风力发电机齿轮增速箱

风力发电机齿轮增速箱
风力发电机齿轮增速箱

摘要

风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。

本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。

1)根据风电齿轮箱承受载荷的复杂性,对其载荷情况进行了分析研究,确定齿轮箱的机械结构。选取两级行星派生型传动方案,在此基础上进行传动比分配与各级传动参数如模数,齿数,螺旋角等的确定;通过计算,确定各级传动的齿轮参数;选择适当的齿轮。

2)对行星齿轮传动进行受力分析,得出各级齿轮载荷结果。依据标准进行静强度校核,结果符合安全要求。

3)绘制CAD装配图,并确定恰当合理参数。

关键词:风电齿轮箱;风力发电;结构设计。

ABSTRACT

KEYWORDS:Gearbox for Wind Turbine;the wind power;Structure Design.

目录

第一章前言 ----------------------------------------------------------------------------------------- ii

1.1 国内外发展现状与趋势 -------------------------------------------------------------- - 1 -

1.1.1风力发电国内外发展现状与趋势 --------------------------------------------- - 1 -

1.1.2风电齿轮箱的发展现状------------------------------------------------------------ - 2 -

1.1.3我国风电齿轮箱设计制造技术的现状 -------------------------------------- - 3 -

1.1.4存在问题及展望 ---------------------------------------------------------------------- - 4 -

1.2论文的主要内容 ---------------------------------------------------------------------------- - 5 - 第二章增速箱齿轮结构设计 ----------------------------------------------------------------- - 6 -

2.1 增速箱齿轮的设计参数 -------------------------------------------------------------- - 6 -

2.2 增速箱齿轮设计方案------------------------------------------------------------------- - 6 -

2.3 齿轮参数的确定--------------------------------------------------------------------------- - 8 -

2.3.1 低速级参数的计算 ------------------------------------------------------------------ - 9 -

2.3.2 中间级参数的计算 ---------------------------------------------------------------- - 12 -

2.3.3 高速级参数计算-------------------------------------------------------------------- - 14 -

2.4 受力分析与强度校核 -------------------------------------------------------------- - 16 -

2.4.1 受力分析 ------------------------------------------------------------------------------ - 16 -

2.4.2 齿轮强度计算与校核 ------------------------------------------------------------ - 19 - 第三章传动轴的设计与校核 --------------------------------------------------------------- - 23 -

3.1低速级传动轴尺寸参数计算与校核 ---------------------------------------- - 23 -

3.1.1低速级传动轴尺寸参数计算--------------------------------------------------- - 23 -

3.1.2低速级传动轴的强度校核 ------------------------------------------------------ - 24 -

3.2中间级传动轴的设计计算与校核--------------------------------------------- - 25 -

3.2.1中间级传动轴尺寸参数计算--------------------------------------------------- - 25 -

3.2.2中间级传动轴的强度校核 ------------------------------------------------------ - 26 -

3.3 高速级传动轴的设计计算 -------------------------------------------------------- - 27 -

3.4输出传动轴的设计计算 ------------------------------------------------------------- - 28 - 第四章齿轮箱其他部件的设计 ----------------------------------------------------------- - 29 -

4.1轴系部件的结构设计------------------------------------------------------------------ - 29 -

4.2行星架的结构设计---------------------------------------------------------------------- - 30 -

4.3传动齿轮箱箱体设计------------------------------------------------------------------ - 30 -

4.4齿轮箱的密封,润滑,冷却 ----------------------------------------------------- - 31 -

4.4.1 齿轮箱的密封 ----------------------------------------------------------------------- - 31 -

4.4.2 齿轮箱的润滑,冷却 ------------------------------------------------------------ - 31 -

4.5齿轮箱的使用安装---------------------------------------------------------------------- - 32 - 第五章结论--------------------------------------------------------------------------------------------- - 33 - 参考文献 --------------------------------------------------------------------------------------------------- - 34 - 致谢 --------------------------------------------------------------------------------------------------- - 36 -

第一章前言

1.1 国内外发展现状与趋势

1.1.1风力发电国内外发展现状与趋势

风能是一种清洁的永续能源,与传统能源相比,风力发电不依赖外部能源,没有燃料价格风险,发电成本稳定,也没有碳排放等环境成本;此外,可利用的风能在全球范围内分布都很广泛。正是因为有这些独特的优势,风力发电逐渐成为许多国家可持续发展战略的重要组成部分,发展迅速。根据全球风能理事会的统计,全球的风力发电产业正以惊人的速度增长,在过去10年平均年增长率达到28%,2007年年底,全球装机总量达到了9400万千瓦,每年新增2000万千瓦,意味着每年在该领域的投资额达到了200亿欧元。

许多国家采取了诸如价格,市场配额,税收等各种激励政策,从不同的方面引导和支持风电的发展。在政策的鼓励下,200年全球风电新装机容量约为2000 万千瓦,累计装机9400万千瓦。2008年是风电发展具有标志性的一年:这一年风电成为非水电可再生能源中第一个全球装机超过l亿千瓦的电力资源。风电作为能源领域增长最快的行业,共为全球提供了近20万个就业机会,仅2006年风电场建设投资就接近170亿欧元。欧洲和美国在风电市场中占统治地位,其中德国是目前风电装机最大的国家,装机容量超过2000万千瓦;美国和西班牙也都超过了1000万千瓦:印度是除美国和欧洲之外新装机容量最大的国家,装机总容量也超过600万千瓦。世界风电前十名国家近05至07年发展情况如图1.1所示。

图1-1 世界风电前十名国家05-07年发展情况比较

就近几年来世界风电发展格局和趋势分析来看,主要有以下几个特征:

(1) 风电发展向欧盟,北美和亚洲三驾马车井驾齐驱的格局转变。

(2) 风电技术发展迅速,成本持续下降。

(3) 政府支持仍然是欧洲风电发展的主要动力。

(4) 中国是未来世界风电发展最重要的潜在市场。

全球风能理事会是世界公认的风电预测的权威机构,据全球风能理书会的预测。未来五年,全球风电还将保持20%以上增长速度,到2012年,全球风电机容量将达到2.4亿千瓦.年发电5000亿干瓦时.风电电力约占全球电力供应的3%。欧洲将继续保持总装机容景第一的位置,亚洲将会超过北美市场排在第二位。

我国幅员辽阔,海岸线长,风能资源丰富。2006年,国家气候中心也采用数值模拟方法对我国风能资源进行评价,得到的结果是:在不考虑青藏高原的情况下.全国陆地上离地面10米高度层风能资源技术可开发量为25.48亿千瓦。近年来,特别是《可再生能源法》实施以来,中国的风电产业和风电市场发展十分迅速。

