半导体热电发电技术

半导体热电发电技术
半导体热电发电技术

发电厂热工设备介绍资料

第一部分发电厂热工设备介绍 热工设备(通常称热工仪表)遍布火力发电厂各个部位,用于测量各种介质的温度、压力、流量、物位、机械量等,它是保障机组安全启停、正常运行、防止误操作和处理故障等非常重要的技术装备,也是火力发电厂安全经济运行、文明生产、提高劳动生产率、减轻运行人员劳动强度必不可少的设施。 热工仪表包括检测仪表、显示仪表和控制仪表。下面我们对这些常用仪表原理、用途等进行简单介绍,便于新成员从事仪控专业工作有个大概的了解。 一、检测仪表 检测仪表是能够确定所感受的被测变量大小的仪表,根据被测变量的不同,分为温度、压力、流量、物位、机械量、成分分析仪表等。 1、温度测量仪表: 温度是表征物体冷热程度的物理量,常用仪表包括双金属温度计、热电偶、热电阻、 温度变送器。常用的产品见下图: 双金属温度计热电偶 铠装热电偶热电阻(Pt100)

端面热电阻(测量轴温)温度变送器 1)双金属温度计 原理:利用两种热膨胀不同的金属结合在一起制成的温度检测元件来测量温度的仪表。 常用规格型号:WSS-581,WSS-461;万向型抽芯式;φ100或150表盘;安装螺纹为可动外螺纹:M27×2 2)热电偶 原理:由一对不同材料的导电体组成,其一端(热端、测量端)相互连接并感受被测温度;另一端(冷端、参比端)则连接到测量装置中。根据热电效应,测量端和参比端的温度之差与热电偶产生的热电动势之间具有函数关系。参比端温度一定时热电偶的热电动势随着测量温度端温度升高而加大,其数值只与热电偶材料及两端温差有关。 根据结构不同,有普通型热电偶和铠装型热电偶。根据被被测介质温度高低不同,一般热电偶常选用K、E三种分度号。K分度用于高温,E分度用于中低温。 3)热电阻 原理:利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。 热电阻一般采购铂热电阻(WZP),常用规格型号:Pt100,双支,三线制,铠装元件?4,配不锈钢保护管,M27×2外螺纹。 4)温度变送器 原理:将变送器电路模块直接安装在就地温度传感器的接线盒内,将敏感元件感受温度后所产生的微小电压,经电路放大、线性校正处理后,变成恒定的电流输出信号(4~20mA)。 由于该产品未广泛普及,所以设计院一般很少选用。

材料的热电性能

材料的热电性能 热电材料是利用固体内部载流子运动实现热能和电能直接转换的功能材料。它的产生于材料的热电性能密不可分,材料的热电性能可以总结为塞贝克效应,帕尔贴效应,汤姆孙效应。 塞贝克效应 热电现象最早在1823年由德国人Seebeck发现。当两种不 同导体构成闭合回路时,如果两个节点处电温度不同,则在两个 节点之间将会产生电动势,且在回路中有电流通过,该现象被叫 图 1 塞贝克效应示意图 做Seebeck效应,此回路称为热电回路,回路中出现的电流称为热电流,回路中出现的电动势称为塞贝克电动势。塞贝克系数可表示为: 式中,V表示电动势;T表示温度,S的大小和符号取决于两种材料和两个结点的温度。当载流子是电子时,冷端为负,S是负值;如果空穴是主要载流子类型,那么热端是负,S是正值。帕尔贴效应 1834年,法国钟表匠Pletier发现了 Seebeck效应的逆效应,即电流通过两个不同导体形成的接点时接点处会发生放热或吸热现象,称为帕尔贴效应。帕尔贴系数可表示为: P表示单位时间接头处所吸收的帕尔贴热; I表示外加电源所提供的电流强度。 汤姆孙效应 当电流通过具有一定温度梯度的导体时,会有一横向热流流入或流出导体,其方向视电流方向和温度梯度的方向而定。 在实际应用中,以无量纲的ZT值来衡量材料的热电性能: 式中,σ为电导率;k为热导率;S是塞贝克系数;T为温度。 σS2又被称作功率因子,用于表征热电材料的电学性能。从上式可以得出,提高热电材料的能量转换效率可以通过增大其功率因子或降低其热导率来实现,但这3个参数并非独立的,它们

