串的模式匹配问题

串的模式匹配问题
串的模式匹配问题

串的模式匹配问题

一.实验题目描述

实现(,,)

Index S T pos为串T在串S的第pos个Index S T pos函数。其中,(,,)

字符后第一次出现的位置。

二.实验目的

熟练掌握串模式匹配算法。

三.实现功能

用朴素模式匹配算法和KM P快速模式匹配算法实现(,,)

Index S T pos。

四.实验要求

实现朴素模式匹配算法和KM P快速模式匹配算法。在设计时需要实现一个含有多个菜单项的主控菜单程序,然后再为这些菜单项配上相应的功能。

程序运行后,给出4个菜单项的内容和输入提示:

1.输入主串、子串和匹配起始位置

2.朴素的模式匹配算法

3.KM P快速模式匹配算法

0.退出

其它输入不起作用。

(5)程序结构描述

#define MAXSTRLEN 255

#include

#include

typedef unsigned char SString[MAXSTRLEN+1];

int Index(SString S,SString T,int pos);

int Index_KMP(SString S,SString T,int pos,int next[]);

void main(){

int next[MAXSTRLEN+1];

int n,a,b,c;

SString S,T;

printf("1.输入主串、子串和匹配起始位置2.朴素的模式匹配算法3.快速模式匹配算法0.退出");

scanf("%d",&n);

switch(n){//创建菜单。

case 1:{

int i;

printf("请输入主串长度,以回车符结束");//获取主串

scanf("%d",&a);

S[0]=(char)a;

printf("请输入主串字符,以回车符结束");

for(i=1;i<=a;i++){

S[i]=getchar();

};

getchar();

printf("请输入子串长度,以回车符结束");//获取子串

scanf("%d",&b);

T[0]=(char)b;

getchar();

printf("请输入子串字符,以回车符结束");

for(i=1;i<=b;i++){

T[i]=getchar();

};

getchar();

printf("请输入匹配起始位置");

scanf("%d",&c);

}

case 2:{

printf("朴素模式匹配算法出现的位置为:\n");

int p;

p=Index(S,T,c);

printf("%d\n",p);

}

case 3:{

printf("KMP模式匹配算法出现的位置为:\n");

int p;

p=Index_KMP(S,T,c,next);

printf("%d",p);

}

case 0:

break;

default:

printf("输入的值有误");

}

}

int Index(SString S,SString T,int pos){//朴素匹配模式算法

int i,j;

i=pos;

j=1;

while(i<=(int)S[0]&&j<=(int)T[0]){

if((int)S[i]==(int)T[j]){

++i;

++j;

}

else{

i=i-j+2;

j=1;

}

}

if(j>=T[0])

return (i-(int)T[0]);

else

return 0;

}

int Index_KMP(SString S,SString T,int pos,int next[]){//kmp快速匹配模式

int i,j;

i=1;

next[1]=0;

j=0;

while(i<=S[0]){

if(j==0||S[i]==S[j]){

++i;

++j;

next[i]=j;}

else

j=next[j];

}

i=pos;

j=1;

while(i<=S[0]&&j<=T[0]){ if(j==0||S[i]==T[j]){

++i;

++j;

}

else

j=next[j];

}

if(j>=(int)T[0])

return i-(int)T[0];

else

return 0;

}

七.程序输入输出及截屏

主串为abcdadcba,子串为dcba。开始匹配位置为2。输出结果如下图

八.实验体会与心得

通过本次实验掌握了串的朴素匹配方法及kmp快速匹配方法。并对串的主要函数及应用有了较深的了解。

实验三 串的模式匹配

实验三串的模式匹配 一、实验目的 1.利用顺序结构存储串,并实现串的匹配算法。 2.掌握简单模式匹配思想,熟悉KMP算法。 二、实验要求 1.认真理解简单模式匹配思想,高效实现简单模式匹配; 2.结合参考程序调试KMP算法,努力算法思想; 3.保存程序的运行结果,并结合程序进行分析。 三、实验内容 1、通过键盘初始化目标串和模式串,通过简单模式匹配算法实现串的模式匹配,匹配成功后要求输出模式串在目标串中的位置; 2、参考程序给出了两种不同形式的next数组的计算方法,请完善程序从键盘初始化一目标串并设计匹配算法完整调试KMP算法,并与简单模式匹配算法进行比较。 四、程序流程图、算法及运行结果 3-1 #include #include #define MAXSIZE 100 int StrIndex_BF(char s[MAXSIZE],char t[MAXSIZE]) { int i=1,j=1; while (i<=s[0] && j<=t[0] ) { if (s[i]==t[j]){ i++; j++; } else { i=i-j+2; j=1; } } if (j>t[0]) return (i-t[0]); else

