纳米材料在癌症治疗中的作用研究

纳米材料在癌症治疗中的作用研究
纳米材料在癌症治疗中的作用研究

纳米材料在癌症治疗中的作用研究

第一部分光催化纳米富勒烯引起的细胞自噬及辅助化疗药物治疗癌症的研究PARTⅠNano-C60 Sensitizes Chemotherapeutic Killing OfCancer Cells Through Autophagy Modulation癌症化疗疗效差的主要原因之一是化疗药物对于肿瘤细胞杀伤效率低以及肿瘤细胞易产生耐药性。细胞自噬是一个与溶酶体相关的细胞内降解过程,这一过程在进化上是保守的,并且影响着肿瘤细胞对于化疗的反应。

已有研究证明富勒烯C60可以产生静态的自噬特征,但是到目前为止人们还没有对这一过程进行具体的研究。在第一部分中我们发现将富勒烯C60稳定地分散于水中所得到的纳米C60晶体可以引起异常的细胞自噬。

这种伴随着自噬体增加和自噬循环减少的异常型自噬,受光照刺激后有所增强,并且该反应依赖于自由基。能引起细胞自噬剂量的纳米C60不会引起细胞死亡,但能增强化疗药物杀死癌细胞(包括耐药性癌细胞)的效应,且这一过程需要Atg5这个自噬必须基因的参与。

我们的实验结果首次提出了纳米-C60具有通过调节自噬过程来提高化疗药物的疗效、降低癌细胞的耐药性这一新的生物学功能,提示纳米-C60具有成为化疗药物佐剂的潜在应用价值。第二部分聚酰胺-胺树枝形分子在癌症靶向和药物载体中的应用PARTⅡApplications Of Poly(amidoamine) Dendrimers As CancerTargeting Device And Drug Carriers聚酰胺-胺(PAMAM)树枝形分子是具有树的结构的人工合成大分子。

这类分子具有大量的表面官能团,相对疏水的内部空腔,独特的球形几何外观,可控的尺寸和分子量,以及卓越的单分散性。Star-burst树枝形分子正成为

优越的载体靶向给药平台。

这部分论文中,我们主要研究了PAMAM树枝形分子在癌症靶向和药物载体中的应用以及PAMAM树枝形分子和药物的相互作用。这部分论文分为四章。

第一章对树枝形分子及其在生物医学中的应用进行了概述,尤其是对PAMAM 树枝形分子。第二章合成了基于PAMAM树枝形分子和生物素的癌症靶向载体。

并通过流式细胞仪和激光共聚焦显微镜等技术探讨了聚合物在细胞水平的靶向能力及靶向机理。结果发现这类基于树枝形分子与生物素的高分子载体具有很好的靶向能力,这种靶向作用具有剂量依赖性,孵育时间依赖性,能量依赖性,高度的选择性,而且能够被生物素特异性抑制。

这类高分子载体具有卓越的生物兼容性,能够作为一个有潜力的纳米载体平台应用于临床诊断与治疗中。第三章我们报到了PAMAM树枝形分子负载抗白血病药物6-巯基嘌呤的包裹效率。

常规化学疗法中通常面临一个问题是这种细胞毒性药剂的水溶性很低。大分子载体系统可以被用来提高这些这些药物的溶解度。

其中被称为树枝形分子的具有高度分支的球形聚合物大分子载体从中脱颖而出。我们的研究发现氨基末端的PAMAM树枝形分子能包裹难溶性抗白血病药6-巯基嘌呤并增加其水溶性。

在碱性条件下(pH 10),药物的包裹效率最高,然而,在酸性环境下,药物的包裹效率有所降低;盐离子浓度对包裹效率基本没有影响。第四章研究了PAMAM树枝形分子与非甾体抗炎药保泰松的相互作用。

溶解度结果表明,PAMAM树枝形大分子大大提高了保泰松在水中的溶解度,且增溶作用受树状分子浓度、代数、表面官能团以及pH值的很大影响。二维NOE

谱清楚地表明,保泰松的质子和第三代以及第六代树枝状分子内腔的质子由于NOE效应相互作用产生了许多种交叉峰。

溶解度、二维NOE和等温滴定量热法的分析结果说明,包裹作用和静电相互作用共同造成保泰松的溶解度提高。二维核磁和等温滴定量热技术是研究树枝状大分子与其被包裹的客体分子之间相互作用的非常有用的工具。

