TRACE32系列仿真器介绍

2020年Zigbee协议栈中文说明免费

1.概述 1.1解析ZigBee堆栈架构 ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。图1-1给出了这些组件的概况。 1.1.1ZigBee堆栈层 每个ZigBee设备都与一个特定模板有关,可能是公共模板或私有模板。这些模板定义了设备的应用环境、设备类型以及用于设备间通信的簇。公共模板可以确保不同供应商的设备在相同应用领域中的互操作性。 设备是由模板定义的,并以应用对象(Application Objects)的形式实现(见图1-1)。每个应用对象通过一个端点连接到ZigBee堆栈的余下部分,它们都是器件中可寻址的组件。 图1-1 zigbe堆栈框架 从应用角度看,通信的本质就是端点到端点的连接(例如,一个带开关组件的设备与带一个或多个灯组件的远端设备进行通信,目的是将这些灯点亮)。 端点之间的通信是通过称之为簇的数据结构实现的。这些簇是应用对象之间共享信息所需的全部属性的容器,在特殊应用中使用的簇在模板中有定义。图1-1-2就是设备及其接口的一个例子:

图1-1-2 每个接口都能接收(用于输入)或发送(用于输出)簇格式的数据。一共有二个特殊的端点,即端点0和端点255。端点0用于整个ZigBee设备的配置和管理。应用程序可以通过端点0与ZigBee 堆栈的其它层通信,从而实现对这些层的初始化和配置。附属在端点0的对象被称为ZigBee设备对象 (ZD0)。端点255用于向所有端点的广播。端点241到254是保留端点。 所有端点都使用应用支持子层(APS)提供的服务。APS通过网络层和安全服务提供层与端点相接,并为数据传送、安全和绑定提供服务,因此能够适配不同但兼容的设备,比如带灯的开关。APS使用网络层(NWK)提供的服务。NWK负责设备到设备的通信,并负责网络中设备初始化所包含的活动、消息路由和网络发现。应用层可以通过ZigBee设备对象(ZD0)对网络层参数进行配置和访问。 1.1.2 80 2.15.4 MAC层 IEEE 802.15.4标准为低速率无线个人域网(LR-WPAN)定义了OSI模型开始的两层。PHY层定义了无线射频应该具备的特征,它支持二种不同的射频信号,分别位于2450MHz波段和868/915MHz 波段。2450MHz波段射频可以提供250kbps的数据速率和16个不同的信道。868 /915MHz波段中,868MHz支持1个数据速率为20kbps的信道,915MHz支持10个数据速率为40kbps的信道。MAC层负责相邻设备间的单跳数据通信。它负责建立与网络的同步,支持关联和去关联以及MAC 层安全:它能提供二个设备之间的可靠链接。 1.1.3 关于服务接入点 ZigBee堆栈的不同层与802.15.4 MAC通过服务接入点(SAP)进行通信。SAP是某一特定层提供的服务与上层之间的接口。 ZigBee堆栈的大多数层有两个接口:数据实体接口和管理实体接口。数据实体接口的目标是向上层提供所需的常规数据服务。管理实体接口的目标是向上层提供访问内部层参数、配置和管理数据的机制。 1.1.4 ZigBee的安全性 安全机制由安全服务提供层提供。然而值得注意的是,系统的整体安全性是在模板级定义的,这意味着模板应该定义某一特定网络中应该实现何种类型的安全。 每一层(MAC、网络或应用层)都能被保护,为了降低存储要求,它们可以分享安全钥匙。SSP是通过ZD0进行初始化和配置的,要求实现高级加密标准(AES)。ZigBee规范定义了信任中心的用