2007年,全球风电资金15%投向了中国,总额达34亿欧元,中国真正成为全球最大的风电市场。从我国的发展情况来看,我国风电产业将会长期保持快速发展,主要由以下因素的支撑:

(1) 国家能源政策升华;

(2) 气候变化的推动;

(3) 风电技术成熟。

依据目前的趋势,保守估计,到2020年,我国风电累计装机可以达到7000 万千瓦。届时风电在全国电力装机中的比例接近6%,风电电量约占总发电量的2.8%.从2020年开始,风电和常规电力相比,成本优势已比较明显。至2030年,风电在全国电力容量中的比重将超过11%,可以满足全国5.7%的电力需求。

1.1.2风电齿轮箱的发展现状

风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组中最重要的部件,倍受国内外风电相关行业和研究机构的关注。风机增速齿轮箱是风力发电整机的配套产品,是风力发电机组中一个重要的机械传动部件,它的重要功能是将风轮在风力作用下所产生的动力传递给发电机,使其得到相应的转速进行发电,它的研究和开发是风电技术的核心,并正向高效,高可靠性及大功率方向发展。风力发电机组通常安装在高山,荒野,海滩,海岛等野外风口处,

经常承受无规律的变相变负荷的风力作用以及强阵风的冲击,并且常年经受酷暑严寒和极端温差的作用,故对其可靠性和使用寿命都提出了比一般机械产品高得多的要求。

风电行业中发展最快,最有影响的国家主要有美国,德国等欧美发达国家,在风电行业中处于统治地位。欧美发达国家早已开发出单机容量达兆瓦级的风力发电机,并且技术相对成熟,具有比较完善的设计理论和丰富的设计经验,而且商业化程度比较高,因此在国际风力发电领域中处于明显的优势和主导地位。

国外兆瓦级风电齿轮箱是随风电机组的开发而发展起来的,Renk,Flender 等风电齿轮箱制造公司在产品开发过程中采用三维造型设计,有限元分析,动态设计等先进技术,并通过模拟和试验测试对设计方案进行验证。此外,国外通过理论分析及试验测试对风电齿轮箱的运行性能进行了系统的研究,为风电齿轮箱的设计提供了可靠的依据。

国家标准GB/Tl9703-2003和国际标准IS081400-4:2005都对风电齿轮箱设计提出了具体的设计规范和要求。尽管国际上齿轮箱设计技术已经比较成熟,但统计数据表明,齿轮箱出现故障仍然是M机故障的最主要原因,约占风机故障总数的20%左右。

由于我国商业化大型风力发电产业起步较晚,技术上较欧美等风能技术发达国家存在报大差距。我国在九五期间开始走引进生产技术的路子,通过引进和吸收国外成熟的技术,成功开发出了兆瓦级以下风力发电机。十五期间在国家863 计划中重点提出容量更大的兆瓦级风力发电机组的研究和开发课题.但是最为世界上的风能大国,目前我国大型风力发电机组的开发主要是引进国外成熟的技术,关键就因为我国的设计水平不高。

目前我国主要有几家公司制造风电齿轮箱:南京高精齿轮有限公司,重庆齿轮箱有限责任公司,杭州前进齿轮箱集团。其中,前两家公司占据了将近70%市场份额。对于现行主流的兆瓦级以风力发电机组,国内的几十家生产厂商绝大多数采用的部是引进国外的成熟技术。由于传递的功率大,对兆瓦级增速齿轮传动的可靠性和寿命要求非常高.因而增速齿轮的设计成为风力发电机组的瓶颈,是整个风力发电机组稳定运行的关键。从目前的情况来看,风电齿轮箱市场可发展空间广阔,齿轮箱驱动式风电机组仍是市场主流。

1.1.3我国风电齿轮箱设计制造技术的现状

目前国内已基本掌握了兆瓦以下风电增速箱的设计制造技术国产风电机组的主流机型为600kW~800kW其增速齿轮箱已在重庆齿轮箱有限责任公司,南京高精齿轮集团有限公司,杭州前进齿轮箱集团有限公司等厂家批量生产。产品系列方面目前已有重庆齿轮箱有限责任公司的FL系列,南京高精齿轮集团有限

公司的Ⅲ系列,杭州前进齿轮箱集团有限公司的FZ系列以及郑州机械研究所的FC系列风电增速箱这四家企业及国内其它一些齿轮制造企业正在进行1.5MW,2MW风电增速箱的开发和5MW以及更大功率的风电增速箱试生产。尽管如此我国风电齿轮箱仍是风电设备国产化中的薄弱环节尚不能满足市场需求。

目前国内风电机组的技术引进基本上是以产品生产许可方式进行的从国外引进的只是风力发电机组的集成技术并不包括齿轮箱的设计制造技术。国内风力发电增速齿轮箱的设计基本是参照引进集成技术中的齿轮箱采购规范进行的齿轮箱的结构设计和外联结尺寸按进口风力发电机组要求进行类比设计。因此国内并未真正引进风电齿轮箱的设计制造技术更谈不上完全掌握先进的设计制造技术。

在风力发电传动装置技术研究方面国内起步较晚基础较薄弱人才匮乏。郑州机械研究所近几年来对国内外风电齿轮箱先进技术进行了跟踪研究并依靠几十年的齿轮传动和强度等专业的成果,经验的积累开发出了全套风力发电传动装置设计分析软件——WinGear。该软件是在该所专业齿轮软件基础上开发的风力发电齿轮箱专用设计,计算分析和绘图软件集成了通用齿轮箱的设计经验同时考虑了风电机组齿轮箱的变载荷,高可靠性,增速传动等特点。软件涵盖了A(MA6006,AGvIA2101,IS06336及(B3480等标准具有齿轮,轴,轴承,键等主要零部件的设计,计算和分析等功能,可完成风电载荷谱分析,当量载荷计算轴承扩展寿命计算等功能。利用该软件郑州机械研究所已完成了750kW,1OMW,1.5MW和2.0MW以及5.0MW齿轮箱的参数设计。此外郑州机械研究所还开发了基于Solid Works的智能型CAE分析系统能方便地实现对箱体,行星架,输入轴等重要零部件的有限元分析和优化。

1.1.4存在问题及展望

尽管我国风电齿轮箱国产化工作近年来取得了长足的进步基本掌握了兆瓦级以下机组的设计制造技术并形成了600kW至800kW风电增速箱的批量生产能力,但目前仍存在以下问题:

1) 国内缺乏基础性的研究工作和基础性的数据对国外技术尚未完全消化自主创新能力不足。

2) 严重缺乏既掌握低速重载齿轮箱设计制造技术又了解风电技术的人才,缺乏高水平的系统设计人员。

3) 未完全掌握大型风电增速箱的设计制造技术产品以仿制为主可靠性不高, 质量稳定性较差。掌握设计制造技术的企业数量较少无论是产品数量还是产品质量都难以满足市场需要。

4) 缺乏大型试验装置及测试手段。

5) 缺乏行业资源共享,信息互通,共同发展的平台和机制。

1.2论文的主要内容

风电齿轮箱结构设计。依据某型风机所要求的技术匹配参数,选择适当的齿轮传动方案,在此基础上进行传动比分配与各级传动参数如模数,齿数,螺旋角等的确定。通过对运动副的受力分析,依照相关标准进行静强度校核。

风机的结构形式主要有两种:水平轴风机;垂直轴风机。目前市场上普遍应用的均为水平轴风力机。本文也主要参考水平轴的结构形式。在风力发电机组中,齿轮箱是一个重要的机械部件,其主要功能是将风轮在风力作用下所产生的动力传递到发电机并使其得到相应的转速。通常风轮的转速较低,远达不到发电机发电要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。

根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴) 与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节联接的结构,本文选用后一种方案。为了增加机组的制动能力,在齿轮箱的输出端设置刹车装置,配合变桨距制动装置共同对机组传动系统进行联合制动。具体到齿轮箱其它部位诸如轴承,轴等,因为很难用试验台来验证齿轮箱各部分的可靠性。

第二章 增速箱齿轮结构设计

2.1 增速箱齿轮的设计参数

在设计5.0MW 海上风电机组齿轮传动系统基础上,该设计提供以下的技术指标:

发电机额定功率:5000KW

总齿轮传动比: 97:1

额定功率时输入转速:12.1rpm

额定功率时输出转速:1173.7rpm

同时根据机械设计手册规定进行齿轮计算,按3倍功率计算静强度0.1 ,同时外齿轮制造精度不低于6级,齿面硬度HRC60~62(太阳轮)和HRC56~58(行星轮),太阳轮和行星轮材料用i n r T N C 20,渗碳淬火。

2.2 增速箱齿轮设计方案

对于兆瓦级风电齿轮箱,传动比多在100左右,一般有两种传动形式:一级行星+两级平行轴圆柱齿轮传动,两级行星+一级平行轴圆柱齿轮传动。相对于平行轴圆柱齿轮传动,行星传动的以下优点:

1)传动效率高,体积小,重量轻,结构简单,制造方便,传递功率范围大,使功率分流;

2)合理使用了内啮合;共轴线式的传动装置,使轴向尺寸大大缩小而;运动平稳,抗冲击和振动能力较强。

在具有上述特点和优越性的同时,行星齿轮传动也存在一些缺点:结构形式比定轴齿轮传动复杂;对制造质量要求高:由于体积小,散热面积小导致油温升高,故要求严格的润滑与冷却装置。这两种行星传动与平行轴传动相混合的传动形式,综合了两者的优点。

依据提供的技术数据,经过方案比较,总传动比i=97:1,采用两级行星派生5.0MW 风电机组齿轮箱设计型传动,即两级行星传动+高速轴定轴传动。为补偿不可避免的制造误差,行星传动一般采用均载机构,均衡各行星轮传递的载

荷,提高齿轮的承载能力,啮合平稳性和可靠性,同时可降低对齿轮的精度要求,从而降低制造成本。

对于具有三个行星轮的NGW 型行星传动,常用的均载机构为基本构件浮动。由于太阳轮重量轻,惯性小,作为均载浮动件时浮动灵敏,结构简单,被广泛应用于中低速工况下的浮动均载,尤其是具有三个行星轮时,效果最为显著。因此在本文的风电增速箱中,两级NGW 型行星传动中,均采用中心轮浮动的均 载机构。

图2-1 5.0MW 风电机传动齿轮箱结构简图

行星齿轮传动由于有多对齿轮同时参与啮合承受载荷,要实现这一目标行星轮系各齿轮齿数必须要满足一定的几何条件:

(1)保证两太阳轮和系杆转轴的轴线重合,即满足同心条件:

3212Z Z =Z + (2.1) (2)保证3个均布的行星轮相互间不发生干涉,即满足邻接条件:

*2180sin )(221ha Z K

Z Z +>+ (2.2) (3)设计行星轮时,为使各基本构件所受径向力平衡,各行星轮在圆周上应均匀分布或对称分布。为使相邻两个行星轮不相互碰撞,必须保证它们齿顶之间在连接线上有一定问隙。保证在采用多个行星轮时,各行星轮能够均匀地分布在两太阳轮之间,即满足安装条件

C K

Z Z =+)(31 (2.3)

式中 C 为整数,装配行星轮时,为使各基本构件所受径向力平衡,各行星轮在圆周上应均匀分布或对称分布。

保证轮系能够实现给定的传动比 H i 1,即满足传动比条件。当内齿圈不动时

111

3-=H i Z Z (2.4) 式中:

1z ——中心太阳轮齿数;

2z ——行星轮齿数; 3z ——内齿圈齿数;

K ——行星轮个数;

*ha ——齿顶高系数; 满足的同心条件:行星架的21.28*21=i i 回转轴线应该和两中心轮的几何轴线相互垂直,符合要求是轮1和轮3的中心距等于轮2和轮3的中心距:

3231Z Z Z Z -=+(同时选用奇数或同时为偶数) (2.5)

2.3 齿轮参数的确定

取两级行星传动比,而总传动比是97:1 则高速端定轴传动比为44.33=i 。角标I 表示低速级输入端,角标∏表示中间级输入端。两级外啮合齿轮材料,齿面硬度相同。则2lim 1

lim H H σσ=。 取∏I Z =Z ωω,∏I =ωωn n ,2.1==∏I b b d d B ,∏I K =K c c ,

2=I ∏d d ??, 9.122

=Z K K Z K K N ∏I H I N I ∏H ∏βνβν

所以,2222∏N ∏I H ∏I ∏∏I N I ∏H I ∏I I Z Z K K K Z Z K K K =A ωβνωωβνω??c d c d n n =3.8

而472.5*2=B A =E

查机械设计手册得 5.52=i 故 129.51=i

式中:lim H σ——齿轮的接触疲劳极限;

c K —— 载荷不均匀系数;

d ?—— 对分度圆直径的齿宽系数;

νK ——动载荷系数

N Z —— 接触强度计算的寿命系数;

