组织金属蛋白酶及其抑制因子与肝纤维化

组织金属蛋白酶及其抑制因子与肝纤维化
组织金属蛋白酶及其抑制因子与肝纤维化

组织金属蛋白酶及其抑制因子与肝纤维

(作者:__________ 单位:___________ 邮编:___________ )

【摘要】基质金属蛋白酶(matrix metalloproteinase ,MMP) 是体内重要的水解酶之一,几乎能降解细胞外基质(extracellular matrix ,ECM的所有成分;基质金属蛋白酶组织抑制因子(tissue

in hibitor of metalloprote in asas ,TIMPs )是MMP 啲内源性抑制

系统。近年来发现,MMPs/TIMPs调节失衡与肝纤维化的关系密切,可从多方面影响肝纤维化的形成。通过干扰MMP与TIMPs基因的表达,研究肝纤维化的发病机制和药物治疗是有希望的途径。

【关键词】MMPs ;TIMPs;肝纤维化

肝纤维化是许多慢性肝病的共同病理过程,是细胞外基质(ECM)的合

成与降解失衡,导致在细胞间质的过度沉积[1-4 ],肝组织结构改建。

许多细胞因子参与了这一过程,但是MMP是最重要的一种[5]。MMPs 几乎能降解细胞外基质(ECM)的所有成分,而其天然抑制剂-基质金属蛋白酶抑制剂(TIMPs)能与MMPs成员结合成复合物抑制其活性⑹。二者的调节异常将引起ECM合成或降解的失衡,与各种器官纤维化疾病密切相关。研究发现,通过调节MMP与TIMPs基因的表达

来治疗肝纤维化是肝纤维化治疗的新途径。本文就MMPs/TIMPs与肝纤维化的关系及治疗前景作一综述。

1 MMPs分类、功能、结构及活性的调控

MMPs是一组基质金属蛋白酶。M MPs在肝内主要由肝星状细胞(HSC)和Kupffer细胞表达分泌,参与细胞外基质降解的一类锌-钙离子依赖的内源性蛋白水解酶家族,因其需要Ca2+ Zn 2+等金属离

子作为辅助因子而得名,是迄今为止发现的唯一能分解纤维类胶原的酶,几乎能降解除多糖以外的所有ECM成分,在生理病理过程中发挥着重要的作用。MMP家族由24种成员组成,其中有23种存在于人体中。

1. 1 MMPs可被分成六类[7](1)胶原酶类。主要包括MMP-1 MMP-8 MMP-13和MMP-18它们能够降解间质胶原(I、H、皿型胶原),也能消化许多别的ECM及可溶性蛋白[5]。 MMP-1又称成纤维细胞型,是人类主要的间质胶原酶,结缔组织细胞、肝内HSC肝细胞、枯否氏细胞均有分泌,分解底物为胶原蛋白(皿I II)。而MMP-13 是鼠类主要的间质胶原酶。MMP-取称中性粒细胞胶原酶,主要降解I型胶原。(2)明胶酶类(gelatinases)。包括MMP-2阴胶酶A)及MMP-9明胶酶B)。它们可降解明胶(变性胶原)和W、V和幻型胶原、层粘连蛋白、蛋白聚糖等。MMP-2和胶原酶类以相似的方式可以降解I, I,和皿型胶原,但其活性较MMP-1弱[8]。(3)基质分解素(strogylisin)。主要包括MMP-3 MMP-1(和MMP-11 仅有MMP-3在肝脏中存在。底物广泛,包括蛋白多糖、层粘蛋白、纤维连接蛋白、

W型胶原、明胶等。MMP-3与MMP-10均有相似的结构及降解底物,但MMP-3蛋白水解的效率比MMP-10更高,除能降解ECM成分外,它还可激活多种MMP啲前酶原。MMP-11对ECM的降解能力较弱。(4) 基质溶解因子(Matrilysins) 。MMP-7及MMP-26^3为此组。MMP-7又称Matrilysin 1 ,MMP-26又称matrilysin-2 或endometase。在正

常肝组织中,MMP-26仅在内皮细胞有少量表达。MMP-26能降解许多ECM成分,它大多被储存在细胞内[9]。(5)膜型金属蛋白酶MT-

MMPs(Membra ne-Type MMRs)这一类特殊的蛋白酶,主要存在于细胞膜上,具有广泛的底物特异性。其中4个是I型跨膜蛋白(MMP-14 15、16、24),2 个是GPI 锚连蛋白(MMP-17及MMP-25) 除了MT14-MM之外,其它均能激活MMP-2酶原,这些酶能降解许多

ECM分子。MMP-14在肝脏主要表达于活化的HSC中,与TIMP-2、MMP-2 共同调节胶原的代谢[10]。(6)其它种类的MMP。包括MMP-12 19、20、21、23、27和28。MMP-12t要在巨噬细胞中表达,对于巨噬细胞的迁移起重要作用。MMP-23主要在一些再生性的组织中表达。而

MMP-28在角质细胞中可见,在机体中参与止血及伤口修复[11]。MMP-12及MMP-19和MMP-20勺主要底物为弹力蛋白、明胶、层粘连蛋白和W型胶原。

1.2 MMPs的调控MMPs在机体内的表达,激活及其对底物的分解过程均受到严格的调控[5],其调控包括酶基因表达水平,酶原激活程序以及酶活性抑制等3个方面[12]:1)MMPs的表达水平的调控:正常成人组织大多数MMP表达水平很低,但在各种炎症细胞因子、

激素、生长因子、CD40等作用下不仅能促进或抑制MMPs mRN的转录,且能影响其半寿期。对MMP表达起上调作用的有TNF-a、IL-1 、血小板源性生长因子及成纤维细胞生长因子(FGF)等,起下调作用的有转化生长因子-B (TGF- B )、视黄酸、血管紧张素H和糖皮质激