取决于材料的电子结构和载流子的散射情况。为了提高塞贝克系数,材料中应该只有单一类型的载流子,n型和p型载流子同时存在会导致两种载流子都向冷端移动,从而降低塞贝克电压。低的载流子浓度会增大塞贝克系数,塞贝克系数公式如下: n为载流子浓度,m为载流子有效质量。 大的载流子有效质量会提高塞贝克系数,但是会降低电导率。m和态密度有关,载流子的有效质量会随着费米能及附近的态密度增加而增加。然而,载流子的有效质量越大,在同样作用力下,载流子的漂移速率就越慢,从而使迁移率减小,电导率降低。功率因子降低。因此需要寻求一合适载流子浓度n来提高功率因子。 热电材料 金属及其合金的塞贝克系数较小且热导率较高,因此相应的ZT值不高。前苏联科学家Loffe 在20世纪50年代提出了带隙半导体热电理论,同时发现了一系列半导体材料具有较大的塞贝克系数。如Bi-Te,Pb-Te,Si-Ge等合金类经典热电材料,它们的最佳工作区间分别是300~500K,500~900K,900~1200K。通过对以上材料的研究,热电现象的微观机理逐渐被解释,即高温端的高能电子向低温端扩散,使低温端电子堆积带负电,高温端逐渐缺少电子带正电,在高温端形成较高的电势,在物体内建立由高温端指向低温端的电场。当电子热扩散力和电场力相等时,两端间形成一稳定的温差电位,因两种材料不同,在各种材料中建立的电场以及热扩散力不同,因此产生的电势差不同,电位差不会完全抵消,因此在闭合回路中产生电动势。 热电材料的主要应用 利用热电效应主要可以制作温差发电机和热电制冷。 温差发电原理 将P型半导体和N型半导体在热端连接,则在冷端可得到一个电压,一个PN结产生的电动势有限,将很多个这样的PN结串联起来就可得到足够的电压,成为一个温差发电机,由于温差发电的效率很低,一般不超过4%,但是温差发电可以 图 2温差发电机示意图

半导体的热电效应及热电材料研究与应用

半导体的热电效应及热电材料研究与应用 摘要:据半导体热电效应以及制冷原理进行了分析,并分析了提高半导体热电材料热电优值的方法介绍了当今国内外半导体热电材料研究和热电材料制冷方面的应用。 关键词:热电效应;半导体热电材料;塞贝克系数;电导率;热导率;热电优值,半导体制冷; 正文: 一.热电效应 把热能转换为电能的所谓热电效应的发现已有一个半世纪的历史,这是与温度梯度的存在有关的现象,其中最重要的是温差电现象。但是,由于金属的温差电动势很小,只是在用作测量温度的温差电偶方面得到了应用。半导体出现后,发现它能得到比金属大得多的温差电动势,在热能与电能的转换上,可以有较高的效率,因此,在温差发电、温差致冷方面获得了发展。由于温度梯度及电流同时存在时引起的一些现象——主要是塞贝克效应、珀尔帖效应和汤姆逊效应。 (1)塞贝克效应 塞贝克(Seeback)效应,又称作第一热电效应,它是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。半导体的温差电动势较大,可用作温差发电器。 产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势。自然,p型半导体的温差电动势的方向是从低温端指向高温端(Seebeck系数为负),相反,n型半导体的温差电动势的方向是高温端指向低温端(Seebeck系数为正),因此利用温差电动势的方向即可判断半导体的导电类型。可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi

热电发电器件的输出功率和效率的解析模型_张宁

第30卷 第1期 2008年1月武 汉 理 工 大 学 学 报J OURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vol .30 No .1 Jan .2008 热电发电器件的输出功率和效率的解析模型 张 宁1,李 鹏1,肖金生1,2,张清杰 1(1.武汉理工大学材料复合新技术国家重点实验室,武汉430070;2.武汉理工大学汽车工程学院,武汉430070) 摘 要: 建立了热电发电器件工作的一维模型,应用热力学理论分析了发电器件的输出功率和效率,并重点讨论了元器件热导及热端板、冷端板与元器件间的接触层热导对输出功率和效率的影响。结果表明,热电发电器件的输出功率和效率随热端接触层热导和冷端接触层热导的增加而增加,但增加的幅度越来越小;随元器件热导的减小而增加,且增加的幅度越来越大。所得结论对发电器的设计具有重要的指导意义。 关键词: 热电发电器件; 输出功率; 效率; 热导 中图分类号: T K 515文献标识码: A 文章编号:1671-4431(2008)01-0009-04 Analytical Model for Output Power and Efficiency of Thermoelectric G enerator ZH ANG Ning 1,LI Peng 1,X IAO J in -sheng 1,2,ZH ANG Qing -jie 1 (1.State Key Laboratory of Advanced T echnolog y for M aterials Synthesis and P rogressing , W uhan U niversity of Technology ,Wuhan 430070,China ;2.School of Automo tive Engineering ,Wuhan U niversity of Technology ,Wuhan 430070,China ) Abstract : In this paper ,a one -dimensional model of a thermoelectric genera tor was created . T he output power and efficien -cy were analyzed by using the thermody namic theory .T he effect of thermal conductance of the component and the contact layer on output power and efficiency was discussed .T he results showed that ,the output power and the efficiency increased with the increase of the contact layer 's thermal conductance ,but increased more slow ly .T he output pow er and the efficiency also in -creased with the decrease of the generator 's thermal co nductance ,and increased faster .T his research would be an impo rtant reference to design . Key words : thermoelectric genera tor ; output pow er ; efficiency ; thermal conductance 收稿日期:2007-10-08. 基金项目:国家重点基础研究发展计划(2007CB607506).作者简介:张 宁(1980-),男,硕士生.E -mail :zning 80@https://www.360docs.net/doc/9d4971418.html, 热电发电器件是利用半导体的Seebeck 效应将热能直接转化为电能的一种发电装置,利用它可以直接把低品位的热能转换为电能,有利于缓解日益严重的能源问题和环境问题,它的实际应用已越来越引起人们的关注,许多学者也纷纷对此进行了研究。陈金灿等[1]研究了发电器的性能与半导体材料、元器件结构以及负载的关系。潘玉灼等[2]研究了结构参数与不可逆性对热电发电器性能影响,导出发电器的输出功率与效率的一般表示式,探讨了给定热源温度下热电器输出功率的最佳优化条件。但二者均是对元器件的焦耳热进行了等效假设。屈健等[3]采用热力学理论推导了内外均不可逆的情况下,发电器的输出功率和效率的一般表达式,但仅讨论了热冷端热导和热端与元器件热导2个比值的变化对系统功率和效率的影响。Omer S A 等[4]建立了有多个热电偶组成的热电单元模型,讨论了的最优几何参数并对优化模型的性能进行了预测。Scherrer H 等[5]通过计算机数值模拟技术对方钴矿热电发电设备性能、尺寸和重量等建立热电发电设