51仿真器使用说明

51仿真器使用说明 初学51单片机或是业余玩玩单片机开发,每次总要不断的调试程序,如没有仿真器又不喜欢用软件仿真,那只有每次把编译好的程序烧录到芯片上,然后在应用电路或实验板上观察程序运行的结果,对于一些小程序这样的做好也可以很快找到程序上的错误,但是程序稍大,变量也会变的很多,系统调试就极为复杂,此时就需要有一台仿真器。一台好的仿真器非常贵,这里介绍这种自制的51芯片仿真器。 这个仿真器的仿真CPU是使用SST公司的SST89C516RD2。 1.制作带串口的的最小应用板 无论是EasyIAP还是仿真器,都需要用串行口使SST89C58芯片和PC上位机进行通讯传输数据,因此先要设计RS232/TTL转换电路。由于现在的电脑多取消了普通串口,因此我们此处设计了一个usb转TTL的串口接口电路,使用的接口芯片是PL2303。 2.通过编程器烧写仿真监控程序 接下来需要把仿真CPU的HEX文件烧到SST89C58里面,再把它插到上面的最小系统电路中就可以了。因为SST89C58有两个程序存储区,在这里要注意的是在烧写时就把仿真监控程序烧到SST89C58的第二个存储区也就是的RB1。烧写时要求用支持SST89C58的编程器。 3. 仿真器原理简介 SST的MCU SoftICE通过PC的一个COM口与KEIL uVision2 Debugger 通讯它可以实时地调试目标程序,因此提供使用SST单片机的工程师简单有效和容易使用在板上调试程序。尽管小而紧凑,SoftICE却提供高级仿真器的大部分功能与KEIL uVision2 Debugger 一起使用。 SoftICE提供以下特性: 源代码调试支持汇编语言和C51高级语言 单步执行STEP和STEP OVER 断点调试做多到10个固定和1个临时断点 全速运行 显示修改变量 读/写数据存储器 读/写代码存储器 读/写SFR特殊功能寄存器 读/写P0-P3端口 下载INTEL HEX文件 对8051程序存储区的反汇编 在线汇编 SST MCU产品特有的IAP功能In Application Programming SoftICE 用到的MCU 硬件资源 SST的SoftICE用到的MCU硬件资源如下

433 315 Zigbee介绍

433/315/Zigbee介绍 315MHZ和433MHZ是我们国家的免申请的发射接收频率,433兆是数据传输领域的老产品,用来做数据传输存在巨大隐患:433兆系统,它的致命弱点是系统安全保密性差,很容易被攻击,被破译;通信技术落后,通信不可靠,系统不稳定;频道非常拥挤,环境干扰特别大,对讲机,车载通信设备,业余通信设备等,都集中在这里,因而环境干扰非常大;短期使用可能看不出,长期使用必然显现;另外功耗大,发射机和天线体积庞大,有厂商将其引入智能家居系统,但由于其抗干扰能力弱,组网不便,可靠性一般,在智能家居中的应用效果差强人意。 ZigBee是一种短距离、架构简单、低消耗功率与低传输速率之无线通讯技术,其传输距离约为数十公尺,使用频段为免费的 2.4GHz与900MHz频段,传输速率为20K至250Kbps,网络架构具备Master/Slave 属性,并可达到双向通信功用。 ZigBee具有下列之特性 (1)省电:ZigBee传输速率低,使其传输资料量亦少,所以讯号的收发时间短,其次在非工作模式时,ZigBee处于睡眠模式,而在工作与睡眠模式之间的转

换时间,一般睡眠激活时间只有15ms,而设备搜索时间为30ms。透过上述方式,使得ZigBee十分省电,透过电池则可支持ZigBee长达6个月到2年左右的使用时间。 (2)可靠度高:ZigBee之MAC层采用talk-when-ready 之碰撞避免机制,此机制为当有资料传送需求时则立即传送,每个发送的资料封包都由接收方确认收到,并进行确认讯息回复,若没有得到确认讯息的回复就表示发生了碰撞,将再传一次,以此方式大幅提高系统信息传输之可靠度。 (3)高度扩充性:一个ZigBee的网络最多包括有255个ZigBee网络节点,其中一个是Master设备,其余则是Slave设备。若是透过Network Coordinator则整体网络最多可达到6500个ZigBee网络节点,再加上各个Network Coordinator可互相连接,整体ZigBee网络节点数目将十分可观。

USB仿真器说明书VER3.2

MSP430UIF使用说明
VER3.2
2011-04-03


一、 二、 三、 四、 五、 六、 七、 八、 九、 十、 十一、

功能特点描述 .....................................................................................1 跳线设置说明 .....................................................................................1 JTAG 连接...........................................................................................2 驱动安装 .............................................................................................4 软件设置 ...........................................................................................11 固件升级 ...........................................................................................14 BSL 编程使用方法 ...........................................................................19 烧断熔丝功能 ...................................................................................24 其他相关知识点................................................................................28 常见问题及解决方法........................................................................30 注意事项 ...........................................................................................32

高通平台常用调试Tool介绍1

高通平台的常用的调试tool: QPST, QRCT, QXDM, Trace32(use JTAG) 2013年09月07日?综合?共 4410字?字号小中大?评论关闭 OverView: QPST 综合工具, 传输文件, 查看device的EFS文件系统, 代码烧录 QRCT 测试RF QXDM 看log JTAG trace32调试 QPST,QXDM的使用说明,具体的可以看我上传到csdn的资源文件,我都是看它,看了那个user guide就完全会了,很简单的 QPST是一个针对高通芯片开发的传输软件。简单的说就是用高通处理芯片的手机理论上都可以用 QPST传输文件,可以修改C网机器内部参数的软件。 一次可以track多台电脑 QPST还可进行代码烧入 包括: 5个 client applications ? QPST Configuration monitor the status of: Active phones Available serial ports Active clients To start QPST Configuration, from the Start menu, select Programs → QPS T → QPST Configuration. ? Service Programming provide service programming for CDMA phones that contain Qual comm ASICs. With it, you can save SP data to a file, then download the data in that file to multiple pho nes. The SP application accesses settings regardless of the phone’ s internal memory implementation. It is feature- aware and displays settings pages appropriate to the phone being programmed. To start SP, from the Start menu, select Programs → QPST → Service Programming.

