青蒿素的研究进展

青蒿素的研究进展
青蒿素的研究进展

青蒿素研究进展

摘要青蒿素是目前治疗疟疾的特效药。本文对自青蒿素发现以来的最新研究进展进行了比较详尽的综述。内容包括:青蒿素的发现及历史,青蒿素的来源,青蒿素的全合成,青蒿素的生物合成,青蒿素衍生物以及植物组织培养生产青蒿素。

关键词青蒿素青蒿素衍生物合成

Abstract The recent research advances in artemisinin, the most effective weapons againstmalarial parasites have been reviewed. An overview is given on artemisinin research from the following aspects:the history of artemisinin development, sources of artemisinin, total synthesisof artemisinin, biosynthesis of artemisinin, analogs of artemisinin and artemisinin production from plant tissue cultures.

Key words artemisinin; artemisinin derivatives; synthesis

青蒿素(Artemisinin)是继氯喹、乙氨嘧啶、伯喹和磺胺后最热的抗疟特效药,尤其对脑型疟疾和抗氯喹疟疾具有速

效和低毒的特点,已成为世界卫生组织推荐的药品[1]。青蒿素的抗疟机理与其它抗疟药不同,它的主要作用是通过干扰疟原虫的表膜-线粒体功能[2,3],而非干扰叶酸代谢,从而导致虫体结构全部瓦解。目前药用青蒿素是从中药青蒿即菊科植物黄花蒿的叶和花蕾(Artemisia annua L.)中分离获得的。由于青蒿的采购、收获,直至工厂加工提取,环节较多,费时费力,且不同采集地和不同采集期青蒿品质有很大的差别,同时,大量采集自然资源,必然会破坏环境和生态平衡,导致资源枯竭。因此,为增加青蒿素的资源,世界各国都在加紧开展青蒿素及其衍生物的开发研究,长期稳定地和大量地供应青蒿素成为各国科学家面临的严峻考验。

由于青蒿素是抗恶性疟疾的特效药,目前的售价为225美元/g。近年的统计资料表明世界每年有近300万人死于疟疾,尤其是非洲的发病率极高,对青蒿素的需求量较大,世界

每年的需求量为150吨,而产量仅有15吨左右,形成明显的供不应求局面,我国在“九五”期间开展青蒿素的开发研究将具有可观的经济效益和社会效益。本文将对目前国际上青蒿素研究的现状从以下几个方面进行论述。

1.青蒿素的发现及历史

青蒿入药,最早见之于马王堆三号汉墓出土(公元前168年左右)的帛书《五十二病方》,其后在《神农本草经》,《大观本草》及《本草纲目》等均有收录。从历代本草及方书医

籍的记载,青蒿入药治疗疟疾是经过长期的临床实践经验所肯定的。1971年以来,中医研究院青蒿素研究小组通过整理有关防治疾病的古代文献和民间单验方,结合实践经验,发现中药青蒿乙醚提取的中性部分具有显著的抗疟作用。在此基础上,于1972年从青蒿中分离出活性物质——青蒿素,并于1976年通过化学反应、光谱数据和X射线单晶衍射方法证明其为一种含有过氧基的新型倍半萜内酯,分子式C15H22O5,其分子结构如图1所示[4],其绝对构型由刘静明等通过旋光色散和氧原子的反常散射测定[5]。

图1 青蒿素结构式

青蒿素发现以来,人们进行了大量的药理学研究,结果表明青蒿素对疟原虫红内期有直接的杀伤作用,而对组织期无效。青蒿素的毒性实验显示其毒性很低,在机体内分布

快,分布广,排泄快。青蒿素对疟原虫的超微结构观察,在给药8h后,滋养体开始出现食物胞膜及线粒体的改变,12—14h发展到限制膜、核膜和内质网的改变,20—24h虫体内自噬

泡增多,增大及至虫体结构全部瓦解。可见,青蒿素主要作于膜系结构,其抗疟机理认为是干扰了疟原虫的表膜-线粒体功能,阻断了以宿主红细胞浆为营养的供给[6]。

在青蒿素药理实验的基础上,人们又进行了大量的药理和临床疗效研究。1973年9月,青蒿素首次用于临床,在海南岛昌江地区对8例外来人口恶性疟疾及间日疟进行临床

观察,特别对间日疟显示了较好的疗效。1975年在海南岛南岛农场及湖北武汉等地对青蒿素、青蒿素复方、青蒿素简易制剂等进行临床观察,肯定了其抗疟疗效。1976、1977

年在湖北、河南、海南岛对油剂注射剂等4种青蒿素制剂重点观察降低近期复发率的效果,但没有获得满意的结果。几年来的临床观察肯定了青蒿素治疗恶性疟疾、间日疟具有高效、低毒的特点,并对治疗抗氯喹株有特效,不少地方将青蒿素作为抢救凶险型疟疾病人的首选药物。但在使用中存在的主要问题是近期复发率高,为解决此问题,从合理用药、改变剂型、复方配伍和结构改造等方面进行了探索[7]。到目前为止,已有十几种衍生物的抗疟效果比青蒿素活性高出多倍。自我国开展有关青蒿素的研究后,世界各国相继开展此方面的重复性研究,获得的结果显示了抗疟的特效性。

2.青蒿素的来源

青蒿素在抗疟中日益显示其重要性,寻找其新的来源显得非常重要。目前,商用的青蒿素主要来自植物提取物。从青

蒿中提取的青蒿素已成为世界卫生组织推荐的抗疟药

物。在天然植物中青蒿素的含量受地理环境、采集时期、采集部位、气温和施肥等因素的影响。青蒿广泛分布在中国的各省市,不同产地青蒿素含量差异显著,最高可达干重

的1%—2%。为获得最大的青蒿素产量,钟风林等[8]对不同生长期的青蒿素含量变化进行考察,认为青蒿的采集期在生长盛期至花蕾期之前,此时的青蒿素含量最高,营养体重

量大,而且采集的时间以晴天中午12时及下午16时为宜,一天中在这期间采收青蒿素含量最高,这与光强有利于青蒿素的产生和大量积累理论相一致。在青蒿植株和枝条上的叶

片中,青蒿素含量均呈下部、中部、上部依次递增的规律。因此,青蒿植物的上部和枝条上部的叶片应首选入药,其次为中部,最后才是下部。不同的干燥方法对青蒿素的产量也

有一定的影响,比较晒干、阴干和60℃烘干三种方法,以自然晒干的效果最好,比阴干的样品含量高23.76%。在人工栽培中稍加肥料,青蒿植株高大,青蒿素的含量较野生的略高,

且嫩叶比老叶的含量高。陈福泰[9]在人工控制的环境中栽培青蒿,在青蒿生长的基本条件得到满足的情况下,生长环境中的营养物质的含量与生长基质对青蒿素含量没有影响,而高温和短距离光照可促使青蒿素含量成倍增加。Elhag 等[10]筛选高产的青蒿植株时,发现青蒿的含量高的植株具有长的节间,茁壮的茎杆,伸展开的枝条和茂密的叶。Liersch

等[11]对筛选的青蒿品种811喷洒植物激素chlormequat,结果植株的青蒿素含量比对照高30%。虽然青蒿素主要来自于天然采集的野生植株和人工栽培青蒿,但天然野生青蒿受地理环境和季节的限制以及资源的日益匮乏,难以获得持续的发展。人工栽培占地大,耗时耗力,且植株易变异,也使得产量难以保证,因而开发新的青蒿素来源途径具有重要的实际意义。

3.青蒿素的化学合成

化学合成青蒿素这一复杂的天然分子是有机化学家所面临的挑战。中国科学院上海有机所对青蒿素及其一类物的结构和合成进行了大量的工作[12-18]。1986年, Xu等[19]报道了青蒿素的全合成途径,其合成以R(+)-香草醛为原料,经十几步合成青蒿素,合成途径如图2所示。国外也以不同原料为出发点进行青蒿素一类物的化学合成研究[20-23]。1994年,Zhou和Xu[24]综述了国内外青蒿素全合成的研究进展。青蒿素全合成研究虽已取得一些明显的进展,但到目前尚未显示出商业的可行性。