纳米技术在癌症的早期检测

到目前为止,癌症的有效诊断和治疗仍然是现代医学面临的严峻挑战。癌症的有效治疗要求及早、准确发现,从而实现及时治疗,改善治疗效果。近年来,纳米材料和纳米技术高速发展,并广泛应用于多个领域,为建立有效的癌症诊断和治疗技术提供了新的契机。纳米科学是一门涵盖多种学科的新兴学科,其发展极大的促进了包括医学、生物学、电子学、工程学等学科的进步。对癌症诊断和治疗现状的改善,集中体现在生命科学、纳米技术、医疗技术等多学科交叉的创新与集成。 国内外研究表明,纳米药物在治疗重大疾病方面具有无可比拟的独特性质和优势。2002 年以来,美国、日本、欧盟等发达国家和地区先后组织和实施了较大规模的纳米药物计划。如美国国家癌症研究所于2004 年9 月正式成立纳米科技攻克肿瘤联盟(NCI Alliance for Nanotechnology in Cancer),投入 1.443 亿美元的启动资金,资助以纳米科技为基础的抗肿瘤药物研究和此类产品的标准制订。我国于 2001 年11 月正式实施“纳米生物效应与安全性研究”计划,并在中国科学院高能物理研究所建立了中国第一个“纳米生物效应与纳米安全性实验室”,从纳米材料的生物效应以及纳米抗肿瘤药物的研制和机制着手,开始系统地研究。 纳米技术在肿瘤的诊断和治疗中已有一些应用。例如,脂质体在十余年前就被应用于治疗卡波西肉瘤(Kaposi’s sarcoma),现在又被用于治疗乳腺癌和卵巢癌。纳米技术在癌症的诊断和治疗中的应用,主要包括两个方面。首先,多功能纳米颗粒用于药物的输送和成像。相对于传统的药物输送方法,纳米颗粒有独特的优势。第一,纳米颗粒的运载量非常大,如70nm 的颗粒可以装载约2000 个siRNA分子,而抗体的结合量小于10;第二,纳米颗粒可以装载多种目标配体,在肿瘤细胞表面常常存在高表达的特定生物分子,称为生物标志物(biomarker),采用识别特定生物标志物的抗体,可以提供与细胞表面受体的多价结合;第三,纳米颗粒可以装载多种类型的药物分子,同时执行多元的功能;第四,纳米颗粒表面可以修饰不同分子,如聚乙二醇(PEG),容易穿过细胞表面的多层保护机制,增加在生物体内的滞留时间。纳米材料应用于药物输送和成像的优势体现于其多功能性,通过在载体内包埋对比试剂,实现成像信号的放大,可以同时实现治疗和监测药物在体内的作用位点及治疗效果。 此外,许多纳米材料自身具有提升成像能力的特性。例如,基于钆和氧化铁的纳米颗粒可以提高核磁共振对比度;低密度脂质纳米颗粒可以提高超声成像效果;半导体纳米晶体和量子点被应用于光成像;硅和矽土材料的生物降解速度比聚合物快得多,可以应用于注射用药;基于金属的纳米颗粒——纳米壳(nanoshell),如由金外壳包被矽土内核的纳米结构,可以用作高选择性、外部激活的治疗试剂等。 癌症的早期检测对于癌症的预防和治疗具有重要作用,但由于早期肿瘤的生物标志分子在人群中的表达差异,作为癌症早期诊断标志的灵敏性和可靠性较低,使用传统诊断技术无法保证对早期癌症的有效诊断。目前,已经有一些纳米技术应用于癌症早期检测,如DNA 微阵列技术,蛋白质组学的 SELDI-TOF 质谱技术等。这些技术从微米尺度到纳米尺度的转变,使我们获取信息的质量、数量和密度都大为提高。 多元化纳米技术在肿瘤检测的应用包括纳米线、纳米悬臂和纳米管阵列等,实时检测多重的分子信号和生物标志物,能够有效检测较低水平的生物标志物,有望实现癌症的早期诊断。在纳米悬臂上修饰特异性抗体,当生物标志蛋白,如肿瘤特异性的蛋白质标志分子,与悬臂上的特异抗体结合时,产生的结合力导致纳米结构的形变和共振频率的改变,采用

纳米材料研究方法

纳米材料研究方法 ——《材料研究方法》课程论文学院:机电工程学院 :王前聪 学号:201602044

纳米材料研究方法 摘要:本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 关键词:纳米材料分析方法表征 1前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义和作用。分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下几种方法。