素等,增强和抑制因子都作用于MMPs基因的前肽区。(2)MMPs的活性水平的调控:MMPs均以酶原的形式分泌,活化后才具有降解细胞外基质的作用。活化方式有3种[13],即①逐级活化方式-由血清蛋白酶如纤维蛋白溶解酶,胰蛋白酶,糜蛋白酶,弹性蛋白酶或激肽酶等介导。纤维蛋白溶解酶是MMP最强有力的生理性激活物[14]o MMPs 的前肽结构被血清蛋白酶水解,酶活性中心暴露后,再被其它的蛋白水解酶(如其他MMPs激活。体内最主要的MMP激活系统是组织或血浆的纤溶酶原钎溶酶系统(t-PA )。此外,某些MMPs可相互激活[5];

②膜型-MMPs激活-膜型-MMPs能活化其它MMPs③细胞内激活-细胞内激活的精确机制和对细胞外MMP s活性的作用,目前仍不明了。⑶MMPs 的活性抑制物:激活的MM可被普通的蛋白酶清除剂抑制,如a 2-巨球蛋白,但主要被特异的TIMPs所抑制。

2 TIMPs的分类、结构、功能及活性的调节

MMPs的表达和活化并不一定代表最后对ECM降解能力。因体内还存在MMP的特异的抑制剂-组织金属蛋白酶抑制物(TIMPs)。这是一组具有抑制MMPs功能的活性多肽,在ECM代谢的调节中起着非常重要的作用。

目前共发现有4种TIMPs[5]。根据其发现的先后顺序依次命名为TI MP- I、TI MP-2、TIMP-3 和TIMP-4。TIMPs是一组低分子量的糖蛋白,广泛分布于组织和体液中,可由成纤维细胞、上皮细胞、内皮细胞等产生。其中TIMP- I、TI MP-2、TI MP-4为可溶性蛋白质分子;而TIMP-3是仅存在于ECM中、并与ECM紧密结合的不可溶性蛋白质分子[15]。

TIMPs由各自独立的基因表达,但四者氨基酸序列具有部分同源性,且都可与特定的活性MMP通过非共价键结合成1:1复合物,抑制后者对ECM的降解,这种非共价键结合在生理条件下是可逆的。在

肝脏中主要由HSC表达TIMP-1、2、3[16]。对肝纤维化的诊断,TIMP-1 特异性和敏感性均明显高于TIMP-2。

TIMP-1在肝脏由Kupffer细胞、HSC及肌纤维母细胞产生,以活化的HSC表达最强[17],能被多种细胞因于诱导产生,是体内存在与作用最广泛的一种TIMPs。它能结合除14、19以外的所有MMP而使其活性减弱,可有效地抑制除MMP-2和膜型MMP外的大多数MMPs 是MMP-9活性的特异性抑制剂。TGF-B、IFN、TPA IL-1、IL-10、IL- B,NO RA 等能够诱导TIMP-1的基因表达[18]。

TIMP-2是W型胶原酶MMP-2的特异性抑制因子。TIMP- 2/MMP -2系统对W型胶原的增生沉积和降解起着重要的调节作用。

3针对MMP和TIMPs的抗肝纤维化策略

肝硬化是肝脏实质性病变,不可逆转,而肝纤维化是可逆性病变。因此,研究肝纤维化发病机制,进而寻求阻断肝纤维化过程的有效方法,对控制肝病的进展,有着十分重要的意义。

鉴于MMP和TIMPs在肝纤维化发展中的不同作用,增加MMP或减少TIMPs的合成与表达将是肝纤维化基因治疗的一条新思路。

目前国内外有关抗肝纤维化的各种治疗手段大多是通过下调TIMP-1、2的表达来实现肝纤维化的逆转[19,20]。

杨长青等[21]运用DN重组技术构建可表达大鼠MMP-基因和反义TIMP-1序列的真核表达质粒,将其导入免疫损伤性肝纤维化模型大鼠体内,观察MMP-1和反义TIMP-1重组表达质粒对实验动物肝纤维化的影响。结果显示MMP-1反义TIMP-1表达质粒均可促进肝脏中I、皿型胶原的降解;病理形态学显示MMP-1反义TIMP-1表达质粒均对肝纤维化有一定的逆转作用;以两种质粒的联合应用效果最好,单独使用反义TIMP-1表达质粒次之,单独使用MMP-俵达质粒作用有限。

Parsons CJ [22]等发现在CCI4持续损伤的情况下,应用人抗鼠TIMP-1抗体后胶原沉积减少,能有效地控制肝纤维化的发展。Liu WB 等[23,24]选用TIMP-1为靶基因,将表达反义TIMP-1的重组质粒导人体外培养的HSC内及用猪血清诱导的肝纤维化大鼠体内,发现反义TIMP-1均被成功表达,TIMP-1的基因及蛋白表达水平明显下降,间质胶原酶的活性增加,I、皿型胶原沉积量减少。显示肝纤维化水平降低66% Iimuro Y 等为了研究人类基质金属蛋白酶-1 (MMP-1)传递的基因能否降解I型和皿型胶原的问题,利用腺病毒和MM啲重组体

导入已造模成功的小鼠体内,发现纤维化显著的减弱[25]

,TGF- 转化生长因子B 1 (tra nsform ing growth factor beta 1

B 1)为现知最强力的促肝纤维化因子。在肝纤维化启动、进展乃至肝硬化的形成中发挥核心作用,是激活HSC并促进其表达ECM勺关键因素,除

抑制间质胶原酶和基质溶解素的表达外,同时还具有促进

TIMP-1和MMP-2的作用[26]。由于TGF-B 1在肝纤维化中的广泛作用,尤其是肝损伤后,肝HSC对TGF- B 1的自分泌及旁分泌作用,使得阻断TGF-B 1的信号通路成为肝纤维化治疗的理想选择[27]。

总之,随着研究的不断深入,人们逐步认识到MMPs/TIMPS在肝纤维化形成中的作用,故研制的药物如能抑制TIMPs活性/增强MMPs

活性,或者抑制其上游信号通路间接抑制TIMPs促进MMP啲活性,

从而抑制肝纤维化,就有可能减缓或阻断肝纤维化的进程。迄今为止,肝纤维化过程中,MMP s TIMPs调控机制、细胞来源、ECM各种成分之间及其与细胞之间的相互关系等问题有待进一步研究。近年随着分

子生物学进展,对MMP s TIMPs的分子结构和基因调控有了一定的了解,对肝纤维化的发病机制研究及从基因水平治疗各种肝纤维化提供了新的途径。

【参考文献】

[1] Kumar M, Sarin SK.Is cirrhosis of the liver

reversible[J].lndian J Pediatr 2007,74(4) : 393-399.

