差分方法实验报告

差分方法实验报告
差分方法实验报告

实验报告

课程名称:计算方法

院系:数学科学系

专业班级:数应1001

学号:1031110139

学生姓名:姚海保

指导教师:沈林

开课时间:2012至2013学年第一学期

一、学生撰写要求

按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。

学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。

二、教师评阅与装订要求

1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。

2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。

3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。

4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩;

5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

4、复数矩阵的生成及运算

A=[1,3;2,4]-[5,8;6,9]*i

B=[1+5i,2+6i;3+8*i,4+9*i]

C=A*B

A = 1.0000 - 5.0000i 3.0000 - 8.0000i

2.0000 - 6.0000i 4.0000 - 9.0000i

B =1.0000 + 5.0000i 2.0000 + 6.0000i

3.0000 + 8.0000i

4.0000 + 9.0000i

C =1.0e+002 *

0.9900 1.1600 - 0.0900i

1.1600 + 0.0900i 1.3700

完整版有限差分方法概述.doc

有限差分法( Finite Difference Method,简称FDM)是数值方法中最经典的方法,也是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较 早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分 为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上 述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后 差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 下面我们从有限差分方法的基本思想、技术要点、应用步骤三个方面来深入了解一下有限差分方法。 1.基本思想 有限差分算法的基本思想是把连续的定解区域用有限个离散点 构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。在采用数值计算方法求解偏微分方程时,再将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即 所谓的有限差分法。 2.技术要点 如何根据问题的特点将定解区域作网格剖分;如何把原微分

差分放大电路仿真02605

苏州市职业大学实验报告姓名:学号:班级:

二、选好元器后,将所有元器件连接绘制成仿真电路(见图 1) R3 6.8k Q 三、仿真分析 1.静态工作点分析 1)调零。信号源先不接入回路中,将输入端对地短接,用万用表测量两个输出 节点,调节三极管的射极电位,使万用表的示数相同,即调整电路使左右完 全对称。测量电路及结果如图2所示 2)静态工作点调试。零点调好以后,可以用万用表测量 Q1、Q2管各电极电位, 结果如图 3 所示,测得 I B 1 15 A , I C 1 1.089mA , U CE 5.303V 。 2.测量差模放大倍数 将函数信号发生器XFG1的“ +”端接放大电路的R1输入端,“一”端接R2输入 端,COM 端接地。调节信号频率为1kHz ,输入电压10mV 调入双踪示波器,分别 接输入输出,如图4所示,观祭波形变化,示波器观祭到的差分放大电路输入、 输出波形如图5所示 R4 6.8k Q R1 ■ 酉 2 ?R6 >510 Q <3 ------- Q1 R8 12k Q 12 V 双端输入、 100Q Key=A 丄V2 -— 12 V 11 R5 5.1k 10 双端输出的长尾式差分放大电路 8 Q ■ 4 Q2 2N3903 R2 AAAr-| 2k Q 7 50% Rp1

4.607 V H-、4 -Q *: LR3 S : : ?6+BkQ : a ): >R4 :>G.?kn ............ R& '''' ---------- VA ---------- it::12W5::: 1 F ■! ■ I R1 .,,斗,- VA- :7W. . \ ■1 2M39G 3 :R2 : : 2K1: 2N39G3 -” R6 5100 : ::5C% :10QQ ::Key=A 丄V2「::二12W TV '' 图2差分放大器电路调零

Poisson方程九点差分格式_米瑞琪

数值实验报告I 实验名称Poisson方程九点差分格式实验时间2016年 4 月 15 日姓名米瑞琪班级信息1303学号04成绩 一、实验目的,内容 1、理解Poisson方程九点差分格式的构造原理; 2、理解因为网格点的不同排序方式造成的系数矩阵格式的差异; 3、学会利用matlab的spdiags(),kron()函数生成系数矩阵; 二、算法描述 针对一个Poisson方程问题: 在Poisson方程五点差分格式的基础上,采用Taylor展开分析五点差分算子的截断误差,可以得到: 为了提高算子截断误差的精度,在(1)式中配凑出了差分算子的形式,将原Poisson方程代入(1)式有: 考虑,有:

将(3)代回(2)可得 得到Poisson方程的九点差分格式: 在计算机上实现(4)式,需要在五点差分格式 的基础上在等式两端分别增加一部分,将等式左侧新增的部分写成紧凑格式,有: 对于该矩阵,可以看成是两个矩阵的组合:

以及 则生成这两个矩阵可以采用Kroncker生成,方法类似于五点差分格式。 对于右端添加的关于f(x,y)的二阶导数,可以采用中心差分格式进行近似代替,即: 写成相应的紧凑格式有:

该式中的矩阵又可以分解为两个矩阵的和:

%计算误差 u_real=@(x,y)exp(pi*(x+y))*sin(pi*x).*sin(pi*y); for i=1:N1-1 u_m((i-1)*(N2-1)+1:i*(N2-1))=u_real(x(i),y); end u_v=u_m'; err_d=max(abs(u_d-u_v)); sol=reshape(u_d,N2-1,N1-1); mesh(X,Y,sol) 四. 数值结果 针对课本P93给出的问题,分别采用步长,将计算出的误差列表如下: 步长五点差分格式误差九点差分格式误差 可见采用九点差分格式可以进一步缩小误差,达到更高阶的精度。 五. 计算中出现的问题,解决方法及体会 在生成九点差分格式的时候,等号右端涉及到了对f的二阶偏导,我最初利用符号函数定义了f,随后求出其二阶偏导(仍然是符号函数)之后带入网格点,求f二阶偏导的精确解,但是代入过程相当繁琐,运行速度非常慢,最终我改变策略,选用f关于x,y的二阶中心差分格式替代精确值,最终得到了相对满意的结果。 教 师 评 语 指导教师:年月日

中心差分法的基本理论与程序设计

中心差分法的基本理论与程序设计 1程序设计的目的与意义 该程序通过用C语言(部分C++语言)编写了有限元中用于求解动力学问题的中心差分法,巩固和掌握了中心差分法的基本概念,提高了实际动手能力,并通过实际编程实现了中心差分法在求解某些动力学问题中的运用,加深了对该方法的理解和掌握。 2程序功能及特点 该程序采用C语言(部分C++语言)实现了用于求解动力学问题的中心差分法,可以求解得到运动方程的解答,包括位移,速度和加速度。计算简便且在算法稳定的条件下,精度较高。 3中心差分法的基本理论 在动力学问题中,系统的有限元求解方程(运动方程)如下所示: ()()()() Ma t Ca t Ka t Q t ++= 式中,() a t分别是系统的结点加速度向 a t是系统结点位移向量,() a t和() 量和结点速度向量,,, M C K和() Q t分别是系统的质量矩阵、阻尼矩阵、刚度矩阵和结点载荷向量,并分别由各自的单元矩阵和向量集成。 与静力学分析相比,在动力分析中,由于惯性力和阻尼力出现在平衡方程中,因此引入了质量矩阵和阻尼矩阵,最后得到的求解方程不是代数方程组,而是常微分方程组。常微分方程的求解方法可以分为两类,即直接积分法和振型叠加法。 中心差分法属于直接积分法,其对运动方程不进行方程形式的变换而直接进行逐步数值积分。通常的直接积分是基于两个概念,一是将在求解域0t T内的任何时刻t都应满足运动方程的要求,代之仅在一定条件下近似地满足运动方程,例如可以仅在相隔t?的离散的时间点满足运动方程;二是在一定数目的t?区域内,假设位移a、速度a、加速度a的函数形式。 中心差分法的基本思路是用有限差分代替位移对时间的求导,将运动方程中的速度和加速度用位移的某种组合表示,然后将常微分方程组的求解问题转换为

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

有限差分方法计算欧式期权价格

假设当前股票价格为50美元,股票价格波动率sigma=0.3;以该股票为标的资产的欧式看跌期权的执行价格为50美元,期权有效期为5个月;市场上的无风险利率为10%。利用显示差分格式为该期权进行定价。 %%% 显示法求解欧式看跌期权%%% s0=50; %股价 k=50; %执行价 r=0.1; %无风险利率 T=5/12; %存续期 sigma=0.3; %股票波动率 Smax=100; %确定股票价格最大价格 ds=2; %确定股价离散步长 dt=5/1200; %确定时间离散步长 M=round(Smax/ds); %计算股价离散步数,对Smax/ds取整运算 ds=Smax/M; %计算股价离散实际步长 N=round(T/dt); %计算时间离散步数 dt=T/N; %计算时间离散实际步长 matval=zeros(M+1,N+1); vets=linspace(0,Smax,M+1); %将区间[0,Smax]分成M段 veti=0:N; vetj=0:M; %建立偏微分方程边界条件 matval(:,N+1)=max(k-vets,0); matval(1,:)=k*exp(-r*dt*(N-veti)); matval(M+1,:)=0; %确定叠代矩阵系数 a=0.5*dt*(sigma^2*vetj-r).*vetj; b=1-dt*(sigma^2*vetj.^2+r); c=0.5*dt*(sigma^2*vetj+r).*vetj; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% L=zeros(M-1,M+1); for i=2:M %%建立递推关系 L(i-1,i-1)=a(i); L(i-1,i)=b(i); L(i-1,i+1)=c(i); end for i=N:-1:1 matval(2:M,i)=L*matval(:,i+1); end matval %寻找期权价格进行插值。 Jdown=floor(s0/ds);