2 X射线衍射分析(XRD) X射线粉末衍射法的基本原理是:一束单色X射线碰击到研成细粉的样品上,在理想情况下,样品中晶体按各个可能的取向随机排列。在这样的粉末样品中,各种点阵面也以每个可能的取向存在。因此,对每套点阵面,至少有一些晶体的取向与入射束成Bragg角e,于是对这些晶体和晶面发生衍射。衍射束采用与图象记录仪相连的可移动检测仪Geiger,如计数器(衍射仪)检测,在记录纸上画出一系列峰。峰度位置和强度很容易从谱图上得到,从而使它成为物相分析的极为有用和快速的方法。 3光谱分析方法 3.1激光拉曼光谱分析(LR) 拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射(Ray leighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉曼散射叫斯托克斯散射,频率高于激发光的拉曼散射叫反斯托克散射。其中Stokes线(v0一△v)与Anti-stokes线(v0+△v)对称分布在激发线(n0)。由于拉曼位移△、只取决于散射分子的结构而与v0无关,所以拉曼光谱可以作为分子振动能级的指纹光谱。拉曼位移△v(散射光

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不

基础医学导论:纳米材料与癌症治疗

纳米材料与癌症治疗 姓名:刘通通学号:班级:基础二班电话: 摘要:在癌症治疗领域,人们通常采用手术、放疗、化疗进行治疗。临床上用的化疗治 癌药物显示出低的水溶性、较差的稳定性、快速的血液清除并且缺乏对肿瘤部位的靶向性,常常对于正常细胞造成伤害。近年来,随着纳米技术的发展,纳米材料作为一种新型抗肿瘤药物载体及mRNA载体为癌症患者提供了新的希望。通过梳理纳米技术在癌症治疗方面的发展历程,可以明确其发展方向,给后来的研究者提供一个大概的认识。本文主要就纳米技 术在癌症治疗领域的发展历程,以及现在出现的比较成功的纳米运输药物进行介绍。 关键词:纳米颗粒癌症纳米运输系统基因治疗 1.引言: 癌症一直是困扰人们的重大难题,传统疗法如化疗往往带给患者莫大的痛苦,并且收效甚微。20世纪70年代,纳米概念首次出现,1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子的科学,那些纳米分子的性能常常有很大的特异性。纳米生物学也孕育而生,而用纳米技术治疗恶性肿瘤是国际肿瘤研究领域的一个重要方向。已经逐渐发展了比较完善的纳米给药系统,可以输送药物和小型RNA,定向到达肿瘤部位,从而特异性抑制肿瘤生长。目前关于纳米药物的研究主要集中在以下方面:发展纳米给药系统;新型高载量的纳米颗粒的制备;构建纳米载体,用于输送环状DNA,诱导癌细胞的凋亡。 2.纳米载体与基因治疗 基于核酸药物的治疗手段可以通过外源正常基因导入靶细胞以纠正或补偿因基因缺陷和异常或者下调在肿瘤组织中过量表达的癌基因来达到治疗癌症的目的。利用纳米载体进行输送基因可以高效定向起到作用。 2.1纳米生物技术基因治疗载体的特点 在药剂学中,纳米载体是指由纳米生物材料制备,尺寸定在1~1000纳米的药物载体,具有生物兼容性、可生物降解、药物缓释和药物靶向传递等良好的特性[1]。 纳米生物技术基因主要有以下特点。1.生物安全性。纳米基因载体一般由具 生物兼容性、可生物降解性的纳米生物材料制备,基本无毒性,无免疫原性,体内可以代谢降解,生物安全性好[1]。纳米脂质体主要由磷脂及胆固醇合成,由 于其自身的仿生物膜的特点,可以通过与细胞膜的融合和胞吞作用将目的基因导入细胞。2.可保护核苷酸。纳米脂质体和纳米粒可以通过表面电荷吸附作用或通过包裹在其中来保护核苷酸不被核酸酶降解。Fattal等研究表明聚氰基丙烯酸烷 基脂阳离子纳米粒负载的寡核苷酸在细胞培养基中具有抗核酸酶的作用,阻止了寡核酸的降解,使得静脉给药体内的稳定性显著提高[2]。3.提高细胞吸收率。大

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater.2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. ),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet .2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem.2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