return -1; } int main() { char s[MAXSIZE]; char t[MAXSIZE]; int answer, i; printf("S String -->\n "); gets(s); printf("T String -->\n "); gets(t); printf("%d",StrIndex_BF(s,t)); /*验证*/ if((answer=StrIndex_BF(s,t))>=0) { printf("\n"); printf("%s\n", s); for (i = 0; i < answer; i++) printf(" "); printf("%s", t); printf("\n\nPattern Found at location:%d\n", answer); } else printf("\nPattern NOT FOUND.\n"); getch(); return 0; }

模式匹配的KMP算法详解

模式匹配的KMP算法详解 模式匹配的KMP算法详解 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

字符串的模式匹配算法

在前面的图文中,我们讲了“串”这种数据结构,其中有求“子串在主串中的位置”(字符串的模式匹配)这样的算法。解决这类问题,通常我们的方法是枚举从A串(主串)的什么位置起开始与B串(子串)匹配,然后验证是否匹配。假设A串长度为n,B串长度为m,那么这种方法的复杂度是O(m*n)的。虽然很多时候复杂度达不到m*n(验证时只看头一两个字母就发现不匹配了),但是我们有许多“最坏情况”,比如: A=“aaaaaaaaaaaaaaaaaaaaaaaaab”,B=“aaaaaaaab”。 大家可以忍受朴素模式匹配算法(前缀暴力匹配算法)的低效吗?也许可以,也许无所谓。 有三位前辈D.E.Knuth、J.H.Morris、V.R.Pratt发表一个模式匹配算法,最坏情况下是O(m+n),可以大大避免重复遍历的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。 假如,A=“abababaababacb”,B=“ababacb”,我们来看看KMP是怎样工作的。我们用两个指针i和j分别表示,。也就是说,i是不断增加的,随着i 的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。 例子: S=“abcdefgab” T=“abcdex” 对于要匹配的子串T来说,“abcdex”首字符“a”与后面的串“bcdex”中任意一个字符都不相等。也就是说,既然“a”不与自己后面的子串中任何一字符相等,那么对于主串S来说,前5位字符分别相等,意味着子串T的首字符“a”不可能与S串的第2到第5位的字符相等。朴素算法步骤2,3,4,5的判断都是多余,下次的起始位置就是第6个字符。 例子: S=“abcabcabc” T=“abcabx”

串的模式匹配

《数据结构》课程设计报告 题目:模式匹配算法KMP及其应 用 学院 (系): 班级: 学生学 号: 姓名: 指导教 师: 日期: 目录

摘要 (1) 一、绪论 (2) 1. 课程设计的背景 (2) 2. 课程设计的意义 (3) 3. 开发平台及其简介 (3) 二、需求分析 (3) 三、可行性分析 (5) 四、概要设计 1. 功能设计要求 (5) 2. 总体结构设计 (6) 3. 抽象数据类型串的定义 (9) 4. 函数调用关系 (10) 5. 主程序调用 (11) 五、详细设计 (12) 1. 宏定义 (12) 2. 数据元素结构定义 (13)

3. 功能具体实现 (13) 4. 主程序和菜单设计 (29) 六、设计和调试分析 (31) 七、测试结果 (33) 八、设计心得体会 (37) 九、用户手册 (37) 一十、附录 (43) 一十一、参考文献 (44) 摘要 本程序主要是通过获取一个子串,或新建一个新的文本文件,或和已有的文本文件进行匹配,分别利用了串的朴素模式匹配算法、串的模式匹配KMP算法、串的模式匹配改进算法等数据结构中学的知识实现了,在和文本文件中的主串进行匹配后返回子串在文本文件中出现的次数和出现位置所在的行的行号。 本程序除了实现串在定长顺序存储结构下的三种模式匹配算法,还实现了串在单链表存储结构下的模式匹配KMP算法,通过比较了串的不同存储结构下串的模式匹配算法,进一步加强了对串的理解及串的各类模式算法的掌握。 在使用串的定长存储结构时,考虑到书本上实现串的KMP算法时,储存串的数组下标是从1开始,为了进一步理解串,本程序另辟蹊径,特地定义了一个结构体,结构体中用来存储串的数组下标是从0开始,实现了串的模式匹配KMP算法。

