行了综述。从毛细管电泳安培检测技术需要进一步完善和发展考虑,提出了本论文的设想,在毛细管电泳安培检测的方法学研究及其在药物分析中的应用方面做出一些有意义的工作。 鉴于在毛细管电泳安培检测技术中,用于分离的高压电场对安培检测有着严重干扰,影响检测的灵敏度,而且分离毛细管与工作电极对接也存在一定困难等原因,前人已做了大量的研究工作,并提出了种种解决办法,但还存在不尽如人意的地方。在原有的工作基础上,我们进一步进行了毛细管电泳安培检测的研究工作,设计制作了一种高压电场隔离接口和相应的安培检测池,并对工作电极进行了改进,兹将主要研究内容报告如下:第一部分概述了毛细管电泳的发展历史,对电导检测、电位检测特别是安培检测的基本原理及其应用工作进行了详细介绍,指出了三种检测技术的优缺点,以及人们为降低噪音、提高检测度方面所做的一些工作,最后还简单介绍了本文的目的、意义和内容。 第二部分设计制作了一种电场隔离接口和安培检测池,并对检测电极做了进一步改进。对高压电场隔离接口的强度、稳定性、平衡时间、导电效率及隔离电场性能等进行了详细的研究。结果表明:该接口稳定,隔离电场效果好,可以满足实际工作的需要;制作的安培检测池可以解决分离毛细管与工作电极对接困难的问题,其工作电极可以方便的插入分离毛细管而不碰壁。组装了一套毛细管电泳安培检测系统,并利用该系统分离检测了三中种对苯二酚,结果令人满意。此外,我们通过对电极的改进,削弱了在毛细管电泳安培检测中存在的峰扩展现象,进一步提离了分离效率。 第三部分在自组装的毛细管电泳安培系统上,进行了毛细管电泳安培检测在药物分析中的方法学研究,建立了此种药物的毛细管电泳安培检测方法。 1. 用毛细管电泳安培检测法同时测定了银黄注射液中氯原酸与黄芩苷的含量,研究了各种实验条件对分离效果的影响,得到了较优化的实验条件。以直径为100μm的铜微电极为工作电极,于电极电位+0.8V(vs.Ag/Ag CI)处,40mmoI/L的Na2B407(pH值为13.4)min为缓冲溶液时, 氯原酸与黄苓苷在12min内得到良好的分离. 氯原酸与黄苓苷分别在5.0×10-3~0.5mg/mL浓度范围内与电泳峰电流呈良好的线性关系, 检测下限分别为1.0

五种电泳技术的比较

五种电泳技术的比较-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

五种电泳技术的比较 SDSPAGE 名词解释: 相对迁移率(Rf) 问答题: 1.简述SDS-PAGE的基本原理。 2.影响SDS电泳的关键因素有哪些 AGE 名词解释 1.迁移率 2.电渗 3.电泳 问答题 1.影响电泳迁移率的因素有哪些? 2.试述琼脂糖凝胶电泳分离脂蛋白的原理。 CAME 1.CAME的基本原理是什么? 2.CAME分离血清蛋白电泳时应注意哪些问题? PAGE 名词解释 1.凝胶总浓度 2.交联度 问答题 1.与CAME相比,PAGE有哪些特点。 2.试比较CAME与PAGE操作的区别。 3.简述不连续PAGE的原理。 1.琼脂糖凝胶电泳Agarose Gel Electrophoresis Gel Electrophoresis :由琼脂、琼脂糖、淀粉胶及聚丙烯酰胺等物质作支持体的电泳。 特点(characteristic): 1.可以制成非常均匀的凝胶,带电质点在凝胶的孔中泳动。 2. 电泳操作方法简便,电泳速度快。 3. 分辨率高,重复性好,电泳图谱清晰。 4. 适用于生化,免疫等定性定量测定。 (一)优点(advantage) 1.因不含硫酸根和羧基,几乎消除了琼脂的电渗。 2.对蛋白质吸附极微,故无拖尾现象。 3.凝胶结构均匀,孔径较大,可用来分离酶的复合物、核酸、病毒等大分子物质。 4.透明度较好,可直接或干燥成薄膜后进行染色。 5.不吸收紫外光,可直接利用紫外光吸收法作定量测定。 6.有热可逆性。

(二)缺点(disadvantage) 1.机械强度差,易破碎,浓度不能太低。 2.易被细菌污染,不易保存,临用前配制。 3.琼脂糖支持层上的区带易于扩散,电泳后必须立即固定染色。 4.与PAGE相比,分子筛(molecular sieve)作用小,区带少。 应用 1. 适用于大分子的核酸、核蛋白等的分离、鉴定及纯化 2. 临床生化检验中常用于LDH、CK等同工酶的分离与检测 3. 为不同类型的高脂蛋白血症、冠心病等提供生化指标 影响迁移的因素 the size of the molecule conformation of the molecule the agarose concentration of a gel Voltage 百分浓度和分辨率限制 Most agarose gels are made with between 0.7% (good separation or resolution of large 5–10kb DNA fragments) and 2% (good resolution for small 0.2–1kb fragments) agarose dissolved in electrophoresis buffer. Up to 3% can be used for separating very tiny fragments but a vertical polyacrylamide gel 聚丙烯酰胺is more appropriate in this case. Low percentage gels are very weak and may break when you try to lift them. High percentage gels are often brittle and do not set evenly. 1% gels are common for many applications. 琼脂糖凝胶分离血浆脂蛋白 原理:血清脂蛋白经饱和苏丹黑B预染后,以琼脂糖凝胶为支持介质,在pH8.6巴比妥缓冲液中电泳,根据各脂蛋白的组成、大小、形状分离成不同区带。 pH 8.6 > pI ,各种脂蛋白均带负电,电泳时由负极到正极;VLDL为圆 形,受阻力小,LDL形态不规则,受阻力大,所以VLDL跑在前。 加样槽在负极,由负极到正极分别是CM\LDL\VLDL\HDL 2.醋酸纤维薄膜电泳Cellulose acetate membrane electrophoresis,CAME 特点:低吸附作用,低电渗作用,样本用量少,亲水性 1.Low sorption 2.Low electroosmosis 3.Small sample 4.Hydrophilic 电泳图谱不齐 ①点样时血清点加不均匀 ②薄膜局部干燥 ③电泳时供给薄膜的液量不均匀或过少 ④缓冲液变质 ⑤电泳时薄膜位置不正,与电流方向不平行 电泳图谱分理不清 ①点样时血清点加不均匀