[2] Andrade ZA.Regression of hepatic fibrosis [J].Rev

Soc Bras Med Trop,2005,38 (5) : 514~ 520.

[3] Gressner OA , Weiskirchen R , Gressner AM.Evolving concepts of liver fibrogenesis provide new diagnostic and

常见蛋白酶抑制剂

当前位置:生物帮 > 实验技巧 > 生物化学技术 > 正文 蛋白酶及蛋白酶抑制剂大全 日期:2012-06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要 : 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9;

基质金属蛋白酶及其抑制物与子宫内膜异位症的研究进展

基质金属蛋白酶及其抑制物与子宫内膜异位症的研究进展 子宫内膜异位症是妇科的常见疾病,其发病机制至今未明。近年来研究发现,基质金属蛋白酶(MMPs)及其抑制物(TIMPs)在该病的发生及发展中起了重要作用,现就MMPs及其抑制物TIMPs在子宫内膜异位症中的研究进展做一综述。 [Abstract] Endometriosis,a disease in which endometrial tissue grows outside of the uterus usually within the pelvic cavity,is one of the most persistent and enigmatic disorders affecting reproductive health. Recent studies suggest that the altered expression of MMP and TIMP may play an important role in pathogenesis of endometriosis. This summary will present general knowledge of the MMP system relative to the pathophysiology of the endometriosis as well as address its potential value to the treatment of the disease. [Key words]Endometriosis;Matrix metalloproteinase;Tissue inhibitors of metalloproteinase;TNF-α 子宫内膜异位症(Endometriosis,EMs)是指具有活性的子宫内膜组织(腺体和间质)出现在子宫内膜以外的部位,以子宫内膜细胞异位生长为特征,是育龄期妇女的常见病,且其发病率呈逐年上升的趋势。子宫内膜异位症虽为良性病变,但其生物学行为却具有类似恶性肿瘤的种植、侵蚀及远处转移能力。EMs 的病因至今未阐明,近年来研究发现,异位的子宫内膜必须通过黏附、侵袭和血管生成才能生长并引起病变。基质金属蛋白酶(matrix metalloproteinase,MMPs)作为细胞外基质降解的重要酶类,在子宫内膜异位症的发生及发展中发挥重要作用。 1基质金属蛋白酶(MMPs)与金属蛋白酶组织抑制物(TIMPs) 基质金属蛋白酶系统包含了酶组份即MMPs以及其组织抑制物即TIMPs两部分。基质金属蛋白酶是一组钙及锌依赖的中型蛋白酶家族,它能降解细胞外基质中的所有成分,包括胶原蛋白、明胶、纤维连接蛋白以及层粘连蛋白。这种降解见于体内许多生理过程,如创伤愈合、血管生成以及生殖过程的各方面。迄今为止,已发现20余种基质金属蛋白酶(表1)。除模型金属蛋白酶直接以酶活性形式分泌至细胞外,其他MMPs均以水溶性酶原形式分泌,在激活剂(如胰蛋白酶、纤溶酶等蛋白酶,十二烷基硫酸鈉,有机汞等)作用下脱去前肽才有酶活性。基质金属蛋白酶的主要特点如下:(1)蛋白酶以酶原形式合成;(2)细胞外酶原的激活;(3)激活过程中伴随10kμ分子量的丢失;(4)所有的DNA片段均显示与胶原酶同源;(5)每种酶能裂解一种或多种细胞外基质;(6)其活性可被TIMPs抑制。 基质金属蛋白酶组织抑制物(TIMPs)是MMPs体内天然的抑制物。目前发现四种:TIMP-1、-2、-3、-4。TIMP-1、-2、-4是可溶性分泌蛋白,TIMP-3是

胰蛋白酶分离工艺

1、集落刺激因子(G-CSF ) 组成结构:是一种含有二硫键的单链糖蛋白,由175个氨基酸残基组成的单链非 糖基化多肽链 理化性质:①性状:无色澄明液体 ②分子量:20000,等电点为5.8~6.6 ③溶解度: ④稳定性: 生理作用与临床适应症:作用于造血祖细胞,促进其增殖和分化,其重要作用是 刺激粒、单核巨噬细胞成熟,促进成熟细胞向外周血释放,并能促进巨噬细胞及 噬酸性细胞的多种功能 ,主要用于预防和治疗肿瘤放疗或化疗后引起的白细胞 减少症, 分离纯化工艺: G-CSF 为无菌冻干粉剂,由含有10mM 醋酸钠pH 为4的蛋白溶液经0.2um 过滤后 分装冻干。 由含有高效表达人G-CSF 的原核表达系统(E.coli )经发酵、分离和高度纯化后 经冻干制成。 纯化液聚乙二醇浓缩洗脱液柱层析透析液透析缓冲液溶解沉淀沉淀蛋白质盐析洗脱液纤维素柱层析透析液透析 缓冲液溶解沉淀饱和度至加入硫酸铵透析液透析滤液超滤浓缩正常成人尿液150 ephadexG -%8020000 S DEAE 2、超氧化物歧化酶(SOD ): 组成结构: 理化性质:①性状:淡蓝色冻干粉结晶体 ②分子量:32000左右 ③溶解度: ④稳定性:耐热性强,90℃ 环境120分钟酶活几乎没有损失,100℃环境60分 钟酶活保持90%以上;稳定性高,在pH4.0—11.0范围内酶活稳定。 生理作用与临床适应症:是一种能够催化超氧化物通过歧化反应转化为氧气和过 氧化氢的酶,是一种重要的抗氧化剂,保护暴露于氧气中的细胞 分离纯化工艺: 血液预处理,洗涤红细胞和溶血;去除大部分杂蛋白得SOD 粗品;再经柱层析分离 得到精品。猪血经血液预处理、洗涤红细胞、溶血、乙醇一氯仿混合液除去血红 蛋白,然后用坟柳043HZO 萃取、丙酮沉淀、55一65℃热变性得到粗酶液。粗酶 液上阴离子DEAE 一Cellulose52交换层析柱、分子筛SephadexG-75柱,最终获 得了纯化的铜锌超氧化物歧化酶。