XLINK仿真器使用手册

第一章Xlink仿真器特性描述 ?硬件特性 ?USB 2.0全速接口 ?JTAG / IEEE1149.1标准 ?可编程JTAG时钟,最高可达6Mbits / sec ?JTAG信号电平自适应支持,1.2V ~ 5V ?MULI-ICE 20-PIN标准调试接口 ?USB串口扩展,RS232标准,最高支持921600波特率 ?铝合金外壳,小巧便携 ?软件特性 ?支持在线调试多种CPU内核 ●arm720t ●arm7tdmi ●arm920t ●arm9tdmi ●arm926ejs ●arm966 ●avr ●arm11 ●cortex_m3 ●cortex_m8 ●xscale ?支持GDB调试协议 ?支持单步、跳转、全速、条件断点、变量显示、堆栈跟踪、内存查看等?支持在线烧写NOR Flash、NAND Flash及某些CPU的片内ROM ?支持低阶命令行功能,使用telnet方式登陆 ?支持Eclipse集成开发环境

第二章安装Xlink USB JTAG服务程序 双击xlink-usb-jtag-setup-0.4.0.exe,进入安装向导 点击下一步 目标文件夹路径不能带有空格符号,建议安装在C盘根目录下。

点击安装,进入安装过程 点击完成按钮,结束安装向导 备注:Xlink USB JTAG驱动程序目录为安装目录下的driver目录

第三章安装Xlink USB JTAG驱动程序 将Xlink仿真器插入USB口,在右下角会出现设备插入提示 如未自动弹出驱动安装界面,请打开设备管理器,在Xlink USB Jtag上右键,并点击“更新驱动程序软件” 选择“浏览计算机以查找驱动程序软件”

普中51仿真器使用说明书

普中51仿真器下载操作说明 首先安装普中51仿真器的驱动:(安装时,用管理员身份运行,最好要把360 等杀蠹软件先关掉成功后再打开) 双击set up图标 H3 setup^ESexe 墉setup_x54ieMe 对应什么电脑系统就装什么驱动,有win32,win64; 具体安装步骤如下: 选择路径中,选择与你keil安装的路径一样就行了(这里我们把KEIL1安装在E 盘)

一旦“安装”由灰色变成黑色,点击它就行了 最后点击确定即可。 如果电脑XP系统出现这种情况: 没有癖J DIFWI. dll J因]此这个应用程序未能启动-重新安装应用程序可能会修复此问题, 就把那个驱动安装文件中的这个 函叩Ldll 2015718 口炀应用程序扩星M12KE 复制到WINDOW SYSTEM32面,

本文这里用的是MDK Keil4.74版本,在“Debug”硬件仿真设置中找到PZ51 Tracker Driver就行了,如果没有找到就说明KEIL版本不合适,需要安装新版本的keil软件。 仿真步骤:打开一个能够正常编译通过的工程

蜉虻淄更斗 由 * 官盅主山#赛M 丈兰*机何-奇21、RMM 宰口丈虹 发零养号取」o.i-^p-oj - p7i &ior4 EH F f^it V PTW Piajrrt Flash Ochug Rtripheraik T DA J I 5VCS ^X'iinaguw Hf|p j 「一』割.一 二 I I F ■株%|毒竺帕" 乏 _______________________________________________ 日9 ¥ 姓 专笆目莎暨| %" | Tflrffrtt 卜|卷&蓉幸朗 由可记 ■ @ 固心tu □ REG51,M 国 mmWL ■ x 1、进入KEIL 硬件仿真设置 j_J F arget 1 E-^ Saurce Group 1 为 SIARIJPA5_ S -[£] Eiiin.c 孟J&EG5LT □ P .右 F U 7 I 顷- Build Output 4-6 47 — 4S void UsartC&nf iomira^ian (I- 49 F 50 SCOH-gS “讦旨布丁作方于1 51 1MW==10SMC I F 厂云也汁婚程工涪万式£ 5; PC03T-3KE 2-7 打波特军H 倍 4^3 rHi=cxFa : ”奸救舞戒培宅日宣.往急蓝才玉是弟况的 S4 TLl*i :Xr*2 SS 〃 E£=Lr 〃打开接收中新 5< /< El=l ; 〃打开总中酎 57 TR1-1; 〃位开甘钦对 5? S9 J *.此入出一 矗- W2J 薪祐- £? L £T void Dela^lOcis ( -iLSlzned int cf F/1M 室 O LIS ce R ( €9 un#igH/di ch4)x A f b ;