电泳涂装基本原理

电泳涂装基本原理 所谓电泳涂装,是将被涂物浸渍在水溶性涂料中作为阳极(阳极电泳),另设一与其相对应的阴极,在两极间通直流电,靠电流所产生的物理化学作用,使涂料均匀涂在被涂物上的一种涂装技术。 电泳涂装必须使用电泳漆,电泳漆通常又称水溶性涂料,电泳漆与蒸馏水必须按一定比例进行稀释,才能使用。 电泳涂装一般包括四个同时进行的过程: 1、电泳:在直流电场的作用下,正,负带电胶体粒子向负,正方向运动,也称泳动。 2、电解:电极上分别进行着氧化还原反应,反而在电极上形成氧化与还原现象。 3、电沉积:由于电泳作用,移至阳极附近的带电胶体粒子在模板表体放出电子,而呈不溶状态沉积,析出的现象,此时漆膜形成。 4、电渗:在电场作用下,固相不动,而液相移动的现象。电渗作用使漆膜内所含水份逐渐被排到涂膜外,最后形成几乎连电流也通不过去,含水率极低,电阻相当高的致密漆膜。 5、铁红环氧电泳漆为例:该电泳漆系改性环氧树脂,丁醇,乙醇胺,滑石粉,铁红的物质组成,电泳漆与蒸馏水混合后,在直流电场的作用下,即分离成带正电荷的阳离子和带负电荷的阴离子,并进行一系列复杂的物理化学胶体化学,电化学变化过程。 电泳涂装的方法及技巧 (1)一般金属表面的电泳涂装,其工艺流程为:预清理→上线→除油→水洗→除锈→水洗→中和→水洗→磷化→水洗→钝化→电泳涂装→槽上清洗→超滤水洗→烘干→下线。 (2)被涂物的底材及前处理对电泳涂膜有极大影响。铸件一般采用喷砂或喷丸进行除锈,用棉纱清除工件表面的浮尘,用80#~120#砂纸清除表面残留的钢丸等杂物。钢铁表面采用除油和除锈处理,对表面要求过高时,进行磷化和钝化表面处理。黑色金属工件在阳极电泳前必须进行磷化处理,否则漆膜的耐腐蚀性能较差。磷化处理时,一般选用锌盐磷化膜,厚度约1~2μm,要求磷化膜结晶细而均匀。 (3)在过滤系统中,一般采用一级过滤,过滤器为网袋式结构,孔径为25~75μm。电泳涂料通过立式泵输送到过滤器进行过滤。从综合更换周期和漆膜质量等因素考虑,孔径50μm的过滤袋最佳,它不但能满足漆膜的质量要求,而且解决了过滤袋的堵塞问题。 (4)电泳涂装的循环系统循环量的大小,直接影响着槽液的稳定性和漆膜的质量。加大循环量,槽液的沉淀和气泡减少;但槽液老化加快,能源消耗增加,槽液的稳定性变差。将槽液的循环次数控制6~8次/h较为理想,不但保证漆膜质量,而且确保槽液的稳定运行。

双向凝胶电泳技术原理与应用

双向凝胶电泳技术原理与应用 Principle and application of two-dimensional gel electrophoresis 姓名:XX 班级:检验本科1113班 学号:XXX 【摘要】人类基因组计划与美国塞莱拉遗传信息公司于2001年在美国《科学》杂志和英国《自然》杂志联合宣布,他们绘制出了准确、清晰、完整的人类基因组图谱,至此,人类基因组计划已基本完成,随着后基因组时代的到来,蛋白质组学得到了空前的发展,蛋白质组研究旨在揭示基因表达的真正执行生命活动的全部蛋白质的表达规律和生物功能。包括蛋白质组、蛋白质组学、功能蛋白质组学和结构基因组学等新的概念的提出,蛋白质组学已成为当今生物领域中极其活跃的学科。其中双向电泳(two-dimensional electrophoresis,2.DE)是蛋白质组研究的三大关键核心技术之一 【abstract】Human gene group plans and United States sailaila genetic information company Yu 2001 in United States Science under magazine and United Kingdom natural under magazine joint announced, they draws out has accurate, and clear, and complete of human gene Group map, at this point, human gene group plans has basic completed, as Hou gene group era of comes, protein group learn get has unprecedented of development, protein group research aimed at reveals gene express of real implementation life activities of all protein of express law and biological function. Includes proteome, proteomics, structural proteomics and functional genomics of new concepts, such as proposed, proteomics has become extremely active in the field of biological sciences. Two-dimensional gel electrophoresis (two-dimensional electrophoresis,2.DE) is one of the three key core technologies of proteome research

相关文档
最新文档