组织金属蛋白酶及其抑制因子与肝纤维化

组织金属蛋白酶及其抑制因子与肝纤维 化 (作者:__________ 单位:___________ 邮编:___________ ) 【摘要】基质金属蛋白酶(matrix metalloproteinase ,MMP) 是体内重要的水解酶之一,几乎能降解细胞外基质(extracellular matrix ,ECM的所有成分;基质金属蛋白酶组织抑制因子(tissue in hibitor of metalloprote in asas ,TIMPs )是MMP 啲内源性抑制 系统。近年来发现,MMPs/TIMPs调节失衡与肝纤维化的关系密切,可从多方面影响肝纤维化的形成。通过干扰MMP与TIMPs基因的表达,研究肝纤维化的发病机制和药物治疗是有希望的途径。 【关键词】MMPs ;TIMPs;肝纤维化 肝纤维化是许多慢性肝病的共同病理过程,是细胞外基质(ECM)的合 成与降解失衡,导致在细胞间质的过度沉积[1-4 ],肝组织结构改建。 许多细胞因子参与了这一过程,但是MMP是最重要的一种[5]。MMPs 几乎能降解细胞外基质(ECM)的所有成分,而其天然抑制剂-基质金属蛋白酶抑制剂(TIMPs)能与MMPs成员结合成复合物抑制其活性⑹。二者的调节异常将引起ECM合成或降解的失衡,与各种器官纤维化疾病密切相关。研究发现,通过调节MMP与TIMPs基因的表达

来治疗肝纤维化是肝纤维化治疗的新途径。本文就MMPs/TIMPs与肝纤维化的关系及治疗前景作一综述。 1 MMPs分类、功能、结构及活性的调控 MMPs是一组基质金属蛋白酶。M MPs在肝内主要由肝星状细胞(HSC)和Kupffer细胞表达分泌,参与细胞外基质降解的一类锌-钙离子依赖的内源性蛋白水解酶家族,因其需要Ca2+ Zn 2+等金属离 子作为辅助因子而得名,是迄今为止发现的唯一能分解纤维类胶原的酶,几乎能降解除多糖以外的所有ECM成分,在生理病理过程中发挥着重要的作用。MMP家族由24种成员组成,其中有23种存在于人体中。 1. 1 MMPs可被分成六类[7](1)胶原酶类。主要包括MMP-1 MMP-8 MMP-13和MMP-18它们能够降解间质胶原(I、H、皿型胶原),也能消化许多别的ECM及可溶性蛋白[5]。 MMP-1又称成纤维细胞型,是人类主要的间质胶原酶,结缔组织细胞、肝内HSC肝细胞、枯否氏细胞均有分泌,分解底物为胶原蛋白(皿I II)。而MMP-13 是鼠类主要的间质胶原酶。MMP-取称中性粒细胞胶原酶,主要降解I型胶原。(2)明胶酶类(gelatinases)。包括MMP-2阴胶酶A)及MMP-9明胶酶B)。它们可降解明胶(变性胶原)和W、V和幻型胶原、层粘连蛋白、蛋白聚糖等。MMP-2和胶原酶类以相似的方式可以降解I, I,和皿型胶原,但其活性较MMP-1弱[8]。(3)基质分解素(strogylisin)。主要包括MMP-3 MMP-1(和MMP-11 仅有MMP-3在肝脏中存在。底物广泛,包括蛋白多糖、层粘蛋白、纤维连接蛋白、

基质金属蛋白酶及其抑制因子与盆底功能障碍性疾病的关系

基质金属蛋白酶及其抑制因子与盆底功能障碍性疾病的关系 盆底功能障碍性疾病(PFD)是中老年女性的常见病,MMP7、TIMP1及其相互作用对ECM的降解过程有着重要影响,进而也与PFD的发生发展密切相关。 标签:盆底功能障碍性疾病(PFD);基质金属蛋白酶(MMPs);组织型金属蛋白酶抑制物(TIMPs) 盆底功能障碍性疾病(PFD)是中老年女性的常见病,是威胁妇女健康的慢性疾病之一,随着社会老龄化的到来,发病率逐渐升高。PFD以女性压力性尿失禁(SUI)、盆腔器官脱垂(POP)和生殖道损伤为常见问题,是一组由于盆腔支持结构缺陷或退化、损伤及功能障碍而导致的疾病。PFD的发病危险因素有妊娠、阴道分娩损伤、长期腹压增加、先天缺陷及盆底肌肉退化薄弱,而支持盆底器官的盆底肌肉组织结构功能异常为主要因素[1]。 骨盆底由多层肌肉和筋膜构成,封闭骨盆出口,承托并保持盆腔脏器于正常位置[1]。细胞外基质(ECM)是由细胞分泌到细胞外间质中的大分子物质,构成复杂的网架结构,支持并连接组织结构、调节组织的发生和细胞的生理活动。ECM是盆底结缔组织的主要成分,其合成与分解处于动态平衡中,以维持组织形态结构及功能的稳定。因此,其含量及结构的改变与PFD的发生发展关系密切。目前已经发现多种作用于ECM不同成分的酶,其中胞外基质降解最重要的蛋白水解系统由结缔组织及肿瘤组织合成、分泌的基质金属蛋白酶(MMPs)构成。MMPs是一个依赖锌离子的内肽酶类,在细胞外基质中其活性可被内源性抑制剂—组织型金属蛋白酶抑制物(TIMPs)家族所调节。目前MMPs家族已分离鉴别出26个成员MMP1~26,分为6类。其中MMP3、7为基质溶解素类,不仅可降解Ⅲ、Ⅳ、Ⅴ型胶原蛋白还能降解纤维连接蛋白和层粘连蛋白等,它们的内源性抑制剂TIMP1可以抑制MMP3、MMP7的活性。由此可见,MMP7,TIMP1及其相互作用对ECM的降解过程有着重要影响,进而也与PFD的发生发展密切相关。现就MMP7,TIMP1与PFD之间关系的相关研究做一综述。 盆腔肌肉群与盆底结缔组织共同作用支撑着阴道与子宫。盆底结缔组织主要由胶原构成,胶原蛋白是盆底韧带、筋膜的主要成分。盆底的阴道上皮、肌纤维组织与结缔组织的胶原构成主要是Ⅰ型与Ⅲ型。 1 PFD患者盆底结缔组织中胶原含量改变 许多文献报道女性SUI及POP患者,膀胱阴道筋膜,主韧带组织中胶原含量减少。2009年李萍等[2]在研究中发现PFD患者宫颈组织中1型蛋白含量减小。2009叶明等[3]在研究中发现POP患者韧带和盆底筋膜组织Ⅲ型胶原含量减少。 2 胶原代谢情况改变 2.1 胶原分解代谢增加