模式匹配算法的设计与实现

五、详细设计 #include #include #include #include using namespace std; #define MAX 100000 #define M 69 class String { private: int n; char *str; int *count; //记录子串在主串中出现的位置 int Find(int i,String &P); // 简单匹配算法找到最近的匹配串后立即停止,而不向下继续且缺乏一个数组记录位置 int *f ; //记录失败函数 void Fail(); int KMPFind(int i,String &P); //改进的失败函数 void ImproveFail(); int KMPFindImprove(int i,String &P); public: String(); //建立一个空串 String(const char *p); String(const String &p); //拷贝函数 ~String(); int Length() {return n;}; //返回当前串对象长度 void Output() {cout<

int KMPFindImprove(String &P); //改进的KMP匹配算法 void Output2(); //输出子串在主串中出现的位置 }; int String::KMPFindImprove(String &P) { int sum=0; int j=KMPFindImprove(0,P); while(j!=-1) { count[sum++]=j; if(j<=n-P.n) j=KMPFindImprove(j+P.n,P); } return sum; } void String::Output2() //输出子串在主串中的位置 { int i=0; while(count[i]!=count[i+1] && i

数据结构第04章 串

第四章串 教学目的与要求 本章目的是介绍串的逻辑结构、存储结构及其串上的基本运算。 重点和难点 本章重点是掌握串上实现的模式匹配算法,其也是本章难点。 教学内容 第一节串的基本概念 4.1.1 基本概念 串:是零个或多个字符组成的有限序列。串中所包含的字符个数称为串的长度。 空串:长度为0的串称为空串,它不包含任何字符。 空白串:仅由一个或多个空格组成的串称为空白串。应注意空串和空白串的区别。 子串、主串:串中任意个连续字符组成的子序列称为该串的子串,包含子串的串相应地称为主串。空串是任意串的子串,任意串是其自身的子串。 子串在主串中的位置:通常,将子串在主串中首次出现时子串首字符对应的主串中的序号定义为子串在主串中的位置。 2.串的基本运算 (1)求串的长度(Length) (2)串复制 (Copy): (3)串联接 (Concat)

(4)串比较 (Compare) (5)字符定位(Index) 除上述基本运算外,串运算还有求子串、子串的定位、子串的置换等操作。这些操作,一般可由这些基本操作实现。 第二节串的存储结构 4.2.1串的顺序存储 1.静态存储分配的顺序串 顺序串最简单的描述形式是直接使用定长的字符数组来定义。其定义形式为 # define maxstrsize 256 typedef char Seqstring[maxstrsise]; 利用类型描述符Seqstrsring可定义数组变量存储串,利用特定字符表示串的结束(C语言用转义字符’\0’) 。例如Seqstrstring s; 变量s可存储长度不超过255个字符的字符串,以’\0’作为串的结束。 顺序串的类型定义也可以象线性表的顺序存储一样,在定义字符数组的基础上,引入描述长度的成员。其定义形式为 # define maxstrsize 256 typedef struct { char ch[maxstrsise]; int length; }Sqestring;

关于快速高效的模式匹配算法的剖析与改进

关于快速高效的模式匹配算法的剖析与改进 摘要:模式匹配算法是现代化网络入侵检测中的关键环节,本文主要介绍了几种常用的模式匹配算法,并在此基础上,提出一种更快捷、更高效的改进方法,以提高模式匹配的效率与质量,确保网络安全。 关键词:模式匹配入侵检测改进 随着我国计算机与网络技术的飞速发展,网络应用已涉及到人们生产、生活的各个领域,其重要性日益凸显。随之而来的网络攻击问题也备受关注,给网络安全性带来挑战。传统的网络防御模式,主要采取身份认证、防火墙、数据加密等技术,但是与当前网络发展不适应。在此背景下,入侵检测技术营运而生,并建立在模式匹配基础上,确保检测的快捷性、准确性,应用越来越广泛。 1、模式匹配原理概述 模式匹配是入侵检测领域的重要概念,源自入侵信号的层次性。结合网络入侵检测的底层审计事件,从中提取更高层次的内容。通过高层事件形成的入侵信号,遵循一定的结构关系,将入侵信号的抽象层次进行具体划分。入侵领域大师kumar将这种入侵信号划分为四大层次,并将每一个层次与匹配模式相对应。以下将分别对四大层次进行分析: (1)存在。只要存在审计事项,就可以证明入侵行为的发生,并深层次挖掘入侵企图。存在主要对应的匹配模式就是“存在模式”。可以说,存在模式就是在固定的时间内,检查系统中的特定状态,