最全的热电效应 名词解释

塞贝克效应:1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,此所谓“塞贝克效应”。塞贝克后来还对一些金属材料做出了测量,并对35种金属排成一个序列(即Bi-Ni-Co-Pd-U-Cu-Mn-Ti-Hg-Pb-Sn-Cr-Mo-Rb-Ir-Au-Ag-Zn-W-Cd-Fe-As-Sb-T e-……),并指出,当序列中的任意两种金属构成闭合回路时,电流将从排序较前的金属经热接头流向排序较后的金属。1834年,法国实验科学家帕尔帖发现了它的反效应:珀尔帖效应。 珀尔帖效应:当有电流通过不同的导体组成的回路时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。这是J.C.A.珀耳帖在1834年发现的。如果电流由导体1流向导体2,则在单位时间内,接头处吸收/放出的热量与通过接头处的电流密度成正比。12称为珀耳帖系数[1],与接头处材料的性质及温度有关。这一效应是可逆的,如果电流方向反过来,吸热便转变成放热。 汤姆孙效应:汤姆逊利用他所创立的热力学原理对塞贝克效应和帕尔帖效应进行了全面分析,并将本来互不相干的塞贝克系数和帕尔帖系数之间建立了联系。汤姆逊认为,在绝对零度时,帕尔帖系数与塞贝克系数之间存在简单的倍数关系。在此基础上,他又从理论上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。这一现象后叫汤姆逊利用他所创立的热力学原理对塞贝克效应和帕尔帖效应进行了全面分析,并将本来互不相干的塞贝克系数和帕尔帖系数之间建立了联系。汤姆逊认为,在绝对零度时,帕尔帖系数与塞贝克系数之间存在简单的倍数关系。在此基础上,他又从理论上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。这一现象后叫汤姆孙效应(Thomson effect),成为继塞贝克效应和帕尔帖效应之后的第三个热电效应(thermoelectric effect)。 汤姆逊效应是导体两端有温差时产生电势的现象,帕尔帖效应是带电导体的两端产生温差(其中的一端产生热量,另一端吸收热量)的现象,两者结合起来就构成了塞贝克效应。 汤姆逊效应的物理学解释是:金属中温度不均匀时,温度高处的自由电子比温度低处的自由电子动能大。像气体一样,当温度不均匀时会产生热扩散,因此自由电子从温度高端向温度低端扩散,在低温端堆积起来,从而在导体内形成电场,在金属棒两端便形成一个电势差。这种自由电子的扩散作用一直进行到电场力对电子的作用与电子的热扩散平衡为止。 (Thomson effect),成为继塞贝克效应和帕尔帖效应之后的第三个热电效应

热电材料项目分析

热电空调项目 分析报告 一、项目背景 进入21 世纪以来,随着全球环境污染和能源危机的日益严重,以及对人类可持续发展的广泛关注,开发新型环保能源替代材料已越来越受到世界各国的重视。 1、能源短缺 随着全球工业化的进程,人类对能源消耗的需求不断增长,回顾近100 年能源工业的发展历史,可以清楚地看到,整个能源工业的消耗主要以化石类能源为主。人类正在消耗地球50 万年历史中积累的有限能源资源,煤和石油作为能源的载体,极大地解放了生产力,推动了全球工业化的进程,同时也向人类敲响了警钟:常规能源己面临枯竭。由于常规能源的有限性和分布的不均匀性,造成了世界上大部分国家能源供应不足,不能满足其经济发展的需要。从长远来看,全球已探明的石油储量只能用到2020 年,天然气也只能延续到2040 年左右,即使储量丰富的煤炭资源也只能维持二三百年。因此,如不尽早设法解决化石能源的替代能源,人类迟早将面临化石燃料枯竭的危机局面。 2、环境污染 当前由于燃烧煤、石油等化石燃料,仅我国每年就将有近百万吨C O 2、二氧化硫、氮氧化物等有害物质抛向天空,使大气环境遭到严重污染,导致温室效应和酸雨,恶化地球环境。直接影响人类的身体健康和生活质量,严重污染水土资源。这些问题最终将迫使人们改变能源结构,依靠利用太阳能等可再生洁净能源来解决。 3、温室效应 化石能源的利用不仅造成环境污染,同时由于排放大量的温室气体而产生温室效应,引起全球气候变化。这一问题已提到全球的议事日程,其影响甚至已超过了对环境的污染,有关国际组织已召开多次会议,限制各国C O 2 等温室气体的排放量。 二、热电材料介绍 什么是热电材料呢热电材料是一种利用固体内部载流子运动实现热能和电能直接相互转换的功能材料。人们对热电材料的认识具有悠久的历史。1823年,德国人塞贝克(Seebeck)发现了材料两端的温差可以产生电压,也就是通常所说的温差电现象。1834年,法国钟表匠