常见蛋白酶抑制剂

蛋白酶及蛋白酶抑制剂大全 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepst anti n) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。 蛋白酶抑制剂混合使用 35ug/ml PMSF…………………………………丝氨酸蛋白酶抑制剂 0.3mg/ml EDTA…………………………………金属蛋白酶抑制剂 0.7ug/ml胃蛋白酶抑制剂(Pepstatin)…………酸性蛋白酶抑制剂 0.5ug/ml亮抑蛋白肽酶(Leupeptin)……………广谱蛋白酶抑制剂

α1-抗胰蛋白酶缺乏症发病机理

α1-抗胰蛋白酶缺乏症发病机理 *导读:α1-抗胰蛋白酶缺乏症是血中抗蛋白酶成份-α1- 抗胰蛋白酶(简称α1-AT)缺乏引起的一种先天性代谢病,通过常染色体遗传。临床特点为新生儿肝炎,婴幼儿和成人的肝硬化、肝癌和肺气肿等。…… α1-抗胰蛋白酶缺乏症是血中抗蛋白酶成份-α1-抗胰蛋白酶 (简称α1-AT)缺乏引起的一种先天性代谢病,通过常染色体遗传。临床特点为新生儿肝炎,婴幼儿和成人的肝硬化、肝癌和肺气肿等。 【发病机理】 蛋白电泳时α1-AT位于α1球蛋白带内,α1-AT为一种肝脏合 成的糖蛋白,半衰期约4~5日。血清中有对胰蛋白酶活性起抑 制作用的物质,其中α1-AT起90%的作用。除抑制胰蛋白酶活性外,α1-AT还可抑制糜蛋白酶、凝血因子Ⅻ辅助因子及中性粒 细胞的中性蛋白水解酶作用。α1-AT存在于泪液、十二指肠液、唾液、鼻腔分泌物、脑脊液、肺分泌物及乳汁中,羊水中α1-AT 浓度相当于血清的10%,炎症刺激、肿瘤、妊娠或用雌激素治疗可使血清α1-AT浓度增加2~3倍,但这些刺激对α1-AT缺乏症患者则几乎无效。 正常人体内常存在外源性和内源性蛋白酶,如细菌毒素和白细胞崩解出的蛋白酶对肝脏及其他脏器有破坏作用,α1-AT可拮抗

这些酶类,以维持组织细胞的完整性,α1-AT缺乏时,这些酶均可侵蚀肝细胞,尤其是新生儿肠腔消化吸收功能不完善,大分子物质进入血液更多,α1-AT缺乏的婴儿肝脏更易受损害。此外,α1-AT还具有调节免疫应答、影响抗原-抗体免疫复合物清除、补体激活以及炎症反应的作用,并可抑制血小板的凝聚和纤溶的发生。α1-AT缺乏时上述机体平衡的机制失调,导致组织损伤。

组织金属蛋白酶及其抑制因子与肝纤维化

组织金属蛋白酶及其抑制因子与肝纤维化【摘要】基质金属蛋口酶(matrix metalloproteinase> MMP)是体内 重要的水解酶之一,几乎能降解细胞外基质(extracellular raatrix> ECM)的所有成分;基质金属蛋口酶组织抑制因子(tissue inhibitor of metalloproteinasas^ TIMPs )是MMPs的内源性抑制系统。近年来发现,MMPs/TIMPs调节失衡与肝纤维化的关系密切,可从多方而影响肝纤维化的形成。通过干扰MMPs与TIMPs基因的表达,研究肝纤维化的发病机制和药物治疗是有希望的途径。 【关键词】MMPs ;TIMPs:肝纤维化 肝纤维化是许多慢性肝病的共同病理过程,是细胞外基质(ECM)的合成与降解失衡,导致在细胞间质的过度沉积[1-4],肝组织结构改建。 许多细胞因子参与了这一过程,但是MMPs是最重要的一种[5]° MMPs 几乎能降解细胞外基质(ECM)的所有成分,而其天然抑制剂-基质金属 蛋口酶抑制剂(TIMPs)能与MMPs成员结合成复合物抑制其活性[6]。 二者的调节异常将引起ECM合成或降解的失衡,与各种器官纤维化疾病密切相关。研究发现,通过调节MMPs与TIMPs基因的表达来治疗肝纤维化是肝纤维化治疗的新途径。木文就MMPs/TIMPs与肝纤维化的关系及治疗前景作一综述。 1 MMPs分类、功能、结构及活性的调控 MMPs是一组基质金属蛋口酶。MMPs在肝内主要由肝星状细胞(HSC) 和Kupffer细胞表达分泌,参与细胞外基质降解的一类锌-钙离子依赖的内源性蛋口水解酶家族,因其需要Ca2+、Zn2+等金属离子作为辅 助因子而得名,是迄今为止发现的唯一能分解纤维类胶原的酶,几乎能降解除多糖以外的所有ECM成分,在生理病理过程中发挥着重要的作用。MMPs家族由24种成员组成,其中有23种存在于人体中。 L 1 MMPs可被分成六类[7](1)胶原酶类。主要包括MMP-K