有限差分法实验报告

工程电磁场 实验报告 ——有限差分法

用超松弛迭代法求解 接地金属槽内电位的分布 一、实验要求 按对称场差分格式求解电位的分布 已知: 给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40 100 1j p 1 2j i -= --= ??? 误范围差: 510-=ε 计算:迭代次数N ,j i ,?,将计算结果保存到文件中 二、实验思想 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上? =?= V 100 ? 0 =?0 =?

的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式 )(4 1 044321004321??????????+++=?=-+++ 差分方程组的求解方法(1) 高斯——赛德尔迭代法 ][)(,)(,)(,)(,)(,2 k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4 1 -+++=+++-+-+????? (1-14) 式中:??????=??????=,2,1,0,2,1,k j i , ? 迭代顺序可按先行后列,或先列后行进行。 ? 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足ε??<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法 ][) (,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4 ?????α??--++++=+++-+-+ (1-15) 式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系 三、程序源代码 #include #include #include double A[5][5]; void main(void) { double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数 图1-4 高斯——赛德尔迭代法

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

差分方法实验报告

实验报告 课程名称:计算方法 院系:数学科学系 专业班级:数应1001 学号:1031110139 学生姓名:姚海保 指导教师:沈林 开课时间:2012至2013学年第一学期

一、学生撰写要求 按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。 学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 二、教师评阅与装订要求 1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。 2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。 4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩; 5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

差分方法

一、差分方法 1.1 导数的差分公式 在x 附近对()f x 展开,由泰勒展开公式 ()()()f x h f x f x h '+≈+ 得到前差公式为 ()() ()f x h f x f x h +-'= 同理也可以得到后差公式 ()() ()f x f x h f x h --'= 由后差分公式可以得到二阶导数的差分公式为 2 ()()()2()() ()f x h f x f x h f x f x h f x h h ''+-+-+-''= = 叫中心差分公式。 利用这些公式可以将微分方程写成差分方程。 1.2 热传导方程的差分公式 热传导方程是 2t xx u a u = 可以写成差分形式 2 2 (,)(,)(,)2(,)(,) ()u x t t u x t u x x t u x t u x x t a t x +?-+?-+-?≈?? 即 []2 2 (,)(,)(,)2(,)(,)()t u x t t u x t a u x x t u x t u x x t x ?+?≈+ +?-+-?? 令 ,,0,1,2,...,1x i x t i t i n =?=?=- 上式可以写为(显示格式) []2 2 (,1)(,)(1,)2(,)(1,)()t u i j u i j a u i j u i j u i j x ?+=+ +-+-? 可以证明,上式的稳定条件为 2 2 ()2x t a ??≤,即 221()2t a x ?≤? 稳定且非振荡的条件为

22 1 ()4 t a x ?≤? 截断误差为 2((),)O x t ?? 另一种格式为 2 2 (,)(,)(,)2(,)(,) ()u x t t u x t u x x t t u x t t u x x t t a t x +?-+?+?-+?+-?+?≈?? 即 22 22()()(,1,1)2(,1)(1,1)(,)x x u i j u i j u i j u i j a t a t ????-++--++++=-????? ? 该式称为隐式格式。对任何步长都是恒稳定的。在t ?上取值的唯一限制是,要将截断误差 保持在合理的程度上从而节约计算时间。 截断误差为 2((),)O x t ??。 二、一维热传导方问题 2.1 无限长细杆的热传导 无限长细杆的热传导的定解问题是 2(,0)()t xx u a u u x x ??=? =? 利用Fourier 变换求得问题的解是 2 2()4(,)()x a t u x t d ξ?ξξ--+∞ -∞?? =???? 其中取初始温度分布如下: 1,01()0,0,1x x x x ?≤≤?=? <>? 这是在区间0—1之间高度为1的一个矩形脉冲,于是得到 2 (,)u x t ξ=? 可以用图1所示的瀑布图来表示稳定随时间与空间的变化。 从图中可以看到,在开始时,温度分布是原点附近的一个脉冲状得分布,随着时间的增加,热量向两边传播,形成一个平缓的波包,不难想象如果时间足够长,最终杆上的温度会全