βH K —— 接触强度计算的齿向载荷分布系数;

ωZ —— 齿面工作硬化系数;

2.3.1 低速级参数的计算

根据经验选取螺旋角 5.7=β,压力角 5.22=n α ,则 75.22cos ==βααn t

(1)计算低速级齿轮齿数

取3=ωn , C n i a =Z ω*1, 适当调整08696.51=i 。

393

*08696.5=Z a (根据查机械设计手册:NGW 型行星齿轮传动的齿数组合)

则得到:23=Z a , a b Cn Z -==Z ω94,5.35)(*5.0=Z -Z =Z a b c 。

采用不等角变位,取35=Z c (调整C 取整数)

根据机械设计手册表14-327,不等角变位公式:01724.1)

()(=Z +Z Z -Z =c a c b j 查机械设计手册表14-5-2(变位传动的端面啮合角)。

可得到预计啮合角: 2623≤'≤tac

a , 2420≤'≤tc

b α。 预选 5.24='tac

α

(2)计算a-c 传动的中心距与模数

首先,输入的扭矩 N =T =P =T I 6.817759**

95491

11ηi n 。

在a-c 传动中,小轮(太阳轮)传递的扭矩:

m n c a ?N ==K T =T I 5.2725861*3

6.817759*ω 太阳轮和行星轮材料用i n r T N C 20,渗碳淬火,齿面硬度HRC60~62(太阳

轮)和HRC56~58(行星轮),选取a MP =H 1550lim δ,齿数比522.1==a

c z z u ,齿宽系数85.0==

a

b α? (查机械设计手册得到) 则:按照机械设计手册表14-1-60中的公式计算中心距: 99.671)1(47632lim =KT +≥H u u σ?αααmm

(式中k 表示接触强度使用的综合系数,查机械设计手册,选取k=2)

模数:97.2235

235.7cos *99.671*2cos 2=+=+=

c a n z z a m β 模数整化取23=M n 而为变位时,76.672cos )(*21=+M =β

c a n z z a mm 。 按预选 5.24='tac

α,可得a-c 传动中心距变动系数: βcos )1cos cos (*)(*2

1-'+=tac t c a n a a z z y =0.40952 则中心距:68.68123*40952

.076.672=+=+='n n m y ααmm 则取682='αmm

(3)计算a-c 传动的实际中心距变动系数y 和啮合角t α'

23

76.6726824017.0-==-'=n m a a y 9095.0675.22cos *682

26.672cos *cos =='=' t tac

a a a a , 则 56.24='t α (4)计算a-c 传动的变位系数 由公式:

4712.05

.22tan 2675.2256.24*)3523(tan 2*)()(=-+=-'+=∑

inv inv a inva inv z z x n t t c a α

(式中:inva ---渐开线函数,《查机械设计手册》第三版第三卷表14-1-13(渐开线函数得到相应的渐开线函数值))

52.595

.7cos 58cos 33==Z =Z ∑∑ βν 《查机械设计手册》第三版第三卷表14-1-5a 进行校核:

ac x ∑在5P 与6P 线之间,为综合性能较好区,可用。

《查机械设计手册》表第三版第三卷14-1-5c (分配变位系数)得:

22.0=a x , 2512

.0=-=∑a ac c x x x (5)计算c-b 传动的中心距变动系数及啮合角tcb

a ' c-

b 传动未变位时的中心距:

3547.6845

.7cos )3594(*23*21cos )(*21=-=-= βc b n cb z z m a mm 1024.0233547.684682-=-=-'=

n m y αα 91953.0675.22cos *3547

.684682cos *cos =='=' t tcb a a a α 则 14.23='tcb

α (6)计算c-b 传动变位系数

04558.05.22tan 2675.2249.22*)3594(tan 2*)(-=--=-'-=∑

inv inv a inva a inv z z x n t tcb c b

2056.0=+=∑x x x c b

(7)计算重合度

根据重合度计算公式

4336.1))tan (tan )tan (tan (2121='-+'-=t at c t at a a a z a z π

ε 0508.123

*5.7sin *7.581sin ===ππβεβ

n m b 式中b--齿宽

mm d b p 7.5813547.684*85.0*===?

式中 582.0arccos 1==a a a b at d d a , 5317.0arccos 2==c a

c b at

d d a 所以,总重合度4844.20508.14336.1=+=+=βεεεa

2.3.2 中间级参数的计算

首先,中间级输入转矩:5.81775908696

.598.0*1.128.5378*

9549*112===i T T ηN.m 输入转速:min 55.6108696.5*1.12*112r i n n ===

根据低速级计算步骤和参考机械设计手册,确定中间级齿轮参数。 根据经验选取螺旋角 5.8=β,压力角 5.22=n α ,则 72.22cos ==βααn t (1)计算中间级齿轮齿数

取3=ωn , C n i a =Z ω*2, 适当调整59091.52=i 。

413

*59091.5=Z a (《查机械设计手册》第三版第三卷表14-5-7:NGW 型行星齿轮传动的齿数组合)

则得到:

22=Z a , 1012241*3=-=Z -=Z a b Cn ω,5.39)(*5.0=Z -Z =Z a b c 。

采用不等角变位,取39=Z c (调整C 取整数)

根据机械设计手册有,不等角变位公式:

01639.1)

()(=Z +Z Z -Z =c a c b j 《查机械设计手册》第三版第三卷表14-5-2(变位传动的端面啮合角)。

可得到预计啮合角: 2623≤'≤tac

a , 2420≤'≤tc

b α。 预选 5.24='tac

α (2)计算a-c 传动的中心距与模数

在对a-c 传动中,小轮(太阳轮)传递的扭矩:

m N n i T k T w c a .195.477801*359091

.598.0*5.817759**22===η 选取太阳轮和行星轮材料用i n r T N C 20,渗碳淬火,齿面硬度HRC60~62(太

阳轮)和HRC56~58(行星轮),选取a MP =H 1550lim δ,齿数比7727.1==a

c z z u ,齿宽系数85.0==

a

b α?(查机械设计手册)。 则:按照机械设计手册表14-1-60中的公式计算中心距: 97.392)1(47632lim =KT +≥H u u σ?αααmm

(式中k 表示接触强度使用的综合系数,查机械设计手册,选取k=2)

模数:74.1239

225.8cos *97.392*2cos 2=+=+=

c a n z z a m β 模数整化取13=M n 而为变位时,09.400cos )(*21=+M =β

c a n z z a mm 。 按预选 5.24='tac α,可得c -α传动中心距变动系数:

42166.05.8cos )15.24cos 72.22cos (*)3922(*2

1cos )1cos cos (*)(*21=-+=-'+=

βtac t c a n a a z z y 则中心距:38.40613*42166

.009.400=+=+='n n m y ααmm 则取407='αmm 齿宽4.34638.406*85.0*===p d b ?mm (3)计算a-c 传动的实际中心距变动系数y 和啮合角t α'

139.40038.4064215.0-==-'=

n m a a y 90996.072.22cos *38

.4069.400cos *cos =='=' t tac a a a a 则 5.24='t α

(4)计算a-c 传动的变位系数

根据公式

4807.05

.22tan 272.225.24*)3922(tan 2*)()(=-+=-'+=∑

inv inv a inva inv z z x n t t c a α

(式中:inva ---渐开线函数,《查机械设计手册》第三版第三卷表14-1-13(渐开线函数得到相应的渐开线函数值))

05.635

.8cos 61cos 33==Z =Z ∑∑ βν 《查机械设计手册》第三版第三卷表14-1-5a 进行校核:

ac x ∑在5P 与6P 线之间,为综合性能较好区,可用。

《查机械设计手册》表第三版第三卷14-1-5c (分配变位系数)得:

22.0=a x , 2601

.0=-=∑a ac c x x x (5)计算c-b 传动的中心距变动系数及啮合角tcb

a ' c-

b 传动未变位时的中心距:

476.4075

.8cos )39101(*13*21cos )(*21=-=-= βc b n cb z z m a mm 0366.013476.407407-=-=-'=

n m y αα 92348.072.22cos *407

476.407cos *cos =='=' t tcb a a a α 则 56.22='tcb

α (6)计算c-b 传动变位系数

04236.05.22tan 272.2256.22*)39101(tan 2*)(-=--=-'-=∑

inv inv a inva a inv z z x n t tcb c b

21774.004236.02601.0=-=+=∑x x x c b

(7)计算重合度

根据重合度计算公式:

4285.1))tan (tan )tan (tan (2121='-+'-=t at c t at a a a z a z π

ε 2535.113

*5.8sin *4.346sin ===ππβεβ

n m b 所以,总重合度682.22535.14285.1=+=+=βεεεa

2.3.3 高速级参数计算

高速级输入转矩:27.14041559091

.596.0*5.817759*223===i T T ηN.m 输入转速:min 12.34459091.5*55.61*223r i n n ===

计算高速级齿轮参数:

根据经验选取螺旋角 7=β,压力角 20=n α ,则 56.20cos ==βααn t (1)计算1-2传动中心距 02.1702)1(476321=KT +≥Hp

u u σ?ααmm (Hp σ---许用接触应力,可查机械设计手册14-1-21得到Hp σ对应值) 则a 取整数,得1720='a , 57.668*==p d b ?

按照模数经验公式:18.54~52.27*)0315

.0~016.0(==a m n 模数标准化取 30=n m

根据齿轮齿数计算公式, 计算得到:241=z ,

而传动比44.33=i

则44.331

2==i z z 故得到:832=z (2)计算1-2 传动的实际中心距变动系数y 和啮合角t α'

57714.0=-'=

n m a a y 9265.0cos *cos ='

='t tac a a a a , 则 1.22='t α (3)计算1-2分配度的变位系数

由公式n t t c a a inva inv z z x tan 2*)()(-'+=∑α

查机械设计手册,分配变位系数:2272.01=x ,37.02

=x

(4)计算重合度: 根据重合度计算公式:

882.1))tan (tan )tan (tan (2121='-+'-=t at c t at a a a z a z π

ε

716.1sin ==

n

m b πβεβ 则598.3=+=βεεεa 总

2.4 受力情况分析与强度校核

2.4.1 受力分析

行星齿轮传动的主要受力构件有中心轮,行星轮,行星架,轴及轴承等。为进行齿轮的强度计算,需要对行星轮以及太阳轮进行受力分析。当行星轮数目为ωn 。,假定各套行星轮载荷均匀,只需分析其中任一套行星轮与中心轮的组合即可。通常略去摩擦力和重力的影响,各构件在输入转矩的作用下传力时都平衡,构件问的作用力等于反作用力。

图2-2 5.0MW 齿轮箱中行星齿轮传动受力分析

行星架输入功率为1T ,太阳轮输出功率为a T ,增速传动比为i ,太阳轮节圆直径为1d ,根据斜齿圆柱齿轮传动受力分析公式,齿轮所受切向力,径向力,轴向力分别为:

221120002000d T d T F T == (2.6)