蛋白酶抑制剂

蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF PMSF即Phenylmethanesulfonyl fluoride,中文名为苯甲基磺酰氟。分子式为C7H7FO2S,分子量为174.19,纯度>99%。 常用生化试剂,用于抑制蛋白酶. 【配制方法】用异丙醇溶解PMSF成 1.74mg/ml(10mmol/L),分装成小份贮存于-20℃。如有必要可配成浓度高达17.4mg/ml的贮存液(100mmol/L)。 【注意】PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。凡被PMSF污染的衣物应予丢弃。PMSF在水溶液中不稳定。应在使用前从贮存液中现用现加于裂解缓冲液中。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。 蛋白水解酶抑制剂啊!!!实验室常用的啊!!! 主要用于组织匀浆时用!! 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上; 4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepstantin) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。

大豆抗营养因子及其消除方法

大豆抗营养因子及其消除方法 【摘要】大豆中含有胰蛋白酶抑制因子和脂肪氧化酶等多种抗营养因子,它们直接影响大豆食品与饲料的营养价值和食用安全性,降低了大豆的利用率。本文综述了胰蛋白酶抑制剂和脂肪氧化酶的抗营养作用以及消除方法的研究进展。 【关键词】胰蛋白酶抑制剂;脂肪氧化酶;抗营养作用;消除方 【正文】 (一)大豆因其蛋白质含量高和氨基酸平衡性好而成为人类植物蛋白和脂肪的主要来源,同时又是发展家畜、家禽和鱼的重要蛋白质饲料来源,但是其中还含有很多 抗营养因子,如胰蛋白酶抑制剂、脂肪氧化酶、凝集素、单宁、植酸等,它们不 但使大豆的营养价值受到影响,还对畜禽的健康产生不同程度的影响,从而降低 了大豆及其加工产品的利用效率。本文对近几十年来国内外学者对胰蛋白酶抑制 剂和脂肪氧化酶的理化性质、抗营养作用机理以及大豆主要抗营养因子消除方法 的研究和报道进行了综。 (二)大豆抗营养因子的消除方 1、物理失活:大豆中部分抗营养因子对热不稳定,充分加热即可使之变性失活。目 前,膨化法是抗营养因子热失活最常用的方法,对全脂大豆及其副产品进行膨化,不仅可降低其所含胰蛋白酶抑制剂等抗营养因子的活性;还会改善大豆所含蛋白质的品质,提高其消化、吸收和利用率,因此得到了广泛的应用。大豆胰蛋白酶抑制剂的失活可以分为耐热性不同的两个阶段,第一个阶段是KTI的热失活,而第二个阶段则是BBI热失活,BBI的热稳定性之所以比KTI强,是由于BBI的分子结构中含有3个二硫键,而KTI则只有2个二硫键。大豆制品中的胰蛋白酶抑制剂的失活程度,多数报道认为失活70%~85%效果较好。刘寅哲利用膨化豆粕代替普通豆粕饲喂肉仔鸡的研究结果表明,肉仔鸡对蛋白质的消化吸收率提高12.9%,31~49日龄肉仔鸡平均日增重提高13.5%,膨化豆粕应用价值明显好于普通豆粕。 2、化学失活:利用抗营养因子的化学特性,添加某些化合物消除或缓解抗营养物质。 用化学试剂处理破坏KTI和BBI分子结构中的二硫键结构,可破坏其活性,同时氨基酸的组成不发生明显变化。张建云等人采用化学钝化法研究了多种化学物质及其浓度、作用时间等因素对胰蛋白酶抑制剂活性的影响,研究结果表明,5%的尿素加20%水处理豆粕30d效果最好,使胰蛋白酶抑制剂的失活率达78.55%。化学方法对不同的抗营养因子均有一定的效果,可节省设备与资源,但存在化学物质残留,影响饲料品质,降低适口性,且排出的脱毒液会造成污染环境,对动物机体也会产生毒害作用。 3、作物育种方法:大豆优良品种的选育是消除抗营养因子的根本,培育专门化品种 是解决大豆及豆制品适口性和品质问题的关键,因为通过加热等物理化学方法将大豆抗营养因子失活的同时,也降低了大豆种子中丰富蛋白的可溶性,而且其中所耗的费用最终加入到产品的成本中,提高了产品的价格。因此,多年来,科学家们一直在寻找低含量或不含胰蛋白酶抑制剂和脂肪氧化酶等抗营养因子的大豆新品。