图2 青蒿素化学合成途径

4.青蒿素的生物合成

了解青蒿中青蒿素的生物合成途径与该药的生产密切相关。包括:(1)通过添加生物合成的前体来增加青蒿素的含量;(2)通过对控制青蒿素合成的关键酶进行调控,或者

对关键酶控制的基因进行激活来大幅度增加青蒿素的含量;

(3)利用基因工程手段来改变关键基因以增强它们所控制酶的效率。

由于萜类化合物的生物合成途径非常复杂,因而对于青蒿素这一类低含量的复杂分子的生物合成研究就更具复杂性。对于倍半萜内酯的合成,其限速步骤一是环化和折叠

成倍半萜母核的过程,另一个限速步骤为形成含过氧桥的倍半萜内酯过程。Akhila等[25]通过放射性元素示踪法对青蒿素的生物合成途径进行了研究,认为青蒿素的生物合成途径如图3所示,从法尼基焦磷酸出发,经牦牛儿间架、双氢木香交酯、杜松烯内酯和青蒿素,最终合成青蒿素。国内也进行青蒿素生物合成的研究,探索了由[2-14C]-MVA为前体生物合成青蒿酸[26],以及由青蒿酸为前体生物合成青蒿素及青蒿素B的过程[27]。

图3 青蒿素生物合成途径

5.青蒿素衍生物合成

青蒿素由于存在近期复燃性高,在油中和水中的溶解度低,难以制成合适的剂型等不足,对其结构进行改造,寻找合适的青蒿素衍生物工作成为当今研究的热点。目前,已发

现不少抗疟活性更高的衍生物,这些化合物主要是对青蒿素的12位碳原子进行修饰。梁洁等[28]将青蒿素还原为二氢青蒿素,对二氢青蒿素的第12位碳原子进行修饰,合成了青

蒿素芳香醚衍生物, 这些化合物除具有高效的抗疟活性外,

还具有抗病毒和抗肿瘤的活性。李英等[29]首先将青蒿素(I)催化氢化形成二氢青蒿素(II),以此为中间体,在酸

和碱的催化下与各种醇、羧酸酐和氯甲酸酯反应,合成其醚类(III)、羧酸酯(IV)和碳酸酯类(V)等衍生物47个,如图4所示。经筛选,以SD90作为标准,获得超过青蒿素效

率10倍的化合物12个。经过几年的研究,目前国内已进行了青蒿素衍生物工业化生产。昆明制药厂与中国科学院上海药物研究所合作研制成功青蒿甲醚系列产品,并制成注射

液、复方片剂和胶囊,其中青蒿甲醚注射液成为我国第一个在国际上获得注册的新产品,产品已远销缅甸、泰国、加蓬、多哥、南非和加纳等27个国家,出口创汇突破500万美元[30]。

图4 青蒿素衍生物

6.植物组织培养合成青蒿素

利用植物组织培养来生产青蒿素是目前青蒿素研究的

另一热点,可能成为大规模生产青蒿素的重要手段。自80年代

以来,植物组织培养生产青蒿素的研究工作已进行不少,

已经在青蒿愈伤组织、悬浮细胞、芽和毛状根等培养体系中进行了青蒿素合成的探索。

贺锡纯等[31]对青蒿的愈伤组织、带芽的愈伤组织和由愈伤组织分化产生的小植株中青蒿素的合成进行分析,认为青蒿愈伤组织中不含青蒿素,在愈伤组织伴随芽分化形

成时,检测到青蒿素的含量约为干重的0.008%,而在分化苗长成的植株中,青蒿素的含量达到干重的0.92%,高于野生植株。Nair等[32]在进行青蒿愈伤组织悬浮培养时,在愈伤组织中未检测到青蒿素的存在,但在悬浮培养液中检测到微量的青蒿素(8μg/mL)。同样在Brown[33]的研究中也证实了青蒿的愈伤组织中不含萜类,但在分化的芽中检测到和

亲本相似的萜类合成物。Tawfit等[34]在研究青蒿悬浮细胞培养时,在培养物中没有检测到青蒿素的合成,但在培养液的正己烷提取物中检测到抗疟的活性。Paniego等[35]在新诱导的青蒿愈伤组织中检测到青蒿素的含量约为干重的0.1%—0.08%,此培养物经三次继代培养后,愈伤组织内青蒿素的含量几乎难以检测到。由此可见,在未分化的青蒿植物组织中不含或含有极低水平的青蒿素,而一定的组织分化则可促进青蒿素的合成。Woerdenbag等[36]在诱导的青蒿芽培养物检测到青蒿素的存在,并对营养物和激素对青蒿芽生长和青蒿素的影响进行研究,发现赤霉素和水解酪蛋白等对

芽中青蒿素的合成具有强的刺激作用。Ferreira等[37]在青蒿芽的培养过程中,同样检测到青蒿素的存在,并在诱导生根的青蒿芽中获得了高含量的青蒿素,约为干重的0.287%。Paniego等[38]建立了转基因的青蒿芽培养物,其青蒿素含量稳定,约为干重的0.02%,改进培养基中的各种金属离子和复合维生素对芽中青蒿素的合成影响不明显,但添加赤霉素使得芽中青蒿素的含量提高了3—4倍。1994年,秦明波等[39]用发根农杆菌1601成功转化青蒿幼茎获得毛状

根培养物,提供了以发根农杆菌作为基因载体进行青蒿的遗传改造的可行性。与此同时,Weathers等[40]利用发根农杆菌15834感染青蒿的芽尖和叶片,获得青蒿毛状根培养物,并且检测到青蒿素的含量约为干重的0.43%,其含量远高于其它青蒿组织培养物中青蒿素的含量。蔡国秦等[41]利用发根农杆菌1601感染青蒿叶片建立了毛状根培养系,并在培养物中检测到青蒿素,在添加赤霉素的条件下青蒿素的含量约为干重的0.2%。Vergauwe等[42]利用根癌农杆菌感染青蒿叶片,获得转基因植株中青蒿素含量约为干重的0.17 %, 青蒿素合成前体青蒿素B的含量约为0.22%,为通过转基因植物进行青蒿素大量生产奠定基础。

目前,青蒿组织培养的研究工作主要集中在利用生物技术的手段来进行组织培养物的改进和高青蒿素含量培养系的筛选和建立,对于利用生物反应器培养青蒿组织来生产

青蒿素的研究工作尚处于起步阶段。Fulzele等[43]利用1L 生物反应器进行青蒿芽的悬浮培养,经过30天的分批培养可获得再生的植株,生物量提高了4—5倍。Park等[44]利用2L的长方形气提式生物反应器培养青蒿芽,经过4周的培养,

培养物增殖8倍,获得的青蒿芽可长出不定根。我们目前与中国科学院植物所合作,在国家“九五”科技重点攻关项目的资助下,对青蒿毛状根生长和青蒿素合成的调控进行了研究[45],并利用合适的小型生物反应器进行了毛状根的大量培养[46],获得了满意的结果,为进一步利用生物反应器进行青蒿组织大规模培养生产青蒿素的研究工作奠定基础。

青蒿植物组织培养生产青蒿素的一系列研究表明,在未分化的青蒿组织培养物(愈伤组织和悬浮细胞)中,青蒿素的含量极低,且青蒿素合成不稳定;而在分化的器官(芽、毛状根和再生幼苗)中,青蒿素的含量明显提高,并且具有较稳定的合成能力,尤其是转基因青蒿毛状根培养物为青蒿素的大规模生产提供了潜在的应用前景。

综上所述,在今后的几年里,青蒿素的研究应在以下几个方向进行深入研究:(1)野生青蒿资源的勘察,高产系的筛选;

(2)具有高效抗疟活性的青蒿素衍生物开发;(3)青

蒿素生物合成途径及关键酶的深入了解的基础上进行青蒿

素合成的代谢调控;(4)青蒿素合成关键酶基因的克隆,以及在合适的青蒿组织培养体系和微生物中高效表达;(5)开

发合适的青蒿组织培养生物反应器系统,进行过程的优化控制和放大,实现青蒿素大规模商业化生产。

参考文献

[1] Klayman D L, Science, 1985, 228, 1049—1055.