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

风力发电并网技术及电能控制分析 樊海

风力发电并网技术及电能控制分析樊海 发表时间:2019-07-24T13:41:31.893Z 来源:《电力设备》2019年第5期作者:樊海 [导读] 摘要:风力发电技术日趋成熟,装机容量在不断增加,虽然可以在一定程度上缓解社会生产与电力资源之间的供需矛盾,但是风电总量的增加还是对电网系统产生了一定影响。 (宁夏银星能源股份有限公司宁夏银川市 750021) 摘要:风力发电技术日趋成熟,装机容量在不断增加,虽然可以在一定程度上缓解社会生产与电力资源之间的供需矛盾,但是风电总量的增加还是对电网系统产生了一定影响。一般风力发电厂多建设在地广人稀地区,远离供电网中心区域,所需承受的冲击力比较小,在并网时就很容易导致配电网出现谐波污染与闪变问题。并且受风力发电特性影响,其不稳定性也会影响电网整体供电质量。因此还需要加强对风力发电并网技术与电能控制策略的研究。 关键词:风力发电;并网技术;电能控制 1风力发电并网技术 1.1同步并网技术 同步发电机机组与风力发电机组保持相同步调,是风力发电并网技术实现的最佳效果。对于风力发电来讲,整个过程并不稳定,受风力、风速、风向等因素影响较大,因此发电转子也会产生较大幅度的摇摆,使得风电并网调速难以满足同步发电机的精度,有非常大的可能会出现失步状况。怎样才能够实现和推广风力发电的同步并网一直都是技术研究要点,目前已经取得了初步效果,可以为风力发电与发电运营提供一定支持。 1.2异步并网技术 异步发电动力组和风力发电动力组两者先进行结合然后保持相同步调运转,则为异步并网技术,与同步并网技术相比,受限的可能性极大程度上地降低,无需风力发电并网调速精准做到与同步发电机精度一致,只需要发电转子运转时风力发电并网调速异步发电机的转动转速保持一定程度的协调一致即可。风力电机组搭配使用的异步发电机方式,可避免整个系统设置复杂的控制装置,并且在并网后,也不必担心产生无振荡或者失步问题,整体运行状态相对稳定。但是就实际应用效果来看,电力发电异步并网技术还存在一定缺陷,部分情况下在并网后,会因为冲击电流过大、电压降低等因素干扰,而导致风力发电系统异常,尤其是不稳定系统频率值降低过大,会导致异步发电机的电流急剧增大,造成系统运行过载,甚至整个瘫痪,生产安全风险增大,因此想要选择此种并网方式,还需要提前做好相关准备工作,采取一定措施来维持异步风力发电机组的稳定运行状态。 2我国风力发电技术现存问题 我国风力发电技术发展趋势良好,但是在实际应用中仍旧存在较大问题,在顶层技术上的建设较弱,和美国等发达国家有着较大的差距,发电设备的建设以及制造成本较高,不仅在购入元件上花费过多资金,且涉及到大量的专利费、技术咨询费以及许可费,这就造成了巨大的损失,并且传统的风力发电技术规范,制约着创新思想的发展,在顶层技术上一直都没有创新。如今,我国风力发电技术处于一个稳固的瓶颈,在规划上没有协调好需求和发展之间的关系,风力电厂建设和建设区域的实际用电量存在一定矛盾。因此,我国应该尽快提高顶层技术,解决科研和需求之间的供需矛盾,在经营的过程中应该注重长远的发展,舍弃一定的经济效益来推动科研技术发展以及社会发展。 3风力发电电能控制要点 3.1安全生产体系建设 我们一定要明确风力发电安全生产是一个持久的过程,它需要我们长期共同努力。在这个过程中,我们需要不断地发现问题并且不断地改进和完善每个环节。各个风力发电企业在这个过程中要发挥自身的作用。在符合国家法律法规的前提下,企业应当结合一些相关政策对企业本身进行改革,建立完善的安全生产管理体系。除此之外,企业必须建立严格的规章制度来规范员工的行为,同时组织全体员工对它们进行学习,使企业的规章制度牢记于每个人的心中。这样,企业的安全生产体系才能显露其最佳的效果。电力企业各部门应该有明确分工,各部门工作人员也要正确认识自己的职责。在做好自己本职工作的之后,与其他部门进行一定的合作交流,确保整个工作流程的实施,充分调动员工的积极性,以求带动全体成员参与到风力发电安全生产的监督和管理上来。 3.2遵循能源发展原则 风力发电技术需要遵循新能源发展原则,首先,需要遵循安全发展原则,风力发电既要能够满足电力系统安全负荷要求,同时也要和各类电力能源相互调剂,从而确保电力能源传输的稳定性、安全性;其次,需要遵循经济性发展原则,以新能源发电总量为指导内容,结合风力发电的技术特征,实现风力发电的技术、投入、收益均衡协调。一方面,要实现风力发电和常规电力发电的相互协调;另一方面,需要协调风力发电工程建设和电网建设之间的关系,从而让电力系统的调节能力得到保证;最后,要遵循有序发展原则,实现陆地、海上风力发电的协同发展,从而完成我国风力发电建设目标。 3.3完善双馈发电变速恒频系统 双馈发电变速恒频系统是使用双馈绕线式发电机的风力发电机组,所谓双馈,指的是双端口馈电,定子和转子可同时发电,互相切割磁感线。通常来说,双馈电机必须配合变频器使用,变频器给双馈电机转子施加转差频率电流,起到励磁的作用,有效调节励磁电流的相位、频率、幅值,实现稳定的定子恒频输出。在风力发电系统中,无论风力作出什么样的变化,当电机转速改变的时候,利用变频器就可调整旋转速度,从而让电机的转速和风速之中保持同步(转子励磁电流改变转子磁势)。该系统主要是依靠转子侧来实现的,通过转子电路的功率由交流励磁发电机转速运行来决定,所以该系统的成本较低,设计较为简便,且后期的维护也十分便捷。另外,该系统还能吸收更多无功功率,可有效解决电压升高的弊端,从而有效提升电网运作效率,保障电能换换质量以及稳定性。 3.4电压波动与闪变控制 1)增设有源电力滤波设备。风力发电并网技术的应用,为避免过程中出现电压闪变问题,需要在负荷电流产生较大波动前,对因负荷变化产生的无功电流进行补偿,做到补偿负荷电流的目的。在风力发电系统中,可关断电子设备作为其中的零件之一,将其应用到有源电力滤波设备中,能够通过电子控制设备来将此过程中的系统电源更换掉,实现畸变电流向电压负荷的输送,确定只向负荷电流提供系统正弦基波电流。2)增设优良补偿设装置。为有效抑制电压波动的产生,可选择向系统增设动态恢复设备以及增设优良补偿装置的方式应

风力发电机的增速齿轮箱的设计

摘要 风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文设计的是兆瓦级风力发电机组的齿轮箱,通过方案的选取,齿轮参数计算等对其配套的齿轮箱进行自主设计。 首先,确定齿轮箱的机械结构。选取一级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 其次,基于Pro/E参数化建模功能,运用渐开线方程及螺旋线生成理论,建立斜齿轮的三维参数化模型。 然后,对齿轮传动系统进行了齿面接触应力计算。先利用常规算法进行理论分析计算。关键词:风力发电,风机齿轮箱,结构设计,建模 Abstract The rapid development of wind power industry lead to the prosperity of wind power equipment manufacturing industry.As the core component of wind turbine,the gearbox is received much concern from related industries and research institution both at home and abroad.However, due to the domestic research of gearbox for wind turbine starts late,technology is weak,especially in the gearbox for MW wind turbine,which mainly relied on the introduction of foreign technology.Therefore,it is urgent need to carry out independent development and research on MW wind power gearbox,and truly master the design and manufacturing technology in order to achieve the goal of localization. This paper takes the wind power。The independent design of the gearbox matching for the wind turbine has been carried out by selecting the transmission scheme and calculating the gear parameters。 Firstly, the mechanical structure of gearbox is determined.The two-stage derivation planetary transmission scheme is selected.The gear parameters of every stage transmission is

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

风力发电系统设计

课程设计 设计题目:小型风力发电系统设计 姓名郭国亮 院系食品工程学院 专业热能与动力工程 年级热能本1202 学号20122916100 指导教师刘启一 2015年12 月13 日