肝癌中基质金属蛋白酶及其抑制因子的研究进展

怂鑫妻盏豁翳要)Edi,20?o,A叭29(2):2,5—2均.2,5. iccondition[P].2004.[64]CUI H,CUIY.CNll34234一A,CNl073362一C:Teafore.g. [57]MAB.CNl01474311。A:Softcapsuleforusea8an anfioxi-protectingtheliverandinvigoratingspleen[P].1998.dantforalleviatingeyestrain,comprisessoftcapsuleshell,[65]PANGY.CNll24108-A:Nutritivehealth.ca弛s锄sage[P].xanthininmarigoldextract,proanthocyanidinsinblueberry1997. extract,beta。carotene,andsteviosideinChrysanthemum6-[66]BARTONB,ANTONELLIJ.US2007269576.A1:NutritioIlal tract[P].2009.fruitdrinkfor useinnutritional.healthsciencesarldmedi. [58]XIAP,BEIS,FENGY.CNl075878。A:Nutritious liquidcinefields,containsfruitiuice,e.g.durian。andsilver foreyesightconsistsofextractsofcassiaseed,fruitoflycium¥onl'ee[P].2007. barbarum,mulberryflowerhead,vitaminA,vitaminCete[67]AmericanPhoenixBiotechInc.DE202008011721.U1:c砌.[P].1994.position,usefultotreatc帅cer,comprisesamixtureofe】【- [59]YUB.CNl01077374一A:TraditionalChinesemedicinefortractsobtainedfrom e.g.Radixginseng.Ganodermalucid. preventingandtreatingmetabolic syndrome,compriseslyci一哪,Cordyeepssinensis,Codonopsispilosula,Lyciumbar- unlbarbarumpolysaceharide,ginsengpowder,2‘aminoeth.bal'um,LigustrumlucidumandGlycyrrhizauralensisanesulfonieacidandvitaminE[P].2008.[P].2009. [60]MAJEWSKIGP,SHAHAR,GORMLEYJL,eta1.[68]帆LG.EPl532868-A1,DEl0358328一A1。EPl532868.US2007166267’AI:CosmeticcompositionfortreatingfineB1,DE502004009122?G:Plantextract.asafoodsupple.1inesandwrinklesinfacialskinbyimprovingdermalfibro-ment,iscomposedofextractsofwolfberriesandschisandrablastmatrix,containsacylatedoligopeptideandLyeiumbar-berriestogetherwithmagnoliablossom[P].2005. ba/llmextractincosmeticvehicle[P].2007.[69]SOK,YUENw,CHANGRC,eta1.US2005196478.A1. [61]GODDINGERD,KRUEGERM.DEl02008012059’A1,W02005082387-A2,DEl 12005000345.T5,CNl953761.A:W02009109426‘A1:Cosmeticcomposition,usefule.g.toReducingretinalganglioncellsdeathe.g.glaucominvolvestreatkeratinfibers,preferablyhumanhairs。comprises锄administeringagentextractedbywaterfromlyciumbarbammextractfromfruitsofLyciumbarbarmn,andfurther蛐activecontainingmaterial[P].2005. agente.g.non。surfaceactivebetaine,ubiquinone,andCO-[70]PhytovisionsGmbh&CoKS.DE202004018005一U1.DEl03enzymeQ10[P].2009.54667-A1:CompositioncontainingextractsofLyciumand[62]CHUC.CNll22712。A:Nourishingandhealth-caremedici.Schisandra,usefulincosmetics,foodsandsupplements,nalwine[P].1997.haveantistressandanti.ageingactivities.1ackpotentially [63]WANGD.CNl108047-A,CNl038383一C:Instantnoodlesharmful lignans andschisandrins[P].2005.containingChinesewolf-berry[P1.1997. 肝癌中基质金属蛋白酶及其 抑制因子的研究进展 程桂丹1,陆枫林2 (1.东南大学临床医学院,江苏南京210009;2.东南大学附属中大医院消化科,江苏南京210009) [摘要]基质金属蛋白酶(MMP)家族是降解细胞外基质的重要酶类,组织金属蛋白酶抑制因子(TIMP)是[收稿日期]2009—05—18[修回日期]2009?1I一17 [基金项目]江苏省自然科学基金资助项目(BK2006100) [作者简介]程桂丹(1983一),女,湖北咸宁人,在读硕士研究生。E-mail:cgdklz219@yahoo.coin.cn [通讯作者]陆枫林E-mail:lufenglinmytutor@163.com

胰蛋白酶抑制剂的测定.doc - NY

NY 中华人民共和国农业行业标准 NY/T1103.2-2006 转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 Safety assessment of genetically modified plant and derived products Part 2: assay of anti-nutrients pancreatic typsin inhibiter 2006-07-10发布2006-10-01实施 中华人民共和国农业部发布

前言 本标准由中华人民共和国农业部提出。 本标准由全国农业转基因生物安全管理标准化技术委员会归口。 本标准起草单位:中国疾病预防控制中心营养与食品安全所、农业部科技发展中心、中国农业大学、天津市卫生防病中心。 本标准主要起草人:杨月欣、王竹、韩军花、李宁、汪其怀、黄昆仑、刘克明、刘培磊、连庆。 本标准首次发布。

转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 1 范围 本标准规定了转基因植物及其产品中胰蛋白酶抑制剂的测定方法。 本标准适用于转基因大豆及其产品、转基因谷物及其产品中胰蛋白酶抑制剂的测定。其他的转基因植物,如花生、马铃薯等也可用该方法进行测定。 2 术语和定义 下列术语和定义适用于本标准。 2.1 转基因植物genetically modified plant 指利用基因工程技术改变基因组构成,用于农业生产或者农产品加工的植物。 2.2 转基因植物产品products derived from genetically modified plant 指转基因植物的直接加工产品和含有转基因植物的产品。 3 原理 胰蛋白酶可作用于苯甲酰-DL-精氨酸对硝基苯胺(BAPA),释放出黄色的对硝基苯胺,该物质在410 nm下有最大吸收值。转基因植物及其产品中的胰蛋白酶抑制剂可抑制这一反应,使吸光度值下降,其下降程度与胰蛋白酶抑制剂活性成正比。用分光光度计在410 nm 处测定吸光度值的变化,可对胰蛋白酶抑制剂活性进行定量分析。 4 试验材料 转基因植物及其产品、受体植物及其产品。如果对转基因植物产品中的胰蛋白酶抑制剂进行测定,转基因植物产品和受体植物产品的处理条件应相同。 上述材料的水分含量和种植环境应基本一致。