[2] Davies E E, Ann. Trop. Med. Parasit., 1975, 69, 147—154.

[3] Theakston R D G, Life Sci., 1969, 8, 521—529.

[4] 青蒿素结构研究协作组(Research Group of Artemisinin Structure), 科学通报(Chinese Sci. Bull.), 1977, 22, 142.

[5] 刘静明(Liu J M), 倪幕云(Ni M Y), 樊菊芬(Fan J F), 屠呦呦(Tu Y Y), 吴照华(Wu ZH), 吴毓林(Wu Y L), 周维善(Zhou W S), 化学学报(Acta Chim. Sinica), 1979, 37, 129—141.

[6] 青蒿素结构研究协作组(Research Group of Artemisinin Structure), 药学通报(Chinese Pharm.Bull.), 1979, 14, 49—53.

[7] 李英(Li Y), 虞佩琳(Yu P L), 陈一心(Chen Y X), 李良泉(Li L Q), 盖元珠(Gai Y Z),王德生(Wang D S), 郑亚平(Zheng Y P), 科学通报(Chinese Sci. Bull.), 1979, 24, 667—669.

[8] 钟风林(Zhong F L), 陈和荣(Chen H R), 陈敏(Chen

M), 中国中药杂志(ChinaJournal of Chinese Materia Medica), 1997, 22, 405—406.

[9] 陈福泰(Chen F T), 张桂华(Zhang G H), 植物生理学通讯(Plant PhysiologyCommunications), 1987, 5, 26—30.

[10] Elhag H M, Phytotherapy Research, 1992, 6, 20—24.

[11] Liersch R, Planta Med., 1986, 5, 387—390.

[12] 许杏祥(Xu X X), 朱杰(Zhu J), 黄大中(Huang D Z), 周维善(Zhou W S), 化学学报(Acta Chim. Sinica), 1983, 41, 574—575.

[13] 许杏祥(Xu X X), 朱杰(Zhu J), 张联(Zhang L), 周

维善(Zhou W S), 化学学报(ActaChim. Sinica), 1989, 47, 771—774.

[14] 张联(Zhang L), 周维善(Zhou W S), 化学学报(Acta Chim. Sinica), 1989, 47, 1117—1119.

[15] 许杏祥(Xu X X), 吴照华(Wu Z H), 沈季明(Shen J M), 陈朝环(Chen Z H), 吴毓林(Wu Y L), 周维善(Zhou W S), 化学学报(Acta Chim. Sinica), 1984, 42, 333—339. [16] 周维善(Zhou W S), 黄大中(Huang D Z), 平学凡(Ping X F), 张联(Zhang L), 朱杰(Zhu J), 许杏祥(Xu X X), 化学学报(Acta Chim. Sinica), 1989, 47, 710—715.

[17] 朱杰(Zhu J), 许杏祥(Xu X X), 周维善(Zhou W S),

化学学报(Acta Chim. Sinica),1987, 45, 150—153.

[18] 周维善(Zhou W S), 徐世杰(Xu S J), 张联(Zhang L), 化学学报(Acta Chim. Sinica),1989, 47, 340—344. [19] Xu X X, Zhu J, Huang D Z, Zhou W S, Tetrahedron, 1986, 42, 819—828.

[20] Avery M A, Chong W K M, Jennings-White C, J. Am. Chem. Soc., 1992, 114, 974—979.

[21] Avery M A, Jennings-White C, Chong W K M, Tetrahdron Lett., 1987, 28, 4629—4632.

[22] Ravindranathan T, Anil Kumar M, Menon R, Hiremath S V, Tetrahdron Lett., 1990,31, 755—758. [23] Schmid G, Hofheinz W, J. Am. Chem. Soc., 1983, 105, 624—625.

[24] Zhou W S, Xu X X, Acc. Chem. Res., 1994, 27, 211—216.

[25] Akhila A, Thakur R S, Popli S P, Phytochemistry, 1987, 33, 1927—1930.

[26] 黄敬坚(Huang J J), 周凤仪(Zhou F Y), 吴莲芬(Wu L F), 曾桂辉(Zeng G H), 化学学报(Acta Chim. Sinica), 1990, 48, 275—277.

[27] 汪猷(Wang Y), 夏志强(Xia Z Q), 周凤仪(Zhou F Y), 吴毓林(Wu Y L), 黄敬坚(Huang J J), 王执中(Wang Z

Z), 化学学报(Acta Chim. Sinica), 1988, 46, 1152—1153.

[28] 梁洁(Liang J), 李英(Li Y), 中国药物化学杂志(Chinese Journal of MedicinalChemistry), 1996, 19, 22—25.

[29] 李英(Li Y), 虞佩林(Yu P L), 陈一心(Chen Y X), 李良泉(Li L Q), 盖元珠(Gai Y Z),王德生(Wang D S), 郑亚平(Zheng Y P), 药学学报(Acta Pharm.Sinica), 1981, 6, 429—439.

[30] 王存志(Wang C Z), 蒲崇德(Pu C D), 中草药(Chinese Herbal Medicine), 1996, 27,253.

[31] 贺锡纯(He X C), 曾美怡(Zeng M Y), 李国风(Li G

F), 梁峥(Liang Z), 植物学报(Acta Botanica Sinica), 1983, 25, 87—90.

[32] Nair M S R, Acton N, Klayman D L, Kendric K, Basile D V, Mante S, J. Nat. Prod.,1983, 49, 504—507.

[33] Brown G D, J. Nat. Prod., 1994, 57, 975—977.

[34] Tawfiq N K, Anderson L A, Roberts M F, Phillipson J D, Bray D H, Warhurst D C,Plant Cell Rep., 1989, 8, 425—428.

[35] Paniego N B, Giulietti A M, Plant Cell Tiss. Org. Cult., 1994, 36, 163—168.

[36] Woerdenbag H J, Jos F J, Win van Uden, Niesko

Pras, Malingre T M, Alfermann A W,Plant Cell Tiss. Org. Cult., 1993, 32, 247—257.

[37] Ferreira J F S, Janick J, Plant Cell Tiss. Org. Cult., 1996, 44, 211—217.

[38] Paniego N B, Giulietti A M, Enzyme Micro. Tech., 1996, 18, 526—530.

[39] 秦明波(Qin M B), 李国珍(Li G Z), 云月(Yun Y), 叶和春(Ye H C), 李国凤(Li G F),植物学报(Acta Botanica Sinica), 1994, 36, 165—170.

[40] Weathers P J, Cheetham R D, Follansbee E, Teoh K, Biotechnol. Lett., 1994, 16, 1281—1286 .

[41] 蔡国琴(Cai G Q), 李国征(Li G Z), 叶和春(Ye H C), 李国凤(Li G F), 生物工程学报(Chinese Journal of Biotechnology), 1995, 11, 315—320.

[42] Vergauwe A, Cammaert R, Vandenberghe D, Genetello C, Inze D, Montagu M V,Eeckhout E V, Plant Cell Rep., 1996, 15, 929—933.

[43] Fulzele D P, Heble M R, Rao P S, J. Biotechnol., 1995, 40, 139—143.

[44] Park J M, Hu W S, Staba E J, Biotechnol. Bioeng., 1989, 34, 1209—1213.

[45] Liu C Z, Wang Y C, Ouyang F, Ye H C, Li G F,

Biotechnol. Lett., 1997, 19, 927—930.

[46] Liu C Z, Wang Y C, Ouyang F, Ye H C, Li G F, Biotechnol. Lett., 1998, 20, 265—268.

.