第一章:风力发电系统设计的概况 1.1设计的目及意义: 1)了解风力发电系统的原理和运行流程。 2)设计小型的风力系统满足地方需要。 3)为了解决能源危机和环境保护、气候变暖等各方面的问题,大力推广可再生能源发展的必要性。 1.2设计原则: 1)可再生,且清洁无污染。 2)风速随时变化,风电机组承受着十分恶劣的交变载荷。 3)风电的不稳定性会给电网或负载带来一定的冲击影响。风力发电的运行方式主要有两种:一类是独立运行的供电系统,即在电网未通达的地区,用小型发电机组为蓄电池充电,再通过逆变器转换为交流电向终端电器供电;另一类是作为常规电网的电源,与电网并联运行。 1.3设计条件: 设计一个10 KW并网的风力发电系统和控制系统。 1.4发电系统设计方案: 1)恒速恒频发电系统。 2)变速恒频发电系统。 1.5烟台当地风资源概要: 1)烟台地理位置: 烟台市位于胶东半岛北缘,中心地理位置约为:北纬37.8,东经121.23,受季风环流的控制和其他天气形势的影响,该地区的风力资源十分丰富。 如表:2014 ~ 2003年烟台市,全市平均气温 2003年12.5 ℃2009年13.0 ℃ 2004年12.7 ℃2010年12.2 ℃ 2005年12.5 ℃2011年12.1 ℃ 2006年13.1 ℃2012年12.2 ℃ 2007年13.4 ℃2013年12.6 ℃ 2008年12.7 ℃2014年13.4 ℃ 由此可得,历年平均气温为7. 12℃ 烟台历年平均风速: 年份风速(m/s) 年份风速(m/s) 年份风速(m/s) 1988 4.1 1994 3.4 2000 3.2 1989 3.7 1995 3.4 2001 3.3

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电的并网接入及传输方式

风力发电的并网接入及传输方式 摘要:在环境保护之中,风力发电是其中节约资源最为有效地方式,虽然现今一直处在低谷的时期,但是未来的发展前景十分广阔,风力发电技术也在逐渐的趋于成熟,世界装机容量以及发电量也在逐渐的加大,日后在发电市场也逐渐的会占有更大的比例。本文主要就是针对风力发电的并网接入及传输方式来进行分析。 关键词:风力发电;并网接入;传输方式 1、我国风力发电及并网发展情况 相关的数据充分的表明,2010年的中国风电累积装机容量达到了4182.7万KW,在超过了美国之后,已经跃居成为世界第一装机大国。但与此同时,风电的发电量只有500亿千瓦的时候,依据要比美国低,并网容量也只有吊装容量的三成左右,要比国际水平低出很多,这在很大程度之上严重的影响到了效益水平与风电效率的提高。中国的风电行业的风电行业的发展速度也是十分的迅猛,基本上是用到了5年的时间最终才实现了欧美发达国家将近30年的发展进程,在产业逐渐进步市场规模快速发展的同时,其面临的问题与挑战也逐渐的凸显出来。首先是中国风电装备的质量水平,其中包括了发电能力以及设备完好率等等均有待提高,其次就是吊装容量和并网容量之间的差别,和国际先进水平相比之下,还存在着较大差别。怎么从装机大国转变成为风电的利用大国,也就成为了我国目前面临的最大问题。 2、风电机组及其并网接入系统 2.1、同步发电机 在该结构之中,允许同步发电机以可变的速度运行,可以产生频率与可变电压的功率。以此来作为在并网发电的系统之中广泛应用的同步发电机,在运行的时候,不仅仅可以输出有功功率,而且还可以提供无功功率,且频率也是十分的稳定。对于由风力机驱动的同步发电机和电网并联运行的时候,就随机可以采用自动准同步并网以及自同步并网的方式。因为风电的电压、频率的不稳定性,一般就会使得应用前者并网相对比较困难;然而对于后者来说,因为并网的装置比较简单,最为常见的结构就是通过AC—DC—AC的整流逆变方式与系统进行并网,其原理结构如图1所示。 图1同步发电机并网结构 2.2、笼型异步发电机 我们由发电机的特点可以知道,为了电网并联,就务必要在异步发电机与风

永磁同步风力发电机的设计说明

哈尔滨工业大学 《交流永磁同步电机理论》课程报告题目:永磁同步风力发电机的设计 院 (系) 电气工程及其自动化 学科电气工程 授课教师 学号 研究生 二〇一四年六月

第1章小型永磁发电机的基本结构 小型风力发电机因其功率低,体积小,一般没有减速机构,多为直驱型。发电机型式多种多样,有直流发电机、电励磁交流发电机、永磁电机、开关磁阻电机等。其中永磁电机因其诸多优点而被广泛采用。 1.1小型永磁风力发电机的基本结构 按照永磁体磁化方向与转子旋转方向的相互关系,永磁发电机可分为径向式、切向式和轴向式。 (1)径向式永磁发电机径向式转子磁路结构中永磁体磁化方向与气隙磁通轴线一致且离气隙较近,漏磁系数较切向结构小,径向磁化结构中的永磁体工作于串联状态,只有一块永磁体的面积提供发电机每极气隙磁通,因此气隙磁密相对较低。这种结构具有简单、制造方便、漏磁小等优点。 径向磁场永磁发电机可分为两种:永磁体表贴式和永磁体内置式。表贴式转子结构简单、极数增加容易、永磁体都粘在转子表面上,但是,这需要高磁积能的永磁体(如钕铁硼等)来提供足够的气隙磁密。考虑到永磁体的机械强度,此种结构永磁电机高转速运行时还需转子护套。内置式转子机械强度较高,但制造工艺相对复杂,制造费用较高。 径向磁场电机用作直驱风力发电机,大多为传统的内转子设计。风力机和永磁体内转子同轴安装,这种结构的发电机定子绕组和铁心通风散热好,温度低,定子外形尺寸小;也有一些外转子设计。风力机与发电机的永磁体外转子直接耦合,定子电枢安装在静止轴上,这种结构有永磁体安装固定、转子可靠性好和转动惯量大的优点,缺点是对电枢铁心和绕组通风冷却不利,永磁体转子直径大,不易密封防护、安装和运输[1]。表贴式和径向式的结构如图1-1 a)所示。 a)径向式结构 b)切向式结构