TRACE32-使用

目录 1.系统组成 1.1硬件 1.1.1主机 1.1.2调试电缆 1.1.3通过USB与PC连接 1.1.4通过JTAG与目标连接 1.1.5对PC硬件的要求 1.1.6对目标板硬件的要求 1.1.7加电 1.2软件 1.2.1驱动程序的安装 2.PowerView调试界面的使用 3.1 打开调试界面 3.2 JTAG连接设置 3.3 运行脚本文件 3.4 观察/修改寄存器 3.5 观察/修改存储器 3.6 下载程序 3.7 观察符号表 3.8 打开程序列表窗口 3.9 单步执行程序 3.10 设置软件断点 3.11 设置Onchip硬件断点 3.12 设置数据观察断点 3.13 全速运行程序 3.14 停止运行程序 3.15 观察变量 3.16 观察堆栈 3.17 在线Flash编程 1.系统组成 TRACE-ICP调试系统由硬件和软件两部分组成,硬件是自行研发的,软件是第三方的。 下面分成硬件和软件两部分来介绍。 1.1硬件 TRACE-ICP的硬件设计采用模块化的结构,分为主机和调试电缆两部分。 1.1.1主机 下面三张照片是TRACE-ICP主机的顶视图和前视图以及后视图。 图一、TRACE-ICP顶视图

图二、TRACE-ICP前视图 图三、TRACE-ICP后视图 在图二中的连接器是标准DB25/M连接器,用于连接调试电缆。在图三 中,有两个连接器和一个LED指示灯。左边的连接器是USB接口,用于 通过USB电缆和PC连接。右边的连接器是TRACE-ICP的外接5VDC电 源接口。TRACE-ICP可以通过USB供电,在USB供电不足的情况下, 使用外接电源。LED指示灯是TRACE-ICP的电源指示灯。 1.1.2调试电缆 下图是TRACE-ICP的调试电缆的照片。 图四、TRACE-ICP的调试电缆

普中ARM仿真器使用说明书

普中A R M仿真器使用 说明书 -CAL-FENGHAI.-(YICAI)-Company One1

普中ARM仿真器下载操作说明 本文这里用的是MDK 版本,如果在硬件仿真设置中找不到CMSIS-DAP请更换版本,版本过低的KEIL不会显示CMSIS-DAP-Debugger。 注意:ARM 仿真器在WIN10 上当仿真器插到电脑上时,随电脑开机重启使用之前要把USB 拔了重插才能识别 步骤:打开一个能够正常编译通过的工程

1、进入KEIL硬件仿真设置 2、设置好硬件仿真后我们点Settings进入更深入的设置,请按照我这个面板这样设置。 (PS:这里我们也可以选择SW模式,把SWJ勾上Port选择SW就是SW模式了)

3、设置好debug页面。我们点击Flash Download进入下载设置把Rese and Run 勾上

4、点击add我们就来到了这一个页面,找到STM32F10x High-density Flash 512k 选中点add添加就回到第4步页面,有显示STM32F10x High-density 512k 点ok 完成设置。 6、完成以上设置后我们点Utilities页面,这里也选择CMSIS-DAP选择好之后我们点ok完成设置(ps:如果这个界面没有Use Target for flash Programming选择CMSIS-DAP就忽略这一项)

7、(keil下载)设置好之后我们编译程序没问题我们点Download进行下载提示Verify OK就说明已经下载成功了 8、(在线仿真调试)我们可以直接在keil里面调试程序,点工具栏的start debug 开始调试,如果退出也是点这个按钮

zigbee网络建立过程简介

星形网络和树型网络可以看成是网状网络的一个特殊子集,所以接下来分析如何组建一个Zigbee网状网络。组建一个完整的Zigbee网络分为两步:第一步是协调器初始化一个网络;第二步是路由器或终端加入网络。加入网络又有两种方法,一种是子设备通过使用MAC层的连接进程加入网络,另一种是子设备通过与一个先前指定的父设备直接加入网络。 一、协调器初始化网络 协调器建立一个新网络的流程如图1所示。 图1 协调器建立一个新网络 1、检测协调器 建立一个新的网络是通过原语发起的,但发起原语的节点必须具备两个条件,一是这个节点具有ZigBee协调器功能,二是这个节点没有加入到其它网络中。任何不满足这两个条件的节点发起建立一个新网络的进程都会被网络层管理实体终止,网络层管理实体将通过参数值为INVALID_REQUEST的的原语来通知上层这是一个非法请求。 2、信道扫描