同时判断系统状态。 (2)序列。一些入侵的发生,是遵循一定的顺序,而组成的各种行为。具体表现在一组事件的秩序上。序列对应的是“序列模式”,在应用序列模式检测入侵时,主要关注间隔的时间与持续的时间。 (3)规则。规则表示的是一种可以扩展的表达方式,主要通过and 逻辑表达来连接一系列的描述事件规则。一般适用于这种模式的攻击信号由相关活动组成,这些活动之间往往不存在事件的顺序关系。 (4)其他。其他模式是不包含前面几种方法的攻击,在具体应用过程中,难以与其他入侵信号进行模式匹配,大多为部分实现方式。 2、几种常用的模式匹配算法 2.1 ac算法 ac算法(aho-corasick)是一种可以同时搜索若干个模式的匹配算法,最早时期在图书馆书目查询系统中应用,效果良好。通过使用ac算法,实现了利用有限状态自动机结构对所有字符串的接收过程。自动机具有结构性特征,且每一个前缀都利用唯一状态显示,甚至可同时应用于多个模式的前缀中。如果文本中的某一个字符不属于模式中预期的下一个字符范围内,或者可能出现错误链接的指向状态等,那么最长模式的前缀同时也可作为当前状态相对应的后缀。ac算法的复杂性在于o(n),预处理阶段的复杂性则在于o(m)。在采取ac算法的有限状态自动机中,应该在每一个字符的模式串中分别建立节点,提高该算法的使用效率与质量。目前,应用有限

第四章:串

第四章串 一、选择题 1.下面关于串的的叙述中,哪一个是不正确的?() A.串是字符的有限序列 B.空串是由空格构成的串 C.模式匹配是串的一种重要运算 D.串既可以采用顺序存储,也可以采用链式存储 2 若串S1=‘ABCDEFG’, S2=‘9898’ ,S3=‘###’,S4=‘012345’,执行 concat(replace(S1,substr(S1,length(S2),length(S3)),S3),substr(S4,index(S2, ‘8’),length(S2))) 其结果为()【北方交通大学 1999 一、5 (25/7分)】 A.ABC###G0123 B.ABCD###2345 C.ABC###G2345 D.ABC###2345 E.ABC###G1234 F.ABCD###1234 G.ABC###01234 3.设有两个串p和q,其中q是p的子串,求q在p中首次出现的位置的算法称为()A.求子串 B.联接 C.匹配 D.求串长 4.已知串S=‘aaab’,其Next数组值为()。 A.0123 B.1123 C.1231 D.1211 5.串‘ababaaababaa’的next数组为()。【中山大学 1999 一、7】A.012345678999 B.012121111212 C.011234223456 D.0123012322345 6.字符串‘ababaabab’的nextval 为() A.(0,1,0,1,04,1,0,1) B.(0,1,0,1,0,2,1,0,1) C.(0,1,0,1,0,0,0,1,1) D.(0,1,0,1,0,1,0,1,1 ) 7.模式串t=‘abcaabbcabcaabdab’,该模式串的next数组的值为(),nextval 数组的值为()。 A.0 1 1 1 2 2 1 1 1 2 3 4 5 6 7 1 2 B.0 1 1 1 2 1 2 1 1 2 3 4 5 6 1 1 2 C.0 1 1 1 0 0 1 3 1 0 1 1 0 0 7 0 1 D.0 1 1 1 2 2 3 1 1 2 3 4 5 6 7 1 2 E.0 1 1 0 0 1 1 1 0 1 1 0 0 1 7 0 1 F.0 1 1 0 2 1 3 1 0 1 1 0 2 1 7 0 1