青蒿素相关试题

屠呦呦获医学诺奖给中学化学教育的几点启示 启示1:学科方法胜于学科知识 青蒿素的成功发现可以说运用化学进行物质研究的成功范例。化学研究物质的一般思路为:哪些物质中含所要提取的物质;如何获得纯净的该物质;该物质的结构如何;该物质可能有哪些性质;能否在关键的点位植入需要的基团;工业上如何大规模生产该物质,等等。青蒿素的发现遵循了这个思路。评审委员会称屠呦呦的获奖是为了奖励她对药物的一种孜孜不倦地寻找过程。 启示2:观念的渗透是学科方法的核心 传统提取青蒿素的煎熬法致使有效成分在高温下被破坏了。屠呦呦一改传统的煎熬法,改用沸点较低的乙醚进行提取实验,她在60摄氏度下制取了青蒿提取物,取得了较好的效果。我们知道,条件的控制是化工生产的核心思想,屠呦呦改用乙醚的成功,说明化学的一些观念在她的心里深深地扎下了根。正是这一观念的运用是她获得诺奖的关键。评审委员会认为,屠呦呦提出用乙醚来提取,对于发现青蒿素的抗疟疾作用和进一步研究青蒿素起了很关键的作用。 启示3:失败是学生最大的权利,但失败能否成功在于坚持和反思 “也是1971年10月4日,那是第191号样品。”在190次失败之后,1971年屠呦呦课题组在第191次低沸点实验中发现了抗疟效果为100%的青蒿提取物。190次失败的痛楚才换来成功的喜悦。所以,在学科教学中要允许学生犯错,给学生机会犯错,但也要让学生悟错、知错、改错。 启示4:任务驱动不可或缺 1967年,一个由全国60多家科研单位、500多名科研人员组成的科研集体,悄悄开始了一项特殊的使命,代号“523”,志在帮助北越政府“打击美帝”,研究的指向正是——防治疟疾新药,因为1960年代的东南亚战场上,疟原虫已经对奎宁类药物产生了抗性。如果没有这场“政治任务”,也许青蒿素的发现与使用要延后许多年。现在,对于抗癌药物的研制是否也来一场“任务驱动”呢?是否也可以集中几十个有实力的研究机构进行集中研究呢?青蒿素的研究是针对病毒,抗癌药的研制也是针对“癌细胞”这种病毒。这些研究机构是否从青蒿素的研究发现史得到一些启示呢?

青蒿素的提取

青蒿素的提取工艺比较 班级:制药工程111班 姓名:黎健玲 【摘要】青蒿素是从青蒿中提取的一种抗疟疾的有效成分,本文从青蒿中提取 青蒿素的一些提取工艺,通过比较的方法,对青蒿中青蒿素的提取工艺进行了综述,讨论了青蒿素提取工艺的研究方向。 关键词:青蒿素;工艺提取;方法比较 青蒿素( artemisinin) 又名黄蒿素,是从一年生菊科( As-teraceae) 艾属草本植物黄花蒿( Artemisia annua L. ) 中提取分离得到的一种化合物,于20 世纪70 年代初首次由中国学者从黄花蒿中分离得到,是目前世界上公认的最有效治疗脑型疟疾和抗氯喹恶性疟疾的药物,且青蒿素联合治疗已成为世界卫生组织( World Health Organization WHO) 推荐的治疗疟疾的首选方法。药理研究证实,青蒿素除具有抗疟作用外,还具有抗孕、抗纤维化、抗血吸虫、抗弓形虫、抗心律失常和肿瘤细胞毒性抑制瘢痕成纤维细胞、抗单纯疱疹病毒等作用,在现代临床上用于对恶性疟疾、发热、血吸虫病、口腔黏膜扁平苔藓、红斑狼疮、心律失常的治疗,并且对类风湿性关节炎的免疫有显著疗效,青蒿素及其衍生物是新型抗疟药,具有高效、快速、低毒、安全等特点。 1 青蒿素理化性质及来源 青蒿素为无色针状结晶,溶点为156 ~157 ℃,易溶于氯仿、丙酮、乙酸乙酯和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎不溶于水,因其具有特殊的过氧基团,所以对热不稳定,易受湿、热和还原性物质的影响而分解。青蒿素的分子式为C15H22O5相对分子质量为282.33,是一种含有过氧桥结构的新型倍半萜内酯,有一个包括过氧化物在内的1,2,4-三噁烷结构单元,其中包括7个手性中心。目前青蒿素的获得主要是直接从青蒿植株的地上部分提取,因为青蒿的花、叶片、茎中均含有青蒿素。研究表明,叶片和花表面的腺毛是青蒿素的主要合成和储存部位[1]。唐其等研究发现青蒿植株不同部位不同时期的青蒿素含量不同,同时植株中青蒿素含量也与生长环境、产地等条件切相关[2]。我国是青蒿索的主产国,世界上约70%的青蒿资源分布在我国。在我国的广西、云南、四川、贵州、重庆等地青蒿资源丰富,而且具有巨大的商业开发价值。目前,青

青蒿素的研究与开发

青蒿素的研究与开发 年级: 09 级 学号: 91114010 姓名: 曾发古 专业: 药学 指导老师: 褚洪标老师 2010年10月7号

青蒿素的开发与研究 O9药本(1)班曾发古 91114010 指导老师:褚洪标老师 摘要:青蒿素类抗疟药物的发现是全球抗疟药物发展史上继奎宁之后的又一里程碑,它是在科研计划组织下,全国多部门、多学科尽心协作、相互配合取得的重大成果,是继承发扬我国传统医药宝库的成功范例。青蒿素是含有过氧桥的新型倍半萜内酯, 其衍生物有青蒿琥酯、蒿甲醚和二氢青蒿素等。青蒿素是有效的疟疾治疗药物, 此外它还具有抗肿瘤、抗寄生虫、影响免疫等药理作。 关键词:青蒿素抗疟疾药理作用中药过氧化合物 Key words qinghaosu (artemisinin) ; malaria ; Chinese traditional medicine 一.青蒿素的来源 青蒿素是从菊科艾属草本植物青蒿和黄花蒿中提取出来的抗疟有效成分。青蒿(主要指黄广泛分布于我国南北各地, 资源非常丰富。早在公元300 多年, 东晋葛洪的《肘后备急方》中就有青蒿的记载, 以后历代医籍及《本草》中均有用单味青蒿或青蒿复方截疟的记载, 如《径济总录》以青蒿汤治脾疟寒热、善呕、多汗,《丹溪心法》、《普济方》等中以青蒿为主的方青蒿丸、青蒿散、祛疟神应丸、青蒿鳖甲煎等治疗疟疾。《神农本草经》、《本草拾遗》、《纲目》以及长沙马王堆古墓出土的《五十二病方》中都有青蒿治疟的具体记述〔3〕。民间至今仍有用青蒿捣汁、水煎、酒浸、研末服用或塞鼻等多种方法预防及治疗疟疾。 1971 年我国中医研究院中药研究所, 从中药青蒿中找到了抗疟有效部位, 随后分离 出了抗疟有效单体——青蒿素。1974 年等临床上成功地应用青蒿素救治恶性疟和脑型疟。此后成立了全国性的青蒿素研究协作小组, 从资源、临床、药理、化学结构、制剂、合成、生产工艺、质量规格及标准等方面进行了深入系统的研究。1989 年昆明制药厂成功地 生产出青蒿素甲醚(简称蒿甲醚) 注射液〔4〕。世界卫生组织委托疟疾临床研究的重点单位泰国热带病研究院, 使用蒿甲醚注射液治疗疟疾, 结果表明该剂杀虫速度快、疗效好、毒性低。该产品已由中国国际信托投资集团公司技术公司、中国医药保健品进出口总公司 等8 家公司代理出口事宜, 成为我国第一个经世界卫生组织认可生产出口的化学药品。目前国内还有广州星群制药厂、桂林制药二厂等厂家已经批量生产青蒿素系列药物, 而原料