热电装置的发展

热电装置的发展 2017-6-3 一.前言 1.1热电装置简介

热电装置基于热电材料的内部效应工作,可实现直接能量转换?热电材料的内部效应包括Seebeck效应、Peltier效应、Thomson效应、Fourier效应、Joule 效应?Seebeck效应,又称温差电效应,是指在两种不同导体构成的回路中,如果两个接头处的温度不同,回路中就会产生电动势,加入负载电阻就会产生直流电流?Peltier效应是Seebeck效应的逆效应,是指当直流电通过两种不同导体构成的回路时,节点上将会产生吸热或放热现象?Thomson效应是指当电流在温度不均匀的导体中流过时,导体除产生不可逆的Joule热之外,还要吸收或放出一定的热量?Fourier效应即导热效应?Joule效应即电流的热效应?热电单元是利用热电效应的基本工作单元,由一个P型半导体臂和一个N型半导体臂通过铜片连接而成?实际应用中的热电模块,由多个热电单元在吸放热上并联,在电路上串联组成?如果将热电单元的热端置于高温热源吸热,将热电单元的冷端置于环境中散热,电路中就会产生电动势,加入负载即有电流通过,这就是热电发电机的工作原理;反之,如果给热电单元通入直流电,热电单元热端温度上升并放热,冷端温度下并吸热,这就是热电制冷机和热电热泵的工作原理? 1.2国内研究概况 热电效应是由温度梯度直接获得电能的方式中能量转换效率最高的方式,与太阳能光伏发电技术、燃料电池并称为21世纪三大最具潜力的能源技术?基于热电效应的发电、制冷和供热装置固态、环保、可靠、寿命长、易维护,易于实现小型化和集成化,在航天、交通工具、工业、余热回收、电子制冷等领域,与常规能源装置相比独具优势?介绍半导体热电装置的工作原理、结构特点及应用领域,从非平衡热力学和有限时间热力学两个方面对热电发电机、热电制冷机和热电热泵的热力学研究现状做了全面回顾,重点对其有限时间热力学研究成果做了系统总结,展望热电发电装置热源的开发、多级热电装置、联合热电装置、热电装置的传热强化等热电装置将来的主要发展方向? 在有关热电装置的研究中,一部分集中于现有热电材料的测定、分析、改进或新型热电材料的发明、发现、预测[1],这一方向属于材料学的研究内容;另一部分则致力于在已有材料的基础和限制下,分析热电装置的工作特性,改进和优化热电装置的系统或结构,以提高热电效应的利用和转换效率[2],这一方向属于热力学的研究内容?美国著名学者BELL[3]指出,热电效应的广泛应用不仅要求改善材料内部的能量转换效率,更需要改进系统的总体结构?近年来,对热电效应的有效利用和对热电装置的系统优化已经成为热电效应研究的热点[4]?许多学者基于不同的热力学理论,以不同的目标,采用不同的分析方法,对热电装置进行了广泛而深入的研究,取得了一系列具有理论价值和实际指导意义的成果,对热电装置的发展与应用起到了重要的推动作用?具体地,从热力学理论上可分为基于非平衡热力学的研究和将非平衡热力学与有限时间热力学相结合的研究,在研究对象上,可分为热电发电机、热电制冷机、热电热泵和联合热电装置;在分析对象上,包含了单个热电单元,单级多个热电单元、两级热电单元和多级热电单元;在分析和优化的范围上,包含了外部传热的优化和内部结构的优化;在研究方法上,包含了理论分析和试验研究?对热电装置基于非平衡热力学[5]的研究是在给定热电单元端

热电材料(全面的)