串的模式匹配算法实验报告

竭诚为您提供优质文档/双击可除串的模式匹配算法实验报告 篇一:串的模式匹配算法 串的匹配算法——bruteForce(bF)算法 匹配模式的定义 设有主串s和子串T,子串T的定位就是要在主串s中找到一个与子串T相等的子串。通常把主串s称为目标串,把子串T称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串s中找到一个模式串T;不成功则指目标串s中不存在模式串T。bF算法 brute-Force算法简称为bF算法,其基本思路是:从目标串s的第一个字符开始和模式串T中的第一个字符比较,若相等,则继续逐个比较后续的字符;否则从目标串s的第二个字符开始重新与模式串T的第一个字符进行比较。以此类推,若从模式串T的第i个字符开始,每个字符依次和目标串s中的对应字符相等,则匹配成功,该算法返回i;否则,匹配失败,算法返回0。 实现代码如下:

/*返回子串T在主串s中第pos个字符之后的位置。若不存在,则函数返回值为0./*T非空。 intindex(strings,stringT,intpos) { inti=pos;//用于主串s中当前位置下标,若pos不为1则从pos位置开始匹配intj=1;//j用于子串T中当前位置下标值while(i j=1; } if(j>T[0]) returni-T[0]; else return0; } } bF算法的时间复杂度 若n为主串长度,m为子串长度则 最好的情况是:一配就中,只比较了m次。 最坏的情况是:主串前面n-m个位置都部分匹配到子串的最后一位,即这n-m位比较了m次,最后m位也各比较了一次,还要加上m,所以总次数为:(n-m)*m+m=(n-m+1)*m从最好到最坏情况统计总的比较次数,然后取平均,得到一般情况是o(n+m).

串的朴素模式匹配算法(BF算法)

//算法功能:串的朴素模式匹配是最简单的一种模式匹配算法,又称为 Brute Force 算法,简称为BF算法 #include #include #define MAXL 255 #define FALSE 0 #define TRUE 1 typedef int Status; typedef unsigned char SString[MAXL+1]; //生成一个其值等于串常量strs的串T void StrAssign(SString &T, char *strs) { int i; T[0] = 0; //0号单元存储字串长度 for(i = 0; strs[i]; i++) //用数组strs给串T赋值 T[i+1] = strs[i]; T[0] = i; } //返回子串T在主串S中第pos个字符开始匹配的位置,若不存在,则返回0 int Index(SString S, SString T, int pos) { int i = pos, j = 1; while(i <= S[0] && j <= T[0]) { if(S[i] == T[j]) //继续比较后面的字符 { i++; j++; } else//指针回退,重新开始匹配 { i = i -j + 2; j = 1; } } if(j > T[0]) return i - T[0]; else return 0;

int main() { SString S, T; int m; char strs1[MAXL]; //建立主串S char strs2[MAXL]; //建立模式串T printf("请输入主串和子串:\n"); printf("主串S: "); scanf("%s", strs1); printf("子串T: "); scanf("%s", strs2); StrAssign(S, strs1); StrAssign(T, strs2); m = Index(S, T, 1); if(m) printf("主串 S = {%s}\n子串 T = {%s}\n在第 %d 个位置开始匹配!\n", strs1, strs2, m); else printf("主串 S = {%s}\n子串 T = {%s}\n匹配不成功!\n", strs1, strs2); return 0; }

BM模式匹配算法图解

Boyer-Moore 经典单模式匹配算法 BM模式匹配算法-原理(图解) 由于毕业设计(入侵检测)的需要,这两天仔细研究了BM模式匹配算法,稍有心得,特此记下。 首先,先简单说明一下有关BM算法的一些基本概念。 BM算法是一种精确字符串匹配算法(区别于模糊匹配)。 BM算法采用从右向左比较的方法,同时应用到了两种启发式规则,即坏字符规则和好后缀规则,来决定向右跳跃的距离。 BM算法的基本流程: 设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较,如下图所示: 若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则和好后缀规则,来计算模式串向右移动的距离,直到整个匹配过程的结束。 下面,来详细介绍一下坏字符规则和好后缀规则。 首先,诠释一下坏字符和好后缀的概念。 请看下图:

图中,第一个不匹配的字符(红色部分)为坏字符,已匹配部分(绿色)为好后缀。 1)坏字符规则(Bad Character): 在BM算法从右向左扫描的过程中,若发现某个字符x不匹配,则按如下两种情况讨论: i. 如果字符x在模式P中没有出现,那么从字符x开始的m个文本显然不可能与P匹配成功,直接全部跳过该区域即可。 ii. 如果x在模式P中出现且出现次数>=1,则以该字符所在最右边位置进行对齐。 用数学公式表示,设Skip(x)为P右移的距离,m为模式串P的长度,max(x)为字符x在P中最右位置。 可以总结为字符x出现与否,将max(x)=0作为初值即可。