青蒿素提取技术研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

青蒿素提取技术研究进展 作者:李子颖, 李士雨, 齐向娟 作者单位:天津大学 天津 300072 刊名: 中药研究与信息 英文刊名:RESEARCH AND INFORMATION ON TRADITIONAL CHINESE MEDICINE 年,卷(期):2002,4(2) 被引用次数:20次 参考文献(44条) 1.钟国跃黄花蒿优质种质资源的研究 1998(04) 2.李吉和内蒙古地区黄花蒿中青蒿素的SFE--HPLE测定[期刊论文]-中药材 2000(12) 3.李锋广西黄花蒿类型调查研究[期刊论文]-广西植物 1997(03) 4.张萍山东引种黄花蒿青蒿素含量分析[期刊论文]-山东中医药大学学报 2001(03) 5.青蒿素结构研究协作组查看详情 1979 6.乐文菊青蒿酯等治疗动物血吸虫病研究资料 1980 7.吴玲娟查看详情 1996(03) 8.A F tawfik S J;bishop A A;yalp;F Sel-feraly查看详情 1990(12) 9.沈明青蒿素的免疫抑制作用 1983(10) 10.查看详情 1989(06) 11.庄国康查看详情 1982(06) 12.K ou—yang;E C krug;JJ.marr;R.L.berens查看详情 1990(34) 13.D M Yang;NDF Y liem liem Parasitology[外文期刊] 1993 14.Vikkas Dhingra K Artemisinin:present status ahd perspectives[外文期刊] 1999 15.邹耀洪青蒿挥发性化学成分分析[期刊论文]-分析测试学报 1999(01) 16.邱琴青蒿挥发油化学成分的GC/MC研究[期刊论文]-中成药 2001(04) 17.谢家教青蒿素母液精油化学成分研究 1991(03) 18.陈靖福建崇安黄花蒿精油成分分析 19.王国亮湖北产黄花蒿精油化学成分研究[期刊论文]-武汉植物学研究 1994(04) 20.刘立鼎黄花蒿和青蒿精油的化学成分[期刊论文]-江西科学 1996(04) 21.查看详情 1999 22.Mario R Tellez Differentialn accumulation of isoprenoids in glanded and glandless 1999(52) 23.赵兵青蒿药用成分提取分离技术现状 1998(11) 24.查看详情 1987 25.查看详情 1989 26.Paniego N B查看详情 1996 27.Vonwiller S C;er al查看详情 1993 28.赵兵青蒿素提取条件研究[期刊论文]-中草药 2000(06) 29.Elsohly H N;etal查看详情 1990(06) 30.Elsohly H N查看详情 1987(04) 31.赵兵超声波用于强化石油泌提取青蒿素[期刊论文]-化工冶金 2000(03)

青蒿素体内药物代谢研究进展

青蒿素体内药物代谢研究进展 廖文 (成都中医药大学成都 611137) 摘要:青蒿素是从植物青蒿中提取的一种具有抗疟作用的活性成分。近些年研究发现青蒿素不仅可以抗寄生虫,包括疟原虫、血吸虫,而且具有显著的抗炎、调节免疫和抗肿瘤等多方面的作用。本文主要介绍青蒿素抗疟作用的代谢机制,并对青蒿素的其他作用以及发展前景进行简要论述。 关键词:青蒿素;抗疟;代谢;其他作用;前景 Artemisinin in vivo drug metabolism research LIAO Wen (Chengdu University of Traditional Chinese Medicine, Chengdu 611137) Abstract:Artemisinin is extracted from the plant Artemisia annua with a role of the active ingredient anti-malarial. artemisinin recent study found that not only anti-parasites, including Plasmodium, Schistosoma, and has significant anti-inflammatory, immune regulation and anti-tumor effect, and many other. This paper describes the role of artemisinin-based antimalarial mechanisms of metabolism and the role of artemisinin as well as other future development brief. K ey words:artemisinin; malaria; metabolism; other role; prospects 青蒿素(artemisinin,QHS,结构式见图1)是我国 科研工作者于1972年首次从中草药青蒿中分离得到的 含过氧桥的新型倍半萜内酯。青蒿素结构独特、高效低 毒,具有清热解毒,抗肿瘤、抗菌、抗疟,增强免疫等 药理作用,对脑型疟、恶性疟等有特效,是我国唯一获 得国际认可的抗疟新药,已成为世界卫生组织推荐的治 疗疟疾的理想药物。我国青蒿资源十分丰富,目前其主 要产业资源也在我国。 (一)青蒿素的抗疟代谢作用 青蒿素类抗疟药临床应用以联合用药为主.从青蒿素的药理作用来看,它首先是被用于治疗疟疾,而且效果比以往的药物要好,因此主要用于该疾病的治疗。

青蒿素的发现及发展历程

青蒿素的发现及发展历程 青蒿素是从中药青篙中提取的高效、速效抗疟药。作用于疟原虫红细胞内期,适用于间日疟及恶性疟,特别是抢救脑型疟均有良效。其退热时间及疟原虫转阴时间都较氯喹短,对氯喹有抗药性的疟原虫亦有效。 上个世纪60年代世界风云突起,东西方冷战进而发生一系列“热战”。美国为寻求与苏联的均势介入越南战争。当时交战双方面临的最大问题不是枪林弹雨而是传染病:倒在枪林弹雨中的士兵远没有因为疟疾而失去战斗力的人数多。这一地区自古以来就是所谓“瘴气”之地,三国时期诸葛亮南征孟获、唐朝时期李宓攻打南诏、清乾隆年间数度进击缅甸都因疟疾而受挫,元史列传第四十三有云“及至未战,士卒死者十已七八”。经过如此多的战争,这里的疟原虫似乎也比其他地区的同类更为强壮,当时疗效最好的药物氯喹已经无效。寻找更好的治疗药物成为当务之急。 中国为支援越南,提供了大量物资上的支持,其中就包括了抗疟疾药物的开发。1967年5月23日国家科委、解放军总后勤部在北京饭店召开了“疟疾防治药物研究工作协作会议”,由国家部委、军队直属和有关省、市、自治区的数十个单位组成了攻关协作组,协作组的常设机构也因此称为523办公室。500多名科研人员在办公室的统一部署下,从生药、中药提取物、方剂、奎宁类衍生物、新合成药、针灸等六个大方向寻求突破口。但当时中国正处于文化大革命的动乱之中,科研工作开展极端困难:工作组1967年~1969年间共筛选了4万多种抗疟疾的化合物和中草药,都没有取得进展。 有趣的是,美国当时也在积极开展抗疟疾药物的研究,他们当时的理论是抗疟疾药物必含杂环,据此测试了20万种化合物,结果都不太理想。

当时中国本身的疟疾状况也不容乐观,所以越南战争结束后,523项目继续开展。1969年1月21日,北京的卫生部中医研究院参加523项目,屠呦呦教授任科研组长。她从系统收集整理历代医籍、本草入手,整理出一册《抗疟单验方集》,包含640多种草药,其中就有后来声名远扬的青蒿。不过,在第一轮的药物筛选和实验中,青蒿提取物对疟疾的抑制率只有68%,还不及胡椒有效果。因此,在相当长的一段时间里,青蒿并没有引起大家的重视。后来中医研究院的研究者用低温萃取的方法得到了可贵的青蒿素晶体。 山东省中医药研究所的魏振兴也注意到了青蒿的抗疟功效,1970年他选取山东本土生长的黄花蒿作原料,试图提取其中的有效成分。1971年研究人员采用醋酸乙酯等作介质提取到了白色结晶物,但仍不是纯的单体,熔点不固定。直到1973年11月,山东中医药研究所的提取工艺才成熟,研究人员通过重结晶,得到了纯度达99.9%的结晶体,测得熔点为156度。 第三家从事青蒿素提取工作的单位是云南省药物研究所。1972年底,云南523办公室主任傅良书从北京带回消息,说中医研究院发现青蒿的粗提取物中含有一种可能会对疟疾有效的成分。1973年新年,罗泽渊在云南大学校园里意外地发现了许多同属的苦蒿。抱着试一试的想法,她采了一大把回来,制备了不同溶剂的提取物并顺利地获得了数种结晶体。从事药效学筛选工作的黄衡惊讶地发现编号为结晶体3的化合物能彻底杀灭小鼠血片中的疟原虫。经过进一步的药效学、药理学研究,到3月底,研究组证实了3号结晶体确实具有高效、低毒抗鼠疟的特点。与此同时,苦蒿的植物标本经分类专家吴征镒鉴定,定名为菊科蒿属大头黄花蒿。因此,他们将该结晶命名为黄蒿素。这是523项目中首次得到纯的青蒿素单体。 云南省药物研究所虽然起步最晚,但进展最快,在三家单位中最早得到纯的青蒿素单体,并发现了优质青蒿产地、发明了后来广泛应用的溶剂汽油提纯法,为进行药效、毒理、药理及临床试验提供了充足的青蒿素,极大地加速了整个项目的进展。