协调器发起建立一个新网络的进程后,网络层管理实体将请求MAC子层对信道进行扫描。信道扫描包括能量扫描和主动扫描两个过程。首先对用户指定的信道或物理层所有默认的信道进行一个能量扫描,以排除干扰。网络层管理实体将根据信道能量测量值对信道进行一个递增排序,并且抛弃能量值超过了可允许能量值的信道,保留可允许能量值内的信道等待进一步处理。接着在可允许能量值内的信道执行主动扫描,网络层管理实体通过审查返回的PAN描述符列表,确定一个用于建立新网络的信道,该信道中现有的网络数目是最少的,网络层管理实体将优先选择没有网络的信道。如果没有扫描到一个合适的信道,进程将被终止,网络层管理实体通过参数仠为STARTUP_FAILURE的的原语来通知上层初始化启动网络失败。 3、配置网络参数 如果扫描到一个合适的信道,网络层管理实体将为新网络选择一个PAN描述符,该PAN描述符可以是由设备随机选择的,也可以是在里指定的,但必须满足PAN描述符小于或等于0x3fff,不等于0xffff,并且在所选信道内是唯一的PAN描述符,没有任何其它PAN描述符与之是重复的。如果没有符合条件的PAN描述符可选择,进程将被终止,网络层管理实体通过参数值为STARTUP_FAILURE的的原语来通知上层初始化启动网络失败。确定好PAN描述符后,网络层管理实体为协调器选择16位网络地址0x0000,MAC子层的macPANID参数将被设置为PAN描述符的值,macShortAddress PIB参数设置为协调器的网络地址。 4、运行新网络 网络参数配置好后,网络层管理实体通过原语通知MAC层启动并运行新网络,启动状态通过原语通知网络层,网络层管理实体再通过原语通知上层协调器初始化的状态。 5、允许设备加入网络 只有ZigBee协调器或路由器才能通过原语来设置节点处于允许设备加入网络的状态。当发起这个进程时,如果PermitDuration参数值为0x00,网络层管理实体将通过原语把MAC层的 macAssociationPermit PIB属性设置为FALSE,禁止节点处于允许设备加入网络的状态;如果 PermitDuration参数值介于0x01和0xfe之间,网络层管理实体将通过原语把macAssociationPermit PIB属性设置为TRUE,并开启一个定时器,定时时间为PermitDuration,在这段时间内节点处于允许设备加入网络的状态,定时时间结束,网络层管理实体把MAC层的macAssociationPermit PIB属性设置为FALSE;如果PermitDuration参数的值为0xff,网络层管理实体将通过原语把

MSP-FET430UIF仿真器使用说明

MSP-FET430UIF 仿真器使用说明

目录 1.功能描述 2.JTAG连接关系 3.IAR开发环境的安装 4.仿真器驱动的安装 5.配置仿真器及仿真方法 5.1编译程序 5.2正确设置仿真器的参数 5.3如何用msp430仿真器调试程序 5.4第三方软件下载程序 6.注意事项 7.常见问题答解

1. 功能描述 a. 本仿真器为USB接口的JTAG仿真器。USB口从计算机取电,不需要外接源, 并能针对不同需求给目标板或用户板提供1.8V~3.6V(300mA)电源。 b. 对MSP430低功耗flash全系列单片机进行编程和在线仿真. c. 完全兼容TI仪器原厂MSP-FET430UIF开发工具。 d. 支持在线升级,烧熔丝加密。 e. 采用TI仪器标准的2×7 PIN(IDC-14)标准连接器。 f. 支持IAR430、AQ430、HI-TECH、GCC 以及TI等一些第三方编译器集成开 发环境下的实时仿真、调试、单步执行、断点设置、存储器容查看修改等。 g. 支持程序烧写读取和熔丝烧断功能。 h. 支持JTAG、SBW(2 Wire JTAG)接口。 i. 支持固件升级功能。 2. JTAG连接关系 仿真器与目标板上MSP430系列MCU的连接关系分为2线连接和4线连接,如下两图所示:(注意:JTAG 接口的定义描述也可以由下图得到) 4 线连接关系示意图

2 线连接关系示意图 3. IAR开发环境的安装 我以iar for msp430 5.5.为例,但是建议安装我们提供的iar for msp430 5.2; 首先,运行“配套光盘:\ msp430软件\IAR安装软件及注册机iar for msp430 5.5.rar” 解压并进行安装。安装步骤如下图所示 等待,直至出现如下图