例1: 下图红色部分,发生了一次不匹配。 计算移动距离Skip(c) = m-max(c)=5 - 3 = 2,则P向右移动2位。 移动后如下图: 2)好后缀规则(Good Suffix): 若发现某个字符不匹配的同时,已有部分字符匹配成功,则按如下两种情况讨论: i. 如果在P中位置t处已匹配部分P'在P中的某位置t'也出现,且位置t'的前一个字符与位置t的前一个字符不相同,则将P右移使t'对应t方才的所在的位置。 ii. 如果在P中任何位置已匹配部分P'都没有再出现,则找到与P'的后缀P''相同的P的最长前缀x,向右移动P,使x对应方才P''后缀所在的位置。

串的模式匹配

实验内容与要求 内容: 问题描述:从键盘输入一个目标串S,并输入要匹配的模式串T,利用串的简单的模式匹配和KMP算法,定位模式串在主串中的位置。 要求: 设计要求 首先设计一个含有多个菜单项的主控菜单程序,然后再为这些菜单项配上相应的功能。 主控菜单设计要求:程序运行后,显示一个标题“模式匹配算法”,标题下方给出6个菜单项的内容和输入提示: 1.输入一个主串S 2.输入一个模式串T 3. 计算模式串T的next函数值 4.实现简单模式匹配 5.实现KMP模式匹配 6. 继续/否?(y/n?) #include #include typedef char String[100]; int next[10]; void GetNext(String T,int next[]) { int i=1,j=0; next[1]=0; while(i

j=next[j]; } } void printNext(String T) { int i; for(i=1;i<=T[0];i++) { printf("next[%d]:%d ",i,next[i]); } printf("\n"); } int KMP_INDEX(String S,String T,int pos) { int i=pos,j=1; while(i<=S[0] &&j<=T[0]) { if(j==0||S[i]==T[j]) { i++; j++; } else j=next[j]; } if(j>T[0]) return i-T[0]; else return 0; } int Index(String S,String T,int pos) { int i=pos,j=1; while(i<=S[0] &&j<=T[0]) {

KMP字符串模式匹配算法解释

个人觉得这篇文章是网上的介绍有关KMP算法更让人容易理解的文章了,确实说得很“详细”,耐心地把它看完肯定会有所收获的~~,另外有关模式函数值next[i]确实有很多版本啊,在另外一些面向对象的算法描述书中也有失效函数f(j)的说法,其实是一个意思,即next[j]=f(j-1)+1,不过还是next[j]这种表示法好理解啊: KMP字符串模式匹配详解 KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。 一.简单匹配算法 先来看一个简单匹配算法的函数: int Index_BF ( char S [ ], char T [ ], int pos ) { /* 若串S 中从第pos(S 的下标0≤pos

字符串匹配算法总结

Brute Force(BF或蛮力搜索) 算法: 这是世界上最简单的算法了。 首先将匹配串和模式串左对齐,然后从左向右一个一个进行比较,如果不成功则模式串向右移动一个单位。 速度最慢。 那么,怎么改进呢? 我们注意到Brute Force 算法是每次移动一个单位,一个一个单位移动显然太慢,是不是可以找到一些办法,让每次能够让模式串多移动一些位置呢? 当然是可以的。 我们也注意到,Brute Force 是很不intelligent 的,每次匹配不成功的时候,前面匹配成功的信息都被当作废物丢弃了,当然,就如现在的变废为宝一样,我们也同样可以将前面匹配成功的信息利用起来,极大地减少计算机的处理时间,节省成本。^_^ 注意,蛮力搜索算法虽然速度慢,但其很通用,文章最后会有一些更多的关于蛮力搜索的信息。 KMP算法 首先介绍的就是KMP 算法。 这个算法实在是太有名了,大学上的算法课程除了最笨的Brute Force 算法,然后就介绍了KMP 算法。也难怪,呵呵。谁让Knuth D.E. 这么world famous 呢,不仅拿了图灵奖,而且还写出了计算机界的Bible (业内人士一般简称TAOCP). 稍稍提一下,有个叫H.A.Simon的家伙,不仅拿了Turing Award ,顺手拿了个Nobel Economics Award ,做了AI 的爸爸,还是Chicago Univ的Politics PhD ,可谓全才。 KMP 的思想是这样的: 利用不匹配字符的前面那一段字符的最长前后缀来尽可能地跳过最大的距离 比如 模式串ababac这个时候我们发现在c 处不匹配,然后我们看c 前面那串字符串的最大相等前后缀,然后再来移动 下面的两个都是模式串,没有写出来匹配串 原始位置ababa c 移动之后aba bac 因为后缀是已经匹配了的,而前缀和后缀是相等的,所以直接把前缀移动到原来后缀处,再从原来的c 处,也就是现在的第二个b 处进行比较。这就是KMP 。 Horspool算法。 当然,有市场就有竞争,字符串匹配这么大一个市场,不可能让BF 和KMP 全部占了,于是又出现了几个强劲的对手。