青蒿素的工业生产流程

青蒿素的工业生产流程 吉财2013122691 青蒿是我国的传统中药,民间用于消暑、退热、治感冒等,青蒿还具有抗疟、抗血吸虫、抗病毒与增强机体免疫等作用。在我国数百名科学工作者的协作中,从青蒿中提取了它的抗疟有效成分,一种新型倍半萜内酯,后命名为青蒿素,青蒿素为无色针状结晶,分子式为 C15H22O5,其结构式如图1 ,熔点为156-157℃,易溶于氯仿、丙酮、乙酸乙酯 和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎 不溶于水。因其具有特殊的过氧基团,对热不稳定, 易受湿、热和还原性物质的影响而分解[1] 。国内外 大量的理化试验、药理研究和临床应用表明青蒿素 是抗疟的有效成分,认为青蒿素的发现是抗疟研究 史上的重大突破,并成为世界卫生组织推荐的抗疟 药品,特别是对脑型疟疾和抗氯喹性疟疾有很好疗 效[2]。近年来青蒿素的抗疟活性在世界范围内被广泛关注,在疟疾流行地区青蒿素的需求量增加。此后又发展了一系列现已作为正式抗疟药物的青蒿素的衍生物,此时我国研制的青蒿素类抗疟药物以高效、安全、对抗药性疟疾有特效而风靡全球,1995年蒿甲醚被WTO列入国际药典,这是我国第一个被国际公认的独创新药。青蒿素的化学结构十分独特,自上市至今20多年,尚未发生抗药性的病例。 1 仪器、试剂与材料 50ml圆底烧瓶、回流冷凝管、721型分光光度计(上海分析仪器厂)、分析天平(上海精科天平厂)、微量移液管(上海求精玻璃仪器厂)、电热恒温水浴锅、恒温烘箱、干燥器、柱层析、硅胶薄层板(由青岛海洋化工厂生产,薄层层析板用硅胶G加0.3%CM C-Na制备而成。显色剂为2%香草醛--浓硫酸(1:1)混合液。喷雾后,电吹风加热显色)等。乙醚、乙醇、氢氧化钠、乙酸乙酯、异丙醇、石油醚均为分析纯。青蒿的原材料及其标准样由海裕药业提供。 2 方法与步骤 2.1提取 称取100g青蒿叶粉(过30目筛),加入8倍石油醚(800毫升,沸程60—90℃),水浴55℃搅拌回流提取5小时,第二次提取加入6倍石油醚(600毫升,沸程60—90℃),水浴55℃搅拌回流提取3小时,第三次提取加入4倍石油醚(400毫升,沸程60—90℃),水浴55℃搅拌回流提取2小时,得滤液一、二、三,分装,渣子回收尽石油醚重复使用。

青蒿素类抗疟药的研究进展

青蒿素类抗疟药的研究进展 【摘要】青蒿素及其衍生物是一类全新结构的抗疟药,具有抗疟作用迅速、高效、低毒,且与大多数抗疟药无交叉抗性等特点。 【关键词】:青蒿素;抗疟;作用机制。 Abstract:Artemisinin and its derivatives with endoperoxide function are new and important antimalarial drugs,and their antimalarial action is quick,efficient and without cross resistance. key words:artemisinins;antimalarial;action mechanism. 疟疾是目前最严重的传染病之一,每年有大约5亿人患疟疾,死亡人口数达275万之多【1】。在众多的抗疟药物中,青篙素类药物独树一帜。青篙素及其衍生物的抗疟作用是我国科技工作者从中国的传统中草药中发现的。它们具有独特的化学结构和作用机制,抗疟效果非常明显,作用快,毒性低,而且价格便宜,因此颇受全球医药工作者和广大疟疾患者的青睐。从七十年代始,国内外己有卜千篇青篙素及其衍生物的有关研究报道,本文拟就青篙素类药物抗疟作用机制的近年研究进展作一综述。 一、细胞水平的研究 1.青篙素类药物与血细胞结合 青篙素及其衍生物通过与尚未确定的受体结合而选择性地集中在被疟原虫感染的红细胞,被感染的红细胞中的青篙素浓度是末被感染红细胞中的青篙素浓度的100多倍【2】。Asawamahasakda和他的同事们【3】发现用3H标记的青篙素被分离的红细胞膜吸收,但却不能被末感染的红细胞吸收。超过一半的膜关联药物能被乙酸乙醋抽提的磷脂酶A:所分解.41-42%的残留药物似乎与红细胞膜蛋白结合。 2.引起疟原虫细胞超微结构变化 青篙素及其衍生物能较其它抗疟疾药物更具抗疟效果,必定有其独特的作用机制。为探明其作用机制,科学家们进行了大量直有成效的工作。早期通过光学显微镜技术、电子显微镜技术等,观察到青篙素类药物主要作用于疟原虫的膜结构。在红细胞内期,青篙素及其衍生物能引起疟原虫膜结构发生变化,如由胞膜部分形成食物泡、核质,线粒体、内质网、核膜等也相应地出现相关变化,这些变化最终导致自噬泡形成并使细胞质减少,从而致死疟原虫【4】。 3.影响营养物质运输 红细咆内期原,虫被纳虫泡包.裹,许多管状饱从泡膜上突出出来、形成复杂的网络,伸向红细胞周边,是疟原虫获得外源性营养物质的通道,同时可运输包括青篙素类小分子药物通过,因此管状泡网被认为是感染疟原虫红细胞内能聚集大量青蒿素类药物的前提【5】。有人研究发现,青篙素类药物可破坏管状泡网的组成及膜结构,从而破坏其转运营养物质功能力。 二、生物化学及分子水平的研究 1.过氧桥与抗疟作用

青蒿主要药用成分青蒿素的衍生物是目前疗效最好抗药性最低

青蒿主要药用成分青蒿素的衍生物是目前疗效最好 抗药性最低 Newly compiled on November 23, 2020

广西青蒿(黄花蒿)产业发展规划 广西壮族自治区农业厅 二○○年五月

目录

青蒿主要药用成分青蒿素的衍生物是目前疗效最好、抗药性最低、应用前景最好的抗疟药物,而且青蒿素在深度开发方面也有很好的市场前景。广西是全国2个青蒿素产品主要产地之一,随着全球市场对青蒿素的需求量不断扩大,青蒿产业面临良好的发展机遇。抓住机遇,加大工作力度,把广西壮族自治区建设成为青蒿生产基地的意义非常重大。按照自治区主要领导同志提出的“把广西建设成为青蒿生产基地”指示,充分发挥广西壮族自治区优势和特色,把握机遇,加快发展,培植国民经济新的增长点,探索中草药现代化产业开发新途径,制订本规划。 一、青蒿产业的现状及发展前景 (一)WHO改变用药配方,青蒿素需求强劲 据世界卫生组织(WHO)统计报告,全世界每年急性疟疾患者达3亿人,每年死于该病的人数约200-300万,90%的死亡病人发生在非洲,其中5岁以下儿童超过90%。曾是抗疟疾特效药的奎宁,长期使用后会产生广泛抗药性。而青蒿素类药物经多方试验,证明其在抗氯喹原虫耐药株恶性疟等方面有特殊疗效,1990年在越南疟疾患区使用,治愈率达97%,受到患区当地政府和患者的普遍欢迎。 2001年12月中旬, WHO的一份公报指出“治疗疟疾的最大希望来自中国”,肯定青蒿类药物为治疗疟疾的“首选药物”。2004年2月,WHO确定将青蒿琥酯、蒿