热电材料 thermoelectric material 将不同材料的导体连接起来,并通入电流,在不同导体的接触点——结点,将会吸收(或放出)热量.1834年,法国物理学家佩尔捷(J.C.A.Peltier)发现了上述热电效应.1838年,俄国物理学家楞次(L.Lenz)又做出了更具显示度的实验:用金属铋线和锑线构成结点,当电流沿某一方向流过结点时,结点上的水就会凝固成冰;如果反转电流方向,刚刚在结点上凝成的冰又会立即熔化成水. 热电效应本身是可逆的.如果把楞次实验中的直流电源换成灯泡,当我们向结点供给热量,灯泡便会亮起来.尽管当时的科学界对佩尔捷和楞次的发现十分重视,但发现并没有很快转化为应用.这是因为,金属的热电转换效率通常很低.直到20世纪50年代,一些具有优良热电转换性能的半导体材料被发现,热电技术(热电制冷和热电发电)的研究才成为一个热门课题. 目前,在室温附近使用的半导体制冷材料以碲化铋(Bi2Te3)合金为基础.通过掺杂制成P 型和N型半导体.如前所述,将一个P型柱和一个N型柱用金属板连接起来,便构成了半导体制冷器的一个基本单元,如果在结点处的电流方向是从N型柱流向P型柱,则结点将成为制冷单元的“冷头”(温度为Tc),而与直流电源连接的两个头将是制冷单元的“热端”(温度为Th). N型半导体的费米能级EF位于禁带的上部,P型的则位于禁带的下部.当二者连接在一起时,它们的费米能级趋于“持平”.于是,当电流从N型流向P型时(也就是空穴从N到P;电子从P到N),载流子的能量便会升高.因此,结点作为冷头就会从Tc端吸热,产生制冷效果. 佩尔捷系数,其中是单位时间内在结点处吸收的热量,I是电流强度,Π的物理意义是,单位电荷在越过结点时的能量差.在热电材料研究中,更容易测量的一个相关参数是泽贝克(Seebeck)系数α,,其中T是温度.显然,α描述单位电荷在越过结点时的熵差. 对于制冷应用来说,初看起来,电流越大越好,佩尔捷系数(或泽贝克系数)越大越好.不幸的是,实际非本征半导体的性质决定了二者不可兼得:电流大要求电导率σ高,而σ和α都是载流子浓度的函数.随着载流子浓度的增加,σ呈上升趋势,而α则下跌,结果ασ只可能在一个特定的载流子浓度下达到最大(注:由热激活产生的电子-空穴对本征载流子,对提高热电效益不起作用). 半导体制冷单元的P型柱和N型柱,都跨接在Tc和Th之间.这就要求它们具有大的热阻.否则,将会加大Tc和Th间的漏热熵增,从而抵消从Tc端吸热同时向Th端放热的制冷效果.最终决定热电材料性能优劣的是组合参数,其中κ是材料的热导率.参数Z和温度T的乘积ZT无量纲,它在评价材料时更常用.目前,性能最佳的热电材料,其ZT值大约是1.0.为要使热电设备与传统的制冷或发电设备竞争,ZT值应该大于2. Glen Slack把上述要求归纳为“电子-晶体和声子-玻璃”.也就是说,好的热电材料应该具有晶体那样的高电导和玻璃那样的低热导.在长程有序的晶体中,电子以布洛赫波的方式运动.刚性离子实点阵不会使传导电子的运动发生偏转.电阻的产生来源于电子同杂质、晶格缺陷以及热声子的碰撞.因此,在完善的晶体中σ可以很大. 半导体中的热导包含两方面的贡献:其一由载流子(假定是电子)的定向运动引起的(κe);其二是由于声子平衡分布集团的定向运动(κp).根据维德曼-弗兰兹定律,κe∝σ.人们不可能在要求大σ的同时,还要求小的κ e.减小热导的潜力在于减小κp,它与晶格的有序程度密切相关:在长程有序的晶体中,热阻只能来源于三声子倒逆(umklapp)过程和缺陷、

热电材料研究的进展

热电材料研究进展 热电材料研究进展 颜艳明1,应鹏展1,2,张晓军1,崔鑫3 (1中国矿业大学材料科学与工程学院,江苏徐州,221116 2中国矿业大学应用技术学院,江苏徐州,221008 3河南永煤集团城郊煤矿,河南永城,476600,) 摘要:本文介绍了热电材料的种类及各种热电材料的ZT值,提高热电材料热电性能的方法及热电材料在温差发电和制冷方面的应用,并对其发展前景进行了展望。 关键词:热电材料;热导率;载流子 Progress of thermoelectric materials Yanyanming1,Yingpengzhan1,2,zhangxiaojun1,cuixin3 (1:Shool of Materials, CUMT,Xuzhou , Jiangsu, 221116 2: School of applied Technology,CUMT,xuzhou,Jiangsu,221116 3: Yong suburban coal mine in Henan Coal Group,yongcheng,Henan,476600)

Abstract: This paper is described the types of thermoelectric materials and every thermoelectric materials’ZT value,the way to improve the thermoelectric materials’performance of thermal power and the application of thermoelectric materials’on thermal power generation and refrigeration, also give its future development prospects. Key words: Thermoelectric materials; Thermal conductivity; Carrier 1、引言 在以石油价格暴涨为标志的“能源危机”之后,世界上又相继出现以臭氧层破坏和温室气体效应为首的“地球危机”和“全球变暖危机”。各国科学家都在致力于寻求高效、无污染的新的能量转化利用方式, 以达到合理有效利用工农业余热及废热、汽车废气、地热、太阳能以及海洋温差等能量的目的。于是,从上个世纪九十年代以来, 能源转换材料(热电材料)的研究成为材料科学的一个研究热点。尤其是近几年, 国际上关于热电材料的研究更是非常火热。目前,热电材料的研究主要集中在三个领域:室温以下的低温领域、从室温到700K的中温领域和700K以上的高温领域。 热电材料(又称温差电材料)是利用固体内部载流子和声子的输运及其相互作用来实现将热能和电能之间相互转换的半导体功能材料,其具有无机械可动部分、运行安静、小型轻便及对环境无污染等优点,在温差发电和制冷领域具有重要的应用价值和广泛的应用前景。