Zigbee技术简介

Zigbee技术简介 Zigbee是一种新兴的短距离、低速率、低功耗无线网络技术, 它是一种介于无线标记技术和蓝牙之间的技术提案。它此前被称作“HomeRF Lite”或“FireFly”无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很低的功耗,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,因此它们的通信效率非常高。最后,这些数据就可以进入计算机用于分析或者被另外一种无线技术如WiMax收集。 Zigbee的基础是IEEE802.15.4这是IEEE无线个人区域网(Personal Area Network,PAN)工作组的一项标准,被称作 IEEE802.15.4(Zigbee)技术标准。 Zigbee不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,因此Zigbee联盟对其网络层协议和API进行了标准化(如下图2所示)。完全协议用于一次可直接连接到一个设备的基本节点 的4K字节或者作为Hub或路由器的协调器的32K字节。每个协调器 可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。Zigbee联盟还开发了安全层,以保证这种便 携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。

Zigbee技术的主要特点包括以下几个部分: *数据传输速率低:一般在10kbps~250kbps,传输速率低,专注于低传输应用; *功耗低: 工作状态下平局功耗在几十毫瓦,休眠状态1μw。在低耗电待机模式下,两节普通5号干电池可使用6个月到2年,免去了充电或者频繁更换电池的麻烦。这也是Zigbee的支持者所一直引以为豪的独特优势; *成本低:因为Zigbee数据传输速率低,协议简单,所以大大降低了成本。且Zigbee协议免收专利费。 *时延短:通常时延都在15毫秒至30毫秒之间; *安全:Zigbee提供了数据完整性检查和鉴权功能,加密算法采用AES-128,同时可以灵活确定其安全属性; *网络容量大:每个Zigbee网络最多可支持255个设备(最大节点数达6万以上),也就是说,每个Zigbee设备可以与另外254台设备相连接; *优良的网络拓扑能力:ZigBee具有星、树和丛网络结构的能力。ZigBee设备实际上具有无线网路自愈能力,能简单地覆盖广阔围; *有效范围小:有效覆盖范围10~75米之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境; * 工作频段灵活:使用的频段分别为2.4GHz(全球)、868MHz(欧洲)及915MHz(美国),均为免执照频段。

TRACE32SimulatorforARM

1 前言 Trace32 ICD ARM USB能实时DEBUG代码在手机中的运行情况,功能强大,但需要连接TRACE32硬件才能工作。更重要的是,对于概率性死机的BUG,用Trace32 ICD ARM USB应该是很难找到问题,因为你不能确定手机什么时候crash。 其实TRACE32还有一个WIN32版本,用户只需要把手机crash时候的寄存器信息dump出来,就能在WIN32下定位到死在代码的那一行,非常类似于EMP 平台的CHKARM工具。 这就是本文将要描述的Trace32 Simulator for ARM工具。 2 安装 WIN32版的TRACE32需要重新安装,安装文件和硬件版TRACE32是一样的,只是安装时候的选项不同,而且WIN32版的需要安装在不同的目录下(比如trace32-win32)。 z运行安装文件\trace32\bin\setup\setup.exe。首先设置安装路径,注意不要和硬件版TRACE32安装在同一个目录下,请新建一个文件夹(比如 trace32-win32)

z选择【New Installation】,然后Next z选择【Simulator】,这个是WIN32版TRACE32的选项(硬件版TRACE32是选择第2项,注意不要搞错了)

z选择默认值,然后Next z选择【SIM ARM7 ARM9 ARM10 ARM11】,和硬件版TRACE32一样

z安装中,安装完毕后就可以使用了。 3 使用 首先请确保你有保存当前手机软件的原始ARM文件。 手机死机时,按“#”键进入downloading模式。 z运行【QPST】→【Memory Debug】,制指定数据线端口