甲醚等青蒿素类药物作为全球新一代抗疟药,同时针对青蒿类药物半衰期短,治疗期较长(7天),价格较高的问题,推荐治疗期较短(3天)、相对便宜的以青蒿类药物为基础的联合用药(简称ACTs疗法),逐步取代传统的治疗疟疾方案。目前全球已有40个国家选择了ACT作为官方治疗疟疾用药,其中有36个国家用其作为一线治疗药物,4个国家作为二线药物,其它还有14个以上国家最近正考虑改换成ACT药物。据WHO统计,2003年全球抗疟药销售额约15亿美元,青蒿类药物销售额约为其1%,青蒿类药物市场空间巨大,发展前景看好。 2004年11月16日,由联合国儿童基金会、WHO、全球基金在哥本哈根召开了“全球抗疟药供应商预认证”会议。在这次会议上正式公布了联合用药的推荐处方及会议主持者的采购量,WHO对2004年的联合用药(ACTs)政策做了调整:确定了4个处方作为替代奎宁类的抗疟推荐用药,进入公共采购目录的药物主要包括青蒿琥酯和蒿甲醚等,以青蒿琥酯为主的联合用药2005年国际组织、机构的部分采购金额(不包括疟疾区各国政府的采购)共计4000万美元,2006年为4800万美元。估计各国政府采购金额、商业公司采购金额不会低于国际组织、机构的采购金额。目前青蒿素用药缺口为每年总需求的40~60%,估计填补全球青蒿(黄花蒿)种植的空缺需要15~20年。

青蒿素的研究过程

青蒿素的研究过程 瑞典斯德哥尔摩当地时间10月5日中午11时30分,2015年诺贝尔生理学或医学奖揭晓,中国女药学家屠呦呦,以及另外两名科学家获了该奖项。屠呦呦也成为首位获得诺贝尔奖科学类奖项的中国人。屠呦呦的获奖则依靠的是被世卫组织成为最有效的抗疟疾药物青蒿素。 疟疾是一种古老的疾病,还是危害人类最大的疾病之一。公元前2700年,中国的古典医书《黄帝内经》描述了疟疾的相关症状:发热、寒颤、出汗退热等。疟疾对世界的危害实在太大,人们很早就开始致力于解开植物治疟的秘密。1820年,法国化学家皮埃尔-约瑟夫·佩尔蒂埃和约瑟夫-布莱梅·卡旺图合作,从金鸡纳树皮中分离出抗疟成分奎宁,但当时还不知道这种物质的化学结构。1907年,德国化学家P·拉比推导出奎宁的化学结构式;1945年,美国化学家罗伯特·伍德沃德和其学生威廉姆·冯·多恩合作,首次人工合成了奎宁,虽然他们的合成方法因昂贵而无法实现工业化,但这是有机化合合成历史上一个里程碑式的进步。在第二次大战期间,人们终于可以生产大量治疗疟疾的药物了。 然而不幸的是,在人类进步的过程中,疟疾也在进步着,在二次世界大战后,疟原虫产生了抗药性,东南亚地区爆发疟疾,同时越南爆发了越南战争,越南和美军的战士们均受到疟疾的困扰,越南政府求助于中国,中国决定研究抗疟疾的药物。 1967年5月23日,中国紧急启动“疟疾防治药物研究工作协作”项目,代号为“523”。1969年,屠呦呦被任命为“523”项目中医研究院科研组长。此前的研究工作都没有得到令人满意的进展,屠呦呦开始翻阅整理历代古书医籍,走访各地的老中医,最终整理出来了一张含有640多种包括青蒿素草药的《抗疟单验方集》。可在最初的实验中,青蒿的效果并不是很好,屠呦呦也一度陷入僵局。 然而她并没有放弃,她再一次将目光转向了中国古人的智慧上,她再一次查阅古医术,,葛洪《肘后备急方》中的几句话引起了她的注意:“青蒿一握,以水二升渍,绞取汁,尽服之。”这不禁让她想到,会不会是因为青蒿对温度比较敏感,问题或许出在了常用的“水煎”法上?于是她转换思路,采用低沸点的乙醚提取青蒿中的提取物,最终她得到了对疟原虫抑制率可达百分之百的提取物,被五二三办公室命名为青蒿素。 虽然发现了有效成分,这个项目却还没有结束,要将它作为药物使用,还有很多步要走。首先,就是要确定它的分子量和分子式,之后确定结构。而这并不是专攻中药学的屠呦呦所能做的了。最终经过众多科学家的努力,周维善小组最终测定出青蒿素的结构。之后,经过努力,他们又成功合成了青蒿素,至此抗疟疾药物的研究方可告一段落。 从青蒿素的研究过程中,我们不难发现,在科学研究过程中,我们会遇到层层困难,有时需要不断地实验,不断地完善想法,有时甚至需要的是另辟蹊径。同时,我们要意识到,青蒿素的发现不只是屠呦呦一个人的功劳,这有着五二三整个研究组的贡献,还有这更重要的周维善后续研究,才能使青蒿素成功成为抗疟疾的有效药物,才能使青蒿素走向世界,使中国的科研和中医向走向世界迈了重要一步。因此我们要明白,科学研究不是一个人的奋斗,而是需要合作与交流,需要和他人共同工作,才能成功。

人教版(2019)语文必修下册:7.1 青蒿素:人类征服疾病的一小步 教案

青蒿素:人类征服疾病的一小步 【教学目标】 知识目标: 1.了解屠呦呦和青蒿素的有关知识。 2.熟读文章,读准字音,理清文章结构,整体感知文本内容。 3.体味作者为科学献身的探究精神。 核心素养: 语言建构与运用:分析科学论著中所使用的说明方法,学习文本准确、严谨、富有逻辑性的语言。 审美鉴赏与创造:引导学生养成正确的科学观,明确兴趣在学习中的重要作用。 文化传承与理解:体会求真务实、艰苦探索、专注事业、勇于创新的女性力量,树立热爱祖国文化的观念。 【教学重难点】 了解屠呦呦的科学研究历程,探讨其中表现的思想内涵。 【教学过程】 一、导入 你知道吗?在治疗2020年爆发于中国武汉的“新冠”疫情的过程中,中医发挥了不可替代的巨大作用。中医是中国的国粹,也是世界医学宝库中的瑰宝。许多优秀的中医人才正在尽自己的努力继承、发展并充分利用中国传统医学这个瑰宝为全人类带来健康。大家知道,2015年的诺贝尔生理学或医学奖,颁给了一个中国本土从事中医药研究的科学家,她的名字叫做——屠呦呦。屠呦呦的主要作品:《青蒿及青蒿素类药物》、《抗疟新药——青蒿素》、《中药青蒿的正品研究》。 二、作者简介 屠呦呦,女,药学家,中国中医科学院终身研究员兼首席研究员,国家最高科学技术奖获得者,诺贝尔生理学或医学奖获得者。于1930年生于浙江宁波,其名字取自《诗经·小雅》中的诗句:“呦呦鹿鸣,食野之苹。”1951入北京大学医学院药学系学习,毕业后一直在中国中医研究院工作。屠呦呦多年从事中药和中西药结合研究,突出贡献是开创性地从中草药中分离出青蒿素应用于疟疾治疗。2015年,屠呦呦获得诺贝尔生理学或医学奖。她是首个获得诺贝尔