数据结构-模式匹配算法

模式匹配算法 源程序如下: #include #include int index_KMP(char *s,char *t,int pos); void get_next(char *t,int *); char s[100],t[20]; int next[20],pos=0; //主函数 main() { printf("------------------------模式匹配算法 ----------------------\n"); printf("0---匹配失败,k---匹配成功,k--指主串中第一个字符出现的位置\n"); int n; printf("请输入主串s:\n"); gets(s); printf("请输入模式串t:\n"); gets(t); get_next(t,next); n=index_KMP(s,t,pos);

printf("匹配的结果:%d\n",n); } //KMP模式匹配算法 int index_KMP(char *s,char *t,int pos) { int i=pos,j=1; while (i<=(int)strlen(s)&&j<=(int)strlen(t)) { if (j==0||s[i]==t[j-1]) { i++; j++; } else j=next[j]; } if(j>(int)strlen(t)) return i-strlen(t)+1; else return 0; }

void get_next(char *t,int *next) { int i=1,j=0; next[0]=next[1]=0; while (i<(int)strlen(t)) { if (j==0||t[i]==t[j]) { i++; j++; next[i]=j; } else j=next[j]; } } 运行效果如下:

模式匹配KMP算法实验步骤

一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样: ...ababd... ababc ->ababc 这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。 《数据结构》上给了next值的定义: 0 如果j=1 next[j]={Max{k|1aaab ->aaab ->aaab 像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。 到这里,就实现了KMP的大部分内容,然后关键的问题是如何求next值?先看如何用它来进行匹配操作。 将最前面的程序改写成: int Index_KMP(String S,String T,int pos) { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) {

C语言字符串模式匹配

数据结构面试之十四——字符串的模式匹配 题注:《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。 十四、字符串的模式匹配 1. 模式匹配定义——子串的定位操作称为串的模式匹配。 2. 普通字符串匹配BF算法(Brute Force 算法,即蛮力算法) 【算法思想】: 第(1)步;从主串S的第pos个字符和模式的第一个字符进行比较之,若相等,则继续逐个比较后续字符;否则从主串的下一个字符起再重新和模式串的字符比较之。 第(2)步骤;依次类推,直至模式T中的每一个字符依次和主串S中的一个连续的字符序列相等,则称匹配成功;函数值为和模式T中第一个字符相等的字符在主串S中的序号,否则称为匹配不成功,函数值为0。 比如对于主串S=”abacababc”; 模式串T=”abab”; 匹配成功,返回4。 对于主串S=”abcabcabaac”; 模式串T=”abab”; 匹配不成功,返回0。 【算法实现】: //普通字符串匹配算法的实现 int Index(char* strS, char* strT, int pos) { //返回strT在strS中第pos个字符后出现的位置。 int i = pos; int j = 0; int k = 0; int lens = strlen(strS);

int lent = strlen(strT); while(i < lens && j < lent) { if(strS[i+k] == strT[j]) { ++j; //模式串跳步 ++k; //主串(内)跳步 } else { i = i+1; j=0; //指针回溯,下一个首位字符 k=0; } }//end i if(j >= lent) { return i; } else { return 0; } }//end [算法时间复杂度]:设主串长度为m,模式串的长度为n。一般情况下n