新型热电材料的研究进展

新型热电材料的研究进展 随着能源的日益紧缺以及环境污染的日趋严重,热电材料作为一种环保、清洁的新能源材料近年来备受关注,下面是搜集的一篇探究热电材料研究进展的,供大家阅读参考。 本文介绍了热电材料的研究进展,重点介绍了Half-Heusler金属间化合物、方钴矿、纳米技术和超晶格材料等新型热电材料的研究状况。 热电材料又称温差电材料,是一种利用固体内部载流子的运动实现热能和电能的直接相互转化的功能材料。随着新材料合成技术的发展以及用X射线衍射技术和计算机来研究化合物能带结构参数等新技术的出现,使得热电材料的研究日新月异。 1.1 传统热电材料的研究进展 50年代,苏联的Ioffe院士提出了半导体热电理论,Ioffe及其同事从理论和实践上通过利用两种以上的半导体形成固溶体可使ZT 值提高,从而发现了热电性能较高的致冷和发电材料,如Bi2Te3、PbTe、SiGe等固溶体合金。

常规半导体的ZT值主要依赖于载流子的有效质量、迁移率和晶格热导率,优良热电材料一般要求大的载流子迁移率和有效质量,低的晶格热导率[1]。根据这些理论原则,发现了上述的一些较好的常规半导体热电材料,如适合室温使用的Bi2Te3合金、适合中温区(700K)使用的PbTe、高温区(1000K)使用的SiGe合金,更高温度(>100K)下使用的SiC等。 1.2 新型热电材料的研究进展 1.2.1 Half-Heusler金属间化合物 Half-Heusle金属间化合物的通式为ABX,A为元素周期表左边的过渡元素(钛或钒族),B为元素周期表右边的过渡元素(铁、钴或镍族),X为主族元素(稼、锡、锑等)。Half-Heusler金属间化合物是立方MgAgAs型结构。这种材料的特点是在室温下有较高的电导率和Seebeck系数,可以达到300μV/K,在700~800K时,材料的ZT值可达到0.5~0.6,但缺点是热导率也很高(室温下为5~ 9W/(M?K))[2]。 1.2.2填充Skutterudite化合物

热电材料概述

热电材料 早在1823年德国的物理学家Thomas Seebeck就在实验中上发现, 在具有温度梯度的样品两端会出现电压降, 这一效应成为制造热电偶测量温度和将热能直接转换为电能的理论基础, 称为Seebeck 效应.Seebeck提出了用热电材料制成热电发电器的设想. 1834年Heinrich Lens又发现将一滴水置于铋(Bi)和锑(Sb)的接点上, 通以正向电流, 水滴结成冰, 通以反向电流, 冰融化成水, 此效应称为制冷效应或Peltier效应. 在此后的100多年, 热电材料的研究主要是围绕金属材料进行的, 由于热电转换效率低, 所以有关热电材料及热电转换装置的研究和应用一直进展缓慢. 在20世纪50年代, Abram Ioffe发现, 半导体材料的热电转换效应比金属材料有数量级上的增强, 利用半导体热电材料有望实现温差发电和制冷的设想, 从而在全世界范围内掀起了研究热电材料的热潮, 这种研究热潮持续了数年之久, 研究和评估了大量的半导体材料, 并发现Bi-Te Sb-Te系半导体材料具有良好的热电特性[1]. 在此后的几十年, 由于半导体热电材料仍难以满足现实应用过程对热电转换和制冷效率的要求, 研究工作又处于低潮阶段. 直到90年代初期, 随着全世界环境污染和能源危机的日益严重, 对人类可持续发展广泛的关注, 导致发达国家对新环保能源替代材料开发研究的重视和巨额投入, 利用热电材料制成的制冷和发电系统体积小重量轻; 无任何机械转动部分, 工作中无噪音, 不造成任何环境污染; 使用寿命长, 且易于控制. 由于热电材料的这些特性使其再次成为材料科学的研究热点. 近十年来, 材料科学的新进展, 如材料制备工艺及分析手段的多样化, 计算机模拟在材料科学中的应用, 新型先进材料的不断出现, 使得设计和制备新型 高性能高效率的热电材料的可能性逐渐增大. 目前, 围绕着一种称为声子玻璃电子晶体型热电材料(PGEC)的研究正在广泛展开[2]. 这类材料因具有晶体的导电性能和玻璃的导热性能而成为新一代前景广阔的热电材料. 从近年来在热电材料研究方面取得的进展, 美国科学家Terry. M. Tritt乐观地认为在未来几年内热电材料的研究将会有惊人的突破. §5.1热电效应和热电特性