有限差分法

有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

Poisson方程九点差分格式_米瑞琪

数值实验报告I 、实 验目 的 , 内 容 1、 理解Poisson 方程九点差分格式的构造原理; 2、 理解因为网格点的不同排序方式造成的系数矩阵格式的差异; 3、 学会利用matlab 的spdiags(),kron() 函数生成系数矩阵; 、算法描述 针对一个Poisson 方程问题: Au 二厂 f (x, y) 在Poisson 方程五点差分格式的基础上,采用 Taylor 展开分析五点差分算子的截断误差,可以 得到: AhU(x,> ¥j) 二 Au(xh yj) + —Jhi 厂 h2 a/ + h/ 12 亦 yj - J - 2u(x lF Yj - 1)+ u(xi -(, Yj - 1) hi^ufxn yj - J u(x jh yj) , 0u(xi,y 」)\ + hj 扩 \ h,十 Yj) 卜一 <2—癌L 时 0/ (1) 为了提高算子截断误差的精度,在⑴式中配凑出了差分算子的形式,将原Poisson 方程代入(1) 式有: yj) = ¥」) / 水 Uhi ," 十 0(h 4) 昇舟1 ,有: /u(x I , yj) 1 i --^luxxCxj. Yj 十 1)- 2u xx (Xir yj + Uxxfxj, Vj - Jl + 0(h 『)=— hj h? u(Kj + 1, yj + 1)- 2u(x j t yj + 1)+ u(xj - v yj + i) h,护u(x lh yj 4 1) - ------- 2 考虑 h/ u(xj + ir yj) - 2u(xj. y 」)+ 12 i- Yj) 2hiVu(x b yj + 0(h 4)二 Au(x lT V J ) + — UlXi + 1

二维问题的有限差分方法

西北农林科技大学实习报告 学院:理学院 专业年级:信计061 姓名:袁金龙 学号:15206012 课程:微分方程数值解 报告日期:2008-12-3 实习二、二维问题的有限差分方法 一) 实习问题: 二维经典初边值问题: 2 22 2,01(,0),01(0,)(1,)0,01x u u te t t t u x x x u t u t t ???=+<≤?????=<

偏微分方程上机实验报告.doc

上机实验2:五点差分格式法 偏微分方程(Matlab )实验报告 ——五点差分格式法 一、 实验题目 设G 是形如下图的十字形域,由五个相等的单位正方形组成,用五点差分格式求下列边值问题的数值解: 22 2 21,u u G x y ??+=-???于u=0,于G 二、 实验原理 取定沿X 轴和Y 轴方向的步长1h 和2h ,() 12 22 1 2 h h h =+,作两族与坐 标轴平行的直线:x=i 1h ,y=j 2h ,,0,1,2,i j =±± 若(,i j x y )为正则内点,沿x,y 方向分别用二阶中心差商代替 xx yy u u 和则得 1,1,,1,1 2 212 22[ ]i j ij i j i j ij i j ij u u u u u u f h h +-+--+-+-+ = 特别取正方形网格:12h h h ==,则原差分方程可简化为 2 1,,11,,11()44 ij i j i j i j i j ij h u u u u u f --++-+++= 三、 实验程序 1)function uxy = EllIni2Uxl(x,y) format long ;

uxy = 0; 2)function uxy = EllIni2Uxr(x,y) format long; uxy = y*(2-y); 3)function uxy = EllIni2Uyl(x,y) format long; uxy = 0; 4)function uxy = EllIni2Uyr(x,y) format long; if x < 1 uxy = x; else uxy = 2 - x; end 5)function u = peEllip5(nx,minx,maxx,ny,miny,maxy) format long; hx = (maxx-minx)/(nx-1); hy = (maxy-miny)/(ny-1); u0 = zeros(nx,ny); for j=1:ny u0(j,1) = EllIni2Uxl(minx,miny+(j-1)*hy); u0(j,nx) = EllIni2Uxr(maxx,miny+(j-1)*hy); end for j=1:nx u0(1,j) = EllIni2Uyl(minx+(j-1)*hx,miny); u0(ny,j) = EllIni2Uyr(minx+(j-1)*hx,maxy); end A = -4*eye((nx-2)*(ny-2),(nx-2)*(ny-2)); b = ones((nx-2)*(ny-2),1).*(-1); for i=1:(nx-2)*(ny-2) if mod(i,nx-2) == 1 if i==1 A(1,2) = 1; A(1,nx-1) = 1; b(1) = - u0(1,2) - u0(2,1); else if i == (ny-3)*(nx-2)+1 A(i,i+1) = 1; A(i,i-nx+2) = 1;

相关文档
最新文档