串的模式匹配

实验四顺序串的各种模式匹配 一、实验目的 熟悉串的有关概念,掌握串的存储结构及串的模式匹配算法。 二、实验内容 由用户随意输入两个串:主串S和模式串T,设S=‘s1s2…sn’,T=‘t1t2…tm’,且0 #include using namespace std; typedef struct taglin{ int data; taglin* next; }lin; void initlin(lin* &L,int e){ lin* p=L,* s; while(p->next!=NULL) p=p->next; s=(lin*)malloc(sizeof(lin)); s->data=e;

s->next=p->next; p->next=s; } void main(){ int num,e,x,y,count=-1,c=0,e1,t=-2147483648; bool mark=false; lin* L,* tx,* p,* q; L=(lin*)malloc(sizeof(lin)); L->next=NULL; cout<<"输入个数>=2"<>num; if(num<2){ cout<<"输入比2小的值_错误"<>e; initlin(L,e); if(c==0){ e1=e; c++; } if(e>x>>y; if(y>=e) mark=true; if(e1>x) x=e1; tx=L->next; for(;tx->data<=x;tx=tx->next); p=L->next; for(;p!=NULL&&p->next!=tx;p=p->next); q=p; if(!mark){ for(;p!=NULL&&p->data<=y;p=p->next)

模式匹配算法

/** *时间:2010年8月26日7:09:57 *功能:模式匹配算法代码 */ #include"stdio.h" #include"malloc.h" void kmp(int *ikmp,char *t,int t_length) { int k=0; int q=0; ikmp[0]=k; for(q=1;q0&&t[k]!=t[q]) { k=ikmp[k]; } if(t[k]==t[q]) { k=k+1; } ikmp[q]=k; } /*测试*/ for(q=0;q

while(t[t_length]!='\0') { t_length++; } /*测试*/ printf("t_length is %d\n",t_length); /*求t的kmp值*/ ikmp=malloc(t_length*sizeof(int)); kmp(ikmp,t,t_length); /*匹配过程*/ for(q=0;q0&&t[k]!=s[q]) { k=ikmp[k-1]; } if(t[k]==s[q]) { k=k+1; } if(k==t_length) { free(ikmp); return (q-t_length+1); } } free(ikmp); return -1; } main() { int i=0; char *s;/*主串*/ char *t;/*匹配串*/ printf("input s: "); scanf("%s",s); printf("input t: "); scanf("%s",t);

第四章 串

第四章串 一、内容提要 1、是数据元素为字符的线性表,串的定义及操作。 2、串的基本操作,编制算法求串的其它操作。 3、串的存储结构,因串是数据元素为字符的线性表,所以存在“结点大小“的问题。静态和动态(块链结构,堆结构)存储的优缺点。 4、朴素模式匹配算法及改进(KMP)算法。 二、学习重点 1、串的基本操作,编写串的其他操作(如index,replace等)。 2、在串的模式匹配中,求匹配串的nextval 函数值。 3、尽管朴素的模式匹配的时间复杂度是O(m*n), KMP算法是O(m+n),但在一般情况下,前者实际执行时间近似O(m+n),因此至今仍被采用。KMP算法仅在主串与模式串存在许多“部分匹配”时才显得比前者块的多,其主要优点是主串不回嗍。 5、串操作在存储结构下的实现。 三、例题解析 1、利用串的如下基本运算 create(s),assign(s,t),length(s),substr(s,start,len),concat(s1,s2),编写操作replace的算法 replace(string &s,string t, string v) //本算法实现串的置换操作,用串v置换串s中所有非重叠的t串。

{i=INDEX(s,t);{判s中有无t} IF (i!=0) {CREATE (temp, ‘’);{t为临时串变量,存放部分结果} m=LENGTH(t);n=LENGTH(s); WHILE (i!=0) { ASSIGN (temp,CONCAT(temp,SUBSTR(s,1,i-1),v)); //用v替换t形成部分结果 ASSIGN (s,SUBSTR(s, i+m,n-i-m+1)); //t串以后形成新s串 n= n-(i-1)-m; i=INDEX(s,t); } ASSIGN (s,CONCAT(temp,s)); //将剩余s连接临时串t再赋给s } } int index(string s,string t) //本算法求串t在串s中的第一次出现。结果是:若t在s中,则给出串t的第一个字符在串s中的位置,若不存在,则返回0 {j=1;m=length(s); n=length(t); eq=true; WHILE((j<=m-n+1)&& eq ) IF equal(substr(s,j,n),t) eq=false; ELSEj=j+1; IF( j<=m+n-1)return(j); Return(0);

相关文档
最新文档