XDS510 USB2.0仿真器说明书

敬告用户 欢迎您成为我公司DSP仿真器产品的用户,在未阅读此敬告前请勿使用 我公司产品。如果您已开始使用,说明您已阅读并接受本敬告。 1. 本说明书中的资料如有更改,恕不另行通知。 2. 在相关法律所允许的最大范围内,本公司及其经销商对于因本产品 故障所造成的任何损失均不承担责任。不论损害的方式如何,本 公司及其经销商所赔付给您或其他责任人的责任总额,以您对本产品的实际已付为最高额。 3. 本公司及其经销商对所售产品自购买之日起三个月包换、一年保 修,其前提是您按说明书正常操作,对于非正常操作所致的损坏, 实行收费修理。 一、功能与特点 主要特点: 1、铝合金外壳,金属外壳抗外界电磁干扰能力更加先进,高档的外壳更显美观、专业 2、体积更小,有如一张名片大小 3、接口更加安全 4、性能更加卓越 5、速度较其他仿真器快一倍 · 采用高速版本USB2.0 标准接口,即插即用,传输速度可达480MB/S,向下兼容 USB1.1 主机; · 标准Jtag 仿真接口,不占用用户资源;特别接口安全保护设计,全面支持JTAG 接口 热插拔; · 支持Windows98/NT/2000/XP 操作系统; · 支持TI CCS2.X、支持CCS3.1 集成开发环境,支持c 语言和汇编语言; · 实现对F28x/F240x/F24x/F20x 的Flash 可靠编程; · 仿真速度快,支持RTDX 数据交换; · 不占用目标系统资源; · 自动适应目标板DSP 电压; · 设计独特,完全克服目标板掉电后造成的系统死机;完全解决目标板掉电后不能重 起CCS 的问题; · 可仿真调试TI 公司 TMS320C2000、TMS320C3000、TMS320C5000、TMS320C6000、3X、C4X、C5X、C8X 及OMAP、DM642 等全系列DSP 芯片。 · 支持多DSP 调试,一套开发系统可以对板上的多个DSP 芯片同时进行调试. · 对TI 的未来的芯片,只需升级软件便可轻松应用。 · 安装简单,运行稳定,价格低廉。 二、仿真DSP 范围 可仿真调试TI 公司: TMS320C2000 系列:F20X、F24X、F240X、F28XX 等 TMS320C3000 系列:VC33 等 TMS320C5000 系列:54X 、55X 等 TMS320C6000 系列:62XX/67XX、64X 等 OMAP:如1510、5910 等全系列TI DSP 芯片

ZigBee技术介绍

精简功能设备(RFD):RFD只能传送信息给FFD或从FFD接收信息。附带有限的功能来控制成本和复杂性,在网络中通常用作终端设备。 ZigBee网络定义了三种节点类型: 协调器和路由器必须是全功能器件(FFD: Full function device), 终端设备可以是全功能器件,也可以是简约器件(RFD: reduce function device)。 协调点是一个特殊的FFD,它具有较强的功能,是整个网络的主要控制者,它根据网络的最大深度(nwkMaxDepth),每个路由器能最多连接子设备的数目(nwkMaxChildren),每个路由器能最多连接子路由器的数目(nwkMaxRouters)等参数建立新的网络、収送网络信标、管理网络中的节点以及存储网络信息等。 RFD的应用相对简单,例如在传感器网络中,它们只负责将采集的数据信息収送给它的协调点,不具备数据转収、路由収现和路由维护等功能。RFD占用资源少,需要的存储容量也小,在不収射和接收数据时处于休眠状态,因此成本比较低,功耗低。 FFD除具有RFD功能外,还需要具有路由功能,可以实现路由収现、路由选择,并转収数据分组。 一个FFD可以和另一个FFD或RFD通信,而RFD只能和FFD通信,RFD之间是无法通信的。一旦网络启动,新的路由器和终端设备可以通过路由収现、设备収现等功能加入网络。当路由器或终端设备加入ZigBee 网络时,设备间的父子关

系(或说从属关系)即形成,新加入的设备为子,允许加入的设备为父。一个简单的ZigBee网络父子关系如图3-a中的A、B。 ZigBee中每个协调点最多可连接255个节点,一个ZigBee网络最多可容纳65535个节点。 3.2 网络拓扑 ZigBee网络的拓扑结构主要有三种,星型网、网状(mesh)网和混合网,见图3。星型网(图3-c)是由一个协调点和一个或多个终端节点组成的。协调点必须是FFD,它负责収起建立和管理整个网络,其它的节点(终端节点)一般为RFD,分布在协调点的覆盖范围内,直接与协调点迚行通信。星型网的控制和同步都比较简单,通常用于节点数量较少的场合。 网状网(Mesh网)(图3-a)一般是由若干个FFD连接在一起形成,它们之间是完全的对等通信,每个节点都可以与它的无线通信范围内的其它节点通信。Mesh 网中,一般将収起建立网络的FFD节点作为协调点。Mesh网是一种高可靠性网络,具有“自恢复”能力。它可为传输的数据包提供多条路径,一旦一条路径出现故障,则存在另一条或多条路径可供选择。 3.3 网络路由 ZigBee网络层的路由功能主要为网络连接提供路由収现、路由选择、路由维护功能,路由算法是它的核心。目前ZigBee网络层主要支持两种路由算法—树路由和网状网路由。树路由采用一种特殊的算法,具体可以参考ZigBee的协议栈规范。它把整个网络看作是以协调器为根的一棵树,整个网络由协调器建立,而协调器的子节点可以是路由器或者是末端节点,路由器的子节点也可以是路由器或者末端节点,末端节点相当于树的叶子没有子节点。树路由利用了一种特殊的地