纳米材料的应用研究

纳米材料的应用研究 在当今社会,“材料”是个热门的话题。材料问题与能源问题息息相关,人们由于对能源问题的重视,从而引起对材料问题的关注。越来越多的新材料出现在人们的生活中,影响着人们的生活。“纳米”这个词出现的时间虽然不长,但是出现之后一直是个热点话题:出现了许多新型的纳米材料,不同的纳米材料应用于不同的领域,从各个方面影响着我们的衣食住行。 标签:纳米材料;应用;合成 一、纳米材料的定义 “namometer”这个英文单词翻译成汉文的意思是“纳米”,而“纳米”的译名也是由此得来的。如果物质的长度介于1~100纳米这个范围内,即介于纳米尺度范围内时,物质的性能随之会发生剧变,会在其他方面表现出特殊性能,如将导致声、电、光、热、磁性呈现新的特性。通常情况下把不同于物质微观组成的原子、分子和宏观物质构成的性能的材料,称之为纳米材料。纳米材料是一类材料的概称,而并非指某一种具体的材料。 二、纳米材料的应用 纳米材料从20世纪70年代被人们发现到现在才半个世纪左右,但在这半个世纪里纳米材料却得到了跳跃式的发展和应用,受到各行业人士的喜爱。这是由于纳米材料在许多方面的性能都要优越于组成原本物质的分子、原子或者宏观物质。纳米材料现在主要应用于生物医学和健康、催化、航天航空、电子器件和环境、空间探索、资源和能量、生物技术等领域。 1.在催化方面的应用 传统的催化剂大多数都是根据以往人们的经验来合成的,这样的催化剂合成难度大,催化的效率低,不仅造成生产原料的大量浪费,而且对环境的污染也严重,经济效益难以提高。催化剂的催化效率与催化剂的表面活性有关,而纳米材料表面活性物质多,这就为纳米材料作为催化剂提供了许多可能性。纳米粒子作为催化剂,可以大大降低反应的难度,提高反应效率,降低成本,甚至使一些不能进行的反应也顺利进行。通常情况下,用纳米微粒作催化剂时其催化效率是一般催化剂的10~15倍。 2.在生物医学方面的应用 在高中的时候,我们都学过生物,生物是从分子的角度去分析物质的,而更多的是让我们了解蛋白质、RNA、DNA和病毒,并知道它们的尺度都是在1~100纳米之间。这阐述了生命的最基础物质是纳米结构单元。RNA、DNA是属于生命的遗传物质,蛋白质是构成生命体的物质之一,细胞是构成生命的最小结

癌症治疗中的纳米技术

华东理工大学2010—2011学年度第2学期 《应用无机化学》课程论文 班级应化081 学号10082072 姓名张明辉 开课学院化学与分子工程学院任课教师刘金库成绩__________

癌症治疗中的纳米技术 华东理工大学化学院应化081 张明辉10082072 摘要:随着纳米技术的发展,纳米技术在医学上的应用越来越广泛,而癌症作为目前威胁人类生命最大的顽症,其治疗也得到了非常大的关注,本文将主要阐述纳米技术在治疗癌症方面的应用及前景展望。 关键字:纳米技术;癌症治疗 1.纳米技术治疗癌症的优势 癌症是目前威胁人类生命安全最大的顽症之一,癌症治疗也是世界性的难题。十年前左右甚至到现在,治疗癌症最传统的手段就是化疗方法进行治疗。化疗(化学治疗)即用化学合成药物治疗疾病的方法,是目前治疗肿瘤的主要手段之一,但是有很大的副作用,由于对癌细胞和正常细胞没有分辨能力,多次放化疗后,患者会出现头发脱落,胃肠功能紊乱,低烧不退,恶心,呕吐等症状。而且化疗在治疗肿瘤方面本身就存在着不少缺陷化疗,凭借现在的科学技术水平,化疗不能根治任何恶性肿瘤。而纳米技术作为一种新兴的技术手段,在诸多领域内均有广泛的应用前景,当然在医学治疗上也不例外。 那什么是纳米技术呢?百度百科中的解释是纳米技术就是用单个原子、分子制造物质的科学技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 既然要谈到利用纳米技术去治疗癌症,对于传统的治疗方法必然有它的优势所在。其实治疗癌症的方法还是有许多的,药物治疗或者配合手术、放疗和生物疗法等等。临床使用的抗癌药物通常是细胞毒类和抗增殖药物[1],它的抗癌机理是利用其高毒性杀死癌细胞,但是正如前文所述,同时它也会杀死很多正常的细胞,而且更加糟糕的是一些对药物敏感的癌细胞会很快产生抗药性,不仅仅是对于原先的药物,对于别的抗癌药物也会产生抗药性,究其原因主要是因为相同的抗癌机理导致,而产生高度抗药性的癌细胞就此发展为致命的肿瘤。而利用纳米技术治疗癌症则有独特的优点,用某些经过处理的纳米颗粒不仅可以有效地抑制癌细胞的生长,而且对正常细胞造成的创伤降到最低甚至消除对正常细胞的伤害,实现真正的高效低毒。接来下,我们就一起谈谈纳米技术在癌症治疗的过程中究竟有哪些应用? 2.在早期诊断中纳米技术的应用 通常癌症变为不治之症主要是由于前期没有诊断出导致进入了癌症的中晚期,这时候癌细胞的大量扩散,癌细胞已经浸润周围及远器官。而在癌症早期如

什么是纳米材料[1]

什么是纳米材料 纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗晶pd高5倍;具有高强度的金属间化合物的增塑

相关文档
最新文档