浅析半导体的热电效应

浅析半导体的热电效应 冯启业 222007322072003 电科一班 摘要:把热能转换为电能的所谓热电效应的发现已有一个半世纪的历史,这是与温度梯度的存在有关的现象,其中最重要的是温差电现象。但是,由于金属的温差电动势很小,只是在用作测量温度的温差电偶方面得到了应用。半导体出现后,发现它能得到比金属大得多的温差电动势,在热能与电能的转换上,可以有较高的效率,因此,在温差发电、温差致冷方面获得了发展。由于温度梯度及电流同时存在时引起的一些现象——主要是塞贝克效应、珀尔帖效应和汤姆逊效应。 关键词:热电效应塞贝克效应珀尔帖效应汤姆逊效应 正文: 一、塞贝克效应 塞贝克(Seeback)效应,又称作第一热电效应,它是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。半导体的温差电动势较大,可用作温差发电器。 产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势。自然,p型半导体的温差电动势的方向是从低温端指向高温端(Seebeck系数为负),相反,n型半导体的温差电动势的方向是高温端指向低温端(Seebeck系数为正),因此利用温差电动势的方向即可判断半导体的导电类型。可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi 能级也是倾斜的;两端Fermi能级的差就等于温差电动势。 实际上,影响Seebeck效应的因素还有两个:第一个因素是载流子的能量和速度。因为热端和冷端的载流子能量不同,这实际上就反映了半导体Fermi能级在两端存在差异,因此这种作用也会对温差电动势造成影响——增强Seebeck效应。第二个因素是声子。因为热端的声子数多于冷端,则声子也将要从高温端向低温端扩,并在扩散过程中可与载流子碰撞、把能量传递给载流子,从而加速了载流子的运动——声子牵引,这种作用会增加载流子在冷端的积累、增强Seebeck效应。半导体的Seebeck效应较显著。一般,半导体的Seebeck系数为数百mV/K,这要比金属的高得多。 利用塞贝克效应,可制成温差电偶(thermocouple,即热电偶)来测量温度。只要选用适当的金属作热电偶材料,就可轻易测量到从-180℃到+2000℃的温度,如此宽泛的测量范围,令酒精或水银温度计望尘莫及。现在,通过采用铂和铂合金制作的热电偶温度计,甚至可以测量高达+2800℃的温度! 二、珀尔帖效应 两种不同的金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差。这就是珀尔帖效应(PeltierEffect)。帕尔帖效应也称作热电第二效应。对帕尔帖效应的物理

基于全无机薄膜材料的高性能低温差热电发电器件

研究背景 人体是一个巨大的能量源,其中70~85%的能量以热辐射的方式散失在周围环境中。将人体热量等低温段能量有效利用,有望解决可穿戴设备等电子器件的持续供能问题。热电材料可以将这部分热能直接转化为电能,但若想将其应用于随身能源,仍需解决热电材料柔性差、输出低的问题。 传统块体热电材料虽然性能较高,但笨重刚性的缺点使其难以应用于可穿戴领域;有机热电材料因高柔性、质轻等优点吸引众多研究者的关注,但其目前的功率因子仍然较低;有机无机材料虽然提高了柔性热电薄膜的功率因子和ZT 值,但应用温度范围较窄,仍然不能满足实际应用。全无机的柔性热电材料的载流子浓度较高且在高低温环境中均可工作,成为一类性能优异的柔性热电材料。 成果简介 本工作中,研究人员将目光转到高Seebeck系数的Bi2Te3与Sb2Te3材料,分别合成二维Bi2Te3与Sb2Te3纳米片,并利用石墨烯片层(rGO)和单壁碳纳米管(SWCNTs)三维网络掺杂引入载流子传输通道,获得兼具高热电性能与高柔性的n型rGO/ Bi2Te3和p型SWCNTs/ Sb2Te3热电薄膜材料。这种全无机材料组成的柔性热电薄膜在超过800次的循环弯折下,热电性能下降不超过20%。 将n型和p型薄膜组装得到的温度敏感的热电手环,不仅能够作为体征/ 环境温度传感器件,在低温差(70 K)下的相对高输出功率(23.6 μW)也使其成为随身能源装备的有益补充。例如,研究人员将此热电器件与柔性光伏电池组装,得到全天候持续供能的可穿戴光伏热电一体化器件,其中热电层可有效俘获光伏电池工作中产生的废热并将其转换成电能,在AM 0的标准光源下输出的热

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体的热电效应及热电材料研究与应用

半导体的热电效应及热电 材料研究与应用 This model paper was revised by the Standardization Office on December 10, 2020

半导体的热电效应及热电材料研究与应用摘要:据半导体热电效应以及制冷原理进行了分析,并分析了提高半导体热电材料热电优值的方法介绍了当今国内外半导体热电材料研究和热电材料制冷方面的应用。 关键词:热电效应;半导体热电材料;塞贝克系数;电导率;热导率;热电优值,半导体制冷; 正文: 一.热电效应 把热能转换为电能的所谓热电效应的发现已有一个半世纪的历史,这是与温度梯度的存在有关的现象,其中最重要的是温差电现象。但是,由于金属的温差电动势很小,只是在用作测量温度的温差电偶方面得到了应用。半导体出现后,发现它能得到比金属大得多的温差电动势,在热能与电能的转换上,可以有较高的效率,因此,在温差发电、温差致冷方面获得了发展。由于温度梯度及电流同时存在时引起的一些现象——主要是塞贝克效应、珀尔帖效应和汤姆逊效应。 (1)塞贝克效应 塞贝克(Seeback)效应,又称作第一热电效应,它是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。半导体的温差电动势较大,可用作温差发电器。 产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电