超高压对大豆脂肪氧合酶、营养抑制因子和蛋白性质的影响

摘要 近二十年来超高压食品加工技术飞速发展并逐渐步入产业化。但是,和其他的新技 术一样,超高压技术的产业化突破必须通过建立一个评价其对食品安全、质量方面影响的 科学基础来实现,这样的定量评价无论是对满足立法安全需要还是对满足目前消费者的食品质量需求都是必不可少的。大豆富含丰富的蛋白质和合理的氨基酸组成,是国际上公认的一 种全营养食品。大豆蛋白具有重要的营养价值和理化及功能特性(如凝胶性、乳化性、起泡 性等),所以被作为一种具有加工功能性的食品添加用中间原料而广泛应用于食品行业。但大豆中含有多种酶类和一些抗营养因子,传统的热处理技术虽然能有效杀死致病微生物 和钝化酶类,但是同样会导致一些不良的化学变化从而影响产品的品质。本研究的目的是 利用新型超高压加工技术处理豆浆及大豆分离蛋白溶液,初步探讨超高压处理对豆浆品质、大豆脂肪氧合酶失活、营养抑制因子失活、大豆分离蛋白理化及功能性质的影响,为超高压加工技术在大豆制品加工中的应用、大豆蛋白的改性以及食品安全提供理论参考。 以豆浆和脂肪氧合酶粗提液为对象,研究了大豆脂肪氧合酶的超高压失活动力学。 结果表明,大豆脂肪氧合酶的超高压失活是不可逆的并且符合一阶反应动力学规律;在某 一恒定的温度下,脂肪氧合酶的失活速率常数k 随着超高压处理压力的增加而增大,表 明增加压力可以加快脂肪氧合酶失活;在某一恒定的压力下,脂肪氧合酶的失活速率常 数在10-20℃出现最小值,表明Arrhenius 方程不能适用于整个温度区间;在中温区域(20℃≤T≤60℃),温度对脂肪氧合酶失活速率常数的影响随着压力的增加而降低;而 脂肪氧合酶失活速率常数对压力的敏感性大约在30℃最大。豆浆体系中脂肪氧合酶的失 活速率常数要比粗酶提取液中小,但是从动力学角度来看,体系的不同并没有影响到脂 肪氧合酶超高压失活的反应级数以及失活速率常数的温度敏感性和压力敏感性。 在此基础上,采用两种完全不同的数学模型来描述压力与温度对脂肪氧合酶超高压失 活速率常数的影响。结果表明,不管以Eyring 方程为起点建立的经验数学模型还是以Hawley 提出的热力学方程为基础建立的热动力学数学模型,都能够成功地模拟两个体 系中压力与温度对大豆脂肪氧合酶超高压失活速率常数的影响,但热动力学模型要比经 验数学模型更加精确。 以豆浆作为研究对象,研究并优化了大豆营养抑制因子的超高压失活条件。同样的 超高压处理条件下,尿素酶发生失活的温度(室温)低于胰蛋白酶抑制剂(≥40℃), 温度升高、压力增大和时间延长有利于营养抑制因子的失活。中心组合旋转设计优化显示,在所考察的因素中,对尿素酶和胰蛋白酶抑制剂超高压失活的影响程度从大到小的排序为 压力、时间、温度;理想的大豆营养抑制因子的超高压失活条件为压力750MPa、温度60℃、时间5min。 两种不同pH 缓冲溶液体系中超高压处理对大豆分离蛋白理化及功能性质的研究发现,pH3.0 的Gly-HCl 缓冲溶液中超高压处理提高大豆分离蛋白溶解度的程度显著大于pH8.0 的Tris-HCl 缓冲溶液。游离巯基含量和蛋白质表面疏水性的测定结果表明,压力 I

胰蛋白酶抑制剂对Wnt信号通路的作用

万方数据

万方数据

万方数据

万方数据

胰蛋白酶抑制剂对Wnt信号通路的作用 作者:伊凤双, YI Feng-shuang 作者单位:山西大学生物技术研究所,太原,030006 刊名: 国际肿瘤学杂志 英文刊名:JOURNAL OF INTERNATIONAL ONCOLOGY 年,卷(期):2010,37(5) 参考文献(21条) 1.Fogarty MP;KesslerJD;Wechsler-Reya RJ Morphing into cancer:the role of developmental signaling pathway in brain tumor formation 2005(04) 2.Moon KC;Cho SY;Lee HS Distinct expression pattems of E-Cadherinand beta-cateninin signetring cell carcinoma components of primary pulmonary adcnoesrcinoma 2006(09) 3.Khor TO;Gul YA;Ithnin H A comparative study of the expression of Wnt-1.WISP-1 sundvin and cyclin-D1 in colorectal carcinomas[外文期刊] 2006(04) 4.Luo W;Zou H;Jin L Axin contains three separable domains that confer intramolecular,homodimeric,and heterodimeric interactions involved in distinct fuctions 2005(06) 5.Krieghoff E;Behrens J;Mayr B Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention[外文期刊] 2006(Pt7) 6.Li YY;Zhang Z;Wang ZH rBTI induces apoptosis in human solidtumor cell lines by loss in mitoehondrial transmembrane potential and caspase activation[外文期刊] 2009(02) 7.Kennedy AR;Billings PC;Wan XS Effects of Bowman-Birk inhibitor on rat colon carcinogenesis[外文期刊] 2002(02) 8.李卓玉;袁静明肿瘤抑制蛋白APC的结构与功能[期刊论文]-生命的化学 2006(02) 9.While SR;Williams P;Wojcik KR Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells[外文期刊] 2001(03) 10.Avizienyte E;Wyke AW;Jones RJ Scr-induced deregulation of E-cadherin in colon cancer cdlls requires integrin signaling[外文期刊] 2002(08) 11.Kim PJ;Plescia j;Clevers H Survivin and molecular patho-genesis of colorectal cancer[外文期刊] 2003(9379) 12.Zhang T;Otevrel T;Gao Z Evidence that APC regulates survivin expression:a possible mechanism contributing to the stem cell origin of colon[外文期刊] 2001(24) 13.Hoffman WH;Biade S;Zilfou JT Transcriptional repression of the anti-apoptotic survivin gene by wild type p53 2002(05) 14.Masur K;Lang K;Niggemann B High PKC alpha and low E -cadherin expression contribute to high migratory activity of colon carcinoma cells 2001(07) 15.Le TL;Joseph SR;Yap AS Protein kinase C regulates endocytosis and recycling of E-cadherin 2002(02) 16.Chen CL;Chen HC Functional suppression of E-cadherin by protein kinase Cdelta 2009(Pt 4) 17.Kobayashi H;Suzuki M;Tanaka Y Suppression of urokinase expression and invasiveness by urinary trypsin inhibitor is mediated through inhibition of protein kinase C-and MEK/ERK/c-Jun-dependent

相关文档
最新文档