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

风力发电机组齿轮箱技术条件

目次 前言..................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 技术要求 (2) 4 检验规则及试验方法 (8) 5 标志、包装、运输、贮存................................................................ 12 6 随机文件 (12) 前言 本标准根据GB/T 1.1—2000《标准化工作导则第一部分:标准的结构和编写规则》的要求编写。 本标准由新疆金风科技股份有限公司提出并归口。 本标准负责起草单位:新疆金风科技股份有限公司。 本标准主要起草人:王晓东 本标准批准人:王相明 金风750kW/800kW系列风力发电机组齿轮箱技术条件1 范围 本标准规定了金风750kW/800kW系列风力发电机组齿轮箱的技术要求、检验规则及试验方法、标志、包装、运输、贮存的要求。 本标准适用于金风750kW/800kW系列风力发电机组齿轮箱的订货和验收。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191-2000 包装储运图示标志 GB/T 229-1994 金属夏比缺口冲击试验方法 GB/T 230.1-2004 金属洛氏硬度试验第1部分:试验方法 GB/T 231.1-2002 金属布氏硬度试验第1部分:试验方法 GB/T 1184-1996 形状和位置公差未注公差值 GB 1348-1988 球墨铸铁件 GB/T 1804-2000 一般公差未注公差的线性和角度尺寸的公差 GB/T 3077-1999 合金结构钢 GB 6060.1-1985 表面粗糙度比较样块铸造表面 GB/T 8539-2000 齿轮材料及热处理质量检验的一般规定 GB 8923-1988 涂装前钢材表面锈蚀等级和除锈等级

风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法摘要 第一章绪论 1.1论文的目的和意义 1.2风力发电的现状 1.3风力发电齿轮箱的研究现状 第二章齿轮箱结构 2.1风力发电机的整体结构 2.2齿轮箱的结构及其传动方案 第三章风力发电机组齿轮箱故障类型 3.1齿轮箱的主要故障类型 3.2风力发电机组齿轮箱振动故障分析 3.3风力发电机组传动齿轮油温故障分析 第四章风力发电的发展存在问题和主要趋势 4.1我国风电齿轮箱设计生产存在问题 4.2风电发展的主要趋势 致谢 参考文献

中文摘要 摘要:风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组的核心部件,倍受国内外风电相关行业和研究机构的关注。但由于国内风电齿轮箱的研究起步较晚,技术薄弱,特别是兆瓦级风电齿轮箱,主要依靠引进国外技术。因此,急需对兆瓦级风电齿轮箱进行自主开发研究,真正掌握风电齿轮箱设计制造技术,以实现风机国产化目标。 本文以兆瓦级风力发电机齿轮箱为对象,通过方案选取,齿轮参数确定等对其配套的齿轮箱进行阐述。 首先,介绍全球风力发电产业高速发展和国内外风电设备制造业概况,阐述我国风力发电齿轮箱的现状及齿轮箱的研究。 其次,确定齿轮箱的机械结构。选取两级行星派生型传动方案,通过计算,确定各级传动的齿轮参数。对行星齿轮传动进行受力分析,得出各级齿轮受力结果。依据标准进行静强度校核,结果符合安全要求。 然后,论述了风力发电机组齿轮箱故障诊断的主要类型,深入探究风电机组齿轮箱振动故障机理,研究了油温高的故障机理,分析了传动齿轮温度场和热变形的情况。 最后,阐述我国风力发电存在的主要问题和发展前景。 关键词:风电齿轮箱;结构;故障类型;存在问题

风力发电场设计技术规范----DL

风力发电场设计技术规范DL/T 2383-2007 Technical specification of wind power plant design 1. 范围本标准规定了风力发电场设计的基本技术要求。本标准适用于装机容量5MW 及以上风力发电场设计。 2. 规范性引用文件 GB 50059 35~110KV 变电所设计规范 GB 50061 66KV 及以下架空电力线路设计规范 DL/T 5092 110KV~500KV 架空送电线路设计技术规程 DL/T 5218 220KV~500KV 变电所设计技术规程 3. 总则 3.0.1 风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理的要求。 3.0.2 风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期发展的关系,考虑后期发展扩建的可能。 3.0.3 风力发电场的设计,必须坚持节约用地的原则。 3.0.4 风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5 风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6 风力发电场的设计应本着“节能降耗”的原则,采用先进技术、先进方法,减少损耗。 3.0.7 风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规定。 4. 风力发电场总体布局 4.0.1 风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、行业有关的法律、法规等技术资料、 4.0.2 风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路

风力发电机组齿轮箱试验要求

摘要:以下主要论述了风力发电齿轮箱试验的要求、空载试验、负载试验、批量生产试验等几个方面的有关要求。主要适用于大功率风电齿轮箱。 一、前言: 风力发电齿轮箱是风力发电机组的关键部件之一。此齿轮箱设计要求严格,制造精度高,要求运行可靠性好,所以,齿轮箱的出厂试验显得尤为重要。 二、试验要求: 1.试验所用仪器: ①动力源:按齿轮箱的功率选用适当电机 ②试验台:按要求搭建 ③测量仪表: a.温度计、Pt100仪表:用于测量被试齿轮箱润滑油温度,轴承温度。 b.测振仪:测量振动。要求测量高速轴,内齿圈外部等处振动量。 c.声级仪:测量试车噪音。 d.转速表:测量齿轮箱轴及电机轴转速。 e.必要时应配有一台1/3倍频程频率分析仪,并进行FFT分析。 2.试验润滑要求: 试验用油必须采用与齿轮箱工作时完全一致的油品,润滑油路必须是齿轮箱正常工作时的油路,试验后应更换过滤器。涂装时,为保证齿轮箱油路的完好性,不应拆卸各元件。 3.试验标准: ①温度:齿轮箱最高温度不应超过80℃,高速轴轴承温度不能超过90℃。 ②齿轮箱的空载噪音应不大于85dB(A),用GB3785中规定的Ⅰ型和Ⅰ型以上声级计,在额定转速下,在距齿轮箱中分面1米处测量,当环境噪声小于减速器噪声3dB(A)的情况下,应符合要求。 ③振动:要求测量高速轴轴伸,内齿圈外部等处振动,应符合GB/T8543规定的C级。 ④效率;齿轮箱效率视结构型式而定,一般应在96.5~97.5之间。 ⑤清洁度:齿轮箱的清洁度应符合JB/T7929的有关规定。 三、空载试验 由于风电齿轮箱在现场工作时均有约4o的倾角,所以空载试验时要求模拟这一工况,以检查齿轮箱油润滑系统的工作情况。 图一:典型空载试车装置 1、试车前先手动,确认无卡死现象后再正式启动。 2、按额定转速的30%、50%、80%各运行10分钟,观察无异常情况后再启动至额定转速。 3、在额定转速下运行2小时,试车过程中,每隔20分钟测量下列数据并作记录:油温、轴承温度、振动、噪音。 4、在110%额定转速下运行5分钟。 5、在额定转速下,反方向运行30分钟。 6、要求达到: a、各联接件、紧固件不松动。 b、各密封处、结合处不渗油。 c、运行平稳,无异常冲击声和杂音,噪声声压级符合要求。 d、润滑充分,温升正常。

相关文档
最新文档