热电材料作为环境友好的能源转化材料

热电材料作为环境友好的能源转化材料,已显示出了引人瞩目的应用前景,但是热电器件走向实际应用的最大问题在于它的转换效率。从热力学的基本定理来说,热电优值没有上限。即使是应用固体理论模型和较为实际的数据计算得到的优值上限为ZT=4,仍远远大于目前己获得的最大ZT值。通过寻求新类型或新结构的热电材料,优化制备工艺等,将有可能使材料优值得到明显提高。 从目前的研究现状来看,未来热电材料的研究方向趋于以下几个方面: 2.纳米复合热电材料的研究 1.低维热电材料的研究 降低材料维度,使用二维量子阱,一维量子线超晶格可以有效提高费米能级附近的态密度,增加载流子有效质量,提高Seebeek系数,同时材料中大量晶界对声子的散射使热导率大幅降低,两方面的共同作用使材料ZT值大幅提高。 即在三维块体材料中引入或原位生成纳米结构,或者将低维材料体系聚合成微纳复合材料,纳米结构的引入一方面可以大幅降低热导率,另一方面,可以通过量子限制效应大幅提高费米能级附近的电子态密度,提高Seebeck系数。 电子跃迁示意图 导电聚合物的热电优值(ZT)优化只是处于起步阶段,还需要关于形态,化学和电子结构对三个主要的热电参数的影响进行了系统的了解。因为热电特性都彼此相关,以及导电聚合物众所周知的形态复杂性及其物理性质的各向异性,这一问题变得困难起来。就在过去几十年的导体和半导体聚合物研究的基础上,为聚合物基有机热电材料的发展奠定了坚实的基础。这一新兴研究领域的一个主要挑战是理解在导电聚合物各种塞贝克效应的来源以获得高的能量因子。此外,材料的热电性能表征也应得到发展。今天,从废物和太阳热能中大面积地进行热电能量收

电热以及热电材料相关知识

热电材料以及电热材料相关知识 1热电效应和热电特性 当两种不同的导体联接构成闭合回路,且接点两端处于不同温度时, 在接点两端出现电压降, 在回路中产生电流的现象称为塞贝克效应(Seebeck). 这一效应成为实现将热能直接转换为电能的理论基础. 图1 (a)为实现热电转化模式的简单示意图.当电流I通过由两种不同导体联结构成的回路时, 在两接点处吸收和放出热量的现象称为帕尔帖效应(Peltier). 这一效应成为实现新概念型制冷机械的理论基础. 图1(b)为实现制冷模式的简单示意图. 图1 热电元件构成的简单发电模式(a)和制冷模式

2热电材料的新进展 开发研究新热电材料的目标在于努力提高材料的电导率温差电势的同时, 降低热导率. 热电材料的性能取决于性能因子Z , Z 通常表示为 Z =a 2 s /k , 式中a 称为Seebeck 系数或温差电势, s 为材料的导电率, k 为导热率. a s 和k 参量取决于电子结构和载流子的散射, k =k L+k e, 降低k 关键在于降低k L, 即增强晶格点

阵对声子的散射从而降低热导率. 从理论上分析, 非晶态具有低的k值. Glem Slack提出一种新的概念材料称为声子玻璃电子晶体phonon glass electron crystal (PGEC), 也就是一种导电如晶体导热如玻璃的材料. Slack认为晶体结构中存在一种结合力弱的rattling 原子, 对载热声子有强的散射作用导致热导率急剧下降, 对导电不会有太大的影响. 基于以上的讨论, 适合于做为热电材料的主要有两大类: 半导体材料和混合价化合物. 过去几十年对半导体类热电材料进行了较为系统深入的研究, 其中主要包括FeSi2 SiGe PbSnTe (Cu,Ag)2Se (Bi,Sb)Te3 (Bi,Sb)Se3等系列. 目前正在研究一种称为Skutterrudite结构的材料[5], 其分子式为AB3, 其中A=Co, Ir,Rh; B=P, As, Sb. 这类结构的重要特性是在晶胞单元中有两个较大的空隙, 这类结构材料的Seebeck系数可能达到较大数量级200 mVK-1, 然而, 热导率也会同时增大, 难以获得所希望的ZT值. 研究表明, 在晶格点阵中加入重原子可以显著地降低晶格导热率. 例如, Nolas等人在CoSb3中加入La, 使材料的室温导热率降低几个数量级, Nolas认为部分是由于质量亏损mass-defect 散射声子, 部分是由于键合力较弱的原子在它们的笼状结构cages 中发生rattling 运动. 在温度为700 , ZT值大于1的结果已经在实验中出现. 另一类具有低温使用前景的材料是Clathrates型化合物[6]. 例如Ge型Clathrates化合物, 其分子式为A8Ge46, A代表Ge格子中占据空隙的原子. 又如具有Sr8Ga16Ge30分子式结构的Clathrates化合物, 其室温导热率比非晶态Ge低两倍. 类似的低导热性也出现在含Eu的Ge型Clathrates化合物及Sn型Clathrates化合物, 如Cs8Zn4Sn44和Cs8Sn44. 这些Clathrates型化合物具有获得热电应用所需的高Seebeck 系数的潜能, 在700 K下, ZT值接近1. 以A2Q Bi2Q3 PbQ(A=碱金属; B=S, Se, Te)为三组元构成的三元系中的某些伪三元相也是具有开发前景的一类新型热电材料[7], 如K2Bi8Se13 K2Bi8S13 Rb2Bi8Se13 Ce2Bi8Se13 CsPb2Bi3Te7. 研究发现,这些化合物均具有相似的结构点阵, 对称性差属于单斜晶系, 晶胞体积大, 空隙中含有rattling 碱金属原子. 由于rattling 碱金属原子对声子的散射, 导致该类化合物导热率很低. 对这类材料的研究正在展开, 研究者认为有望获得较高的ZT值.Hicks和Dresselhaus提出如果用二维结构材料代替三维, ZT值将会得到改善[8]. 载流子在低维量子阱

相关文档
最新文档