使用 Trace32 对 FLASH 编程

使用 Trace32 对 FLASH 编程 随着软硬件复杂性的增加,在嵌入式系统开发中,调试器对项目的开发进度、质量起着越来越重要的作用。在众多的调试器中,Lauterbach 公司的 Trace32 凭借其强大的功能,出色的性能,成为目前嵌入式系统开发中,尤其是高端系统中普遍采用的调试工具。 Trace32 除了具有对代码设置断点、跟踪调试等常规的功能以外,还能够控制对目标系统的FLASH 进行编程。本文首先对比了 Trace32 FLASH 编程的两种方式:"Emulator controlled flash programming" 和 "Target controlled flash programming",指出"Target controlled flash programming"方式的优点;然后介绍了与 FLASH 编程相关的 Trace32 脚本命令,以及Trace32 脚本命令与 FLASH 编程软件之间的通信机制;最后,给出了 "Target controlled flash programming" 方式的控制流程。 注:本文中使用的"编程"一词,除了具有对 FLASH 烧写的含义外,还包括擦除、校验等其它对 FLASH 的操作。 一、FLASH 编程的两种方式 对目标系统中的 FLASH 有两种方式进行编程,分别是 "Emulator controlled flash programming" 和"Target controlled flash programming"。 在 "Emulator controlled flash programming" 方式下,所有对 FLASH 编程的操作都是由Emulator 完成的,不使用目标系统的资源。Trace32 软件支持市面上几乎所有的 FLASH芯片,只要在脚本命令 FLASH.Create 中指明目标 FLASH 的型号,地址范围以及总线的配置,用户就可以使用脚本命令直接将数据烧写到 FLASH,不需要编写任何对 FLASH 操作的代码。 在"Target controlled flash programming"方式下,对 FLASH 的编程控制是由运行在目标系统上的 FLASH 编程软件完成的,而这个软件必须由用户自行开发。此时,Trace32通过使用脚本对目标系统内存地址空间的访问,向 FLASH 编程软件传送控制参数和数据。 由于直接在目标系统的处理器上运行,采用"Target controlled flash programming" 方式可以获得比"Emulator controlled flash programming"方式快得多的编程速度。这对于烧写大的文件,以及生产线等场合来说十分重要。另外,只要编写相应的 FLASH 编程软件,用户选择的任何 FLASH 都能够被支持。 因此,对于 FLASH 编程的内容较少,或者对编程的时间要求不高的情况下,可以使用"Emulator controlled flash programming" 方式;但是,对于需要编程较大的文件,而且对速度要求较高的情况下,"Target controlled flash programming" 方式是唯一的选择。本文中只讨论"Target controlled flash programming" 方式。 二、Trace32 脚本 在 Trace32 的界面中,可以使用菜单,鼠标完成操作,也可以完全使用命令操作。事实上,Trace32 内嵌了强大的命令和脚本处理功能。使用 Trace32 的命令不仅可以完成所有的功能,而且可以获得比菜单方式更大的操纵性和灵活性。脚本以 .CMM 为后缀。 下面就介绍 Trace32 中与 FLASH 操作相关的命令,见下表:

普中ARM仿真器使用说明书

普中ARM仿真器下载操作说明 本文这里用的是MDK Keil4.74版本,如果在硬件仿真设置中找不到CMSIS-DAP 请更换版本,版本过低的KEIL不会显示CMSIS-DAP-Debugger。 注意:ARM 仿真器在WIN10 上当仿真器插到电脑上时,随电脑开机重启使用之前要把USB 拔了重插才能识别 步骤:打开一个能够正常编译通过的工程

1、进入KEIL硬件仿真设置 2、设置好硬件仿真后我们点Settings进入更深入的设置,请按照我这个面板这样设置。(PS:这里我们也可以选择SW模式,把SWJ勾上Port选择SW就是SW模式了)

3、设置好debug页面。我们点击Flash Download进入下载设置把Rese and Run勾上 4、点击add我们就来到了这一个页面,找到STM32F10x High-density Flash 512k 选中点add 添加就回到第4步页面,有显示STM32F10x High-density 512k 点ok完成设置。

6、完成以上设置后我们点Utilities页面,这里也选择CMSIS-DAP选择好之后我们点ok完成设置(ps:如果这个界面没有Use Target for flash Programming选择CMSIS-DAP就忽略这一项) 7、(keil下载)设置好之后我们编译程序没问题我们点Download进行下载提示Verify OK 就说明已经下载成功了

8、(在线仿真调试)我们可以直接在keil里面调试程序,点工具栏的start debug 开始调试,如果退出也是点这个按钮 点击之后我们就来到了这个页面,RST是复位的意思、第二个是全速运行、第三个是停止运行,再过来就是我们程序检查程序中错误的时候会用到的功能的,第一个箭头是单步运行、第二个和第一个功能差不多,第三个是跳出这个函数,第四个是进入函数内部。这四个功能大家可以自己运行体验一下效果就能理解是什么意思了。

相关文档
最新文档