青蒿素的研究进展

青蒿素的研究现状 1 前言 青蒿素是一种倍半萜内脂类化合物[1],分子式为C15H22O5,有抗疟、抗孕、抗纤维化、抗血吸虫、抗弓形虫、抗心律失常和抑制肿瘤细胞毒性等作用[2]。目前,青蒿素用于疟疾防治的价值已被人类认识和接受,世界卫生组织已把青蒿素的复方制剂列为国际上防治疟疾的首选药物。青蒿素因其在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,传统提取方法一般采用有机溶剂法,后来又出现了超临界CO2萃取技术、超声提取技术、大孔吸附树脂提取技术、微波辅助萃取技术、快速溶剂萃取技术以及联用技术。 青蒿分布地域狭窄, 青蒿素含量低(0.01%~0.5%). 化学合成青蒿素产率不理想, 成本高. 随着全球疟疾发病率(3.8 亿人/年)和死亡率(4600 万人/年)逐年升高[3], 青蒿素类抗疟药需求量迅猛增长, 导致青蒿素原料药供不应求, 市场价格飙升[4]。近10 年来,为了从根本上解决青蒿素的供需矛盾, 国内外争相开展了青蒿素合成生物学及代谢工程研究, 一方面尝试在微生物体内重建青蒿素生物合成途径[5], 另一方面对青蒿中原有的青蒿素生物合成途径进行遗传改良[6]。我国在“九五”期间开展青蒿素的开发研究将具有可观的经济效益和社会效益。本文将对目前国际上青蒿素研究的现状从以下几个方面进行论述。

2青蒿素的发现及历史 青蒿入药, 最早见之于马王堆三号汉墓出土( 公元前168 年左右) 的帛书《五十二病方》,其后在《神农本草经》, 《大观本草》及《本草纲目》等均有收录。从历代本草及方书医籍的记载, 青蒿入药治疗疟疾是经过长期的临床实践经验所肯定的。在现代临床上用于对恶性疟疾、发热、血吸虫病、腔黏膜扁平苔藓、红斑狼疮、心律失常的治疗[7],并且对类风湿性关节炎的免疫有显著疗效[8]。 1971 年以来, 中医研究院青蒿素研究小组通过整理有关防治疾病的古代文献和民间单验方, 结合实践经验, 发现中药青蒿乙醚提取的中性部分具有显著的抗疟作用。在此基础上, 于1972 年从青蒿中分离出活性物质——青蒿素,在青蒿素药理实验的基础上, 人们又进行了大量的药理和临床疗效研究。1973 年9 月, 青蒿素首次用于临床, 到目前为止, 已有十几种衍生物的抗疟效果比青蒿素活性高出多倍。自我国开展有关青蒿素的研究后, 世界各国相继开展此方面的重复性研究, 获得的结果显示了抗疟的特效性。

《青蒿素:人类征服疾病的一小步》教案

《青蒿素,人类征服疾病的一小步》教学方案教学目标 1.引导学生在通读全文的基础上,理清文章的思路。 2.引导学生研读课文,按要求提取相关信息。 3.深入挖掘,体会并学习科学家们严谨求实的科学态度和勇于探索的科学精神。 教学重点 引导学生研读课文,按要求提取相关信息。 教学难点 深入挖掘,体会并学习科学家们严谨求实的科学态度和勇于探索的科学精神。 教学过程 一、导入 你知道吗?在治疗2020年爆发于中国武汉的“新冠”疫情的过程中,中医发挥了不可替代的巨大作用。中医是中国的国粹,也是世界医学宝库中的瑰宝。许多优秀的中医人才正在尽自己的努力继承、发展并充分利用中国传统医学这个瑰宝为全人类带来健康。大家知道,2015年的诺贝尔生理学或医学奖,颁给了一个中国本土从事中医药研究的科学家,她的名字叫做——屠呦呦。 二、作者简介 屠呦呦,女,药学家,中国中医科学院终身研究员兼首席研究员,国家最高科学技术奖获得者,诺贝尔生理学或医学奖获得者。于1930 年生于浙江宁波,其名字取自《诗经·小雅》中的诗句:“呦呦鹿鸣,食野之苹。”1951入北京大学医学院药学系学习,毕业后一直在中国中医研究院工作。屠呦呦多年从事中药和中西药结合研究,突出贡献是开创性地从中草药中分离出青蒿素应用于疟疾治疗。2015年,屠呦呦获得诺贝尔生理学或医学奖。她是首个获得诺贝尔科学奖项的中国科学家。2017年,屠呦呦获得2016年度国家最高科学技术奖。2018年,党中央、国务院授予屠呦呦“改革先锋”称号,颁授“改革先锋”奖章。 三、写作背景 师:大家课前都已经预习过了,谁能起来说说,屠呦呦是在什么时候什么情况下写的这

青蒿素的化学全合成.总结

青蒿素的合成与研究进展 摘要:青蒿素是目前世界上最有效的治疗疟疾的药物之一,存在活性好、毒副作用小、市场需求大、来源窄等特点。目前,青蒿素的获取途径主要有直接从青蒿中提取、化学合成和生物合成。本综述将针对近年来青蒿素的发展特点及合成方法进行论述。 关键词:青蒿素;合成方法;研究进展 青蒿素是中国学者在20世纪70年代初从中药黄花蒿( Artem isia annua L1 )中分离得到的抗疟有效单体化合物,是目前世界上最有效的治疗脑型疟疾和抗氯喹恶性疟疾的药物, 对恶性疟、间日疟都有效, 可用于凶险型疟疾的抢救和抗氯喹病例的治疗。青蒿素还具有抑制淋巴细胞的增殖和细胞毒性的用1;具有影响人体白血病U937细胞的凋亡及分化的作用2;还具有部分逆转MCF-7/ARD细胞耐药性作用3;还具有抑制人胃癌裸鼠移植瘤的生长的作用4;还具有一定的抗肿瘤作用5等。除此之外,青蒿素及其衍生物还具有生物抗炎免疫作用、生物抗肿瘤作用、抑制神经母细胞瘤细胞增殖的作用等。世界卫生组织确定为治疗疟疾的首选药物, 具有快速、高效、和低毒副作用的特征。6。因在发现青蒿素过程中的杰出贡献,屠呦呦先后被授予2011年度拉斯克临床

医学研究奖和2015年诺贝尔医学奖。 1 青蒿素的理化性质及来源 青蒿素的分子式为C15H22O5, 相对分子质量为282. 33。是一种含有过氧桥结构的新型倍半萜内酯,有一个包括过氧化物在内的1,2,4-三烷结构单元,它的分子中还包括7个手性中心,合成难度很大。中国科学院有机所经过研究,解决了架设过氧桥难题,在1983年完成了青蒿素的全合成。青蒿素也有一些缺点, 如在水和油中的溶解度比较小, 不能制成针剂使用等。 2 青蒿中提取青蒿素 青蒿素是从菊科植物黄花蒿中提取出来的含有过氧桥的倍半萜内酯类化合物,在治疗疟疾方面具有起效快、疗效好、使用安全等特点。目前主要的提取方法有溶剂提取法、超临界提取法、超声波萃取法、微波萃取法、其他萃取法等。2.1有机溶剂萃取青蒿素 水蒸气蒸馏(steam distillation,SD)法由于其具有设备简单,操作安全,不污染环境,成本低,避免了提取过程中有机溶剂残留对油质造成影响等特点,是有效提取中药挥发油的重要方法。有机溶剂提取法是目前青蒿中许多有效成分的提取目前仍然常用的方法,常用的溶剂有醇类(甲醇、乙醇

青蒿素的研究进展

青蒿素研究进展 摘要青蒿素是目前治疗疟疾的特效药。本文对自青蒿素发现以来的最新研究进展进行了比较详尽的综述。内容包括:青蒿素的发现及历史,青蒿素的来源,青蒿素的全合成,青蒿素的生物合成,青蒿素衍生物以及植物组织培养生产青蒿素。 关键词青蒿素青蒿素衍生物合成 Abstract The recent research advances in artemisinin, the most effective weapons againstmalarial parasites have been reviewed. An overview is given on artemisinin research from the following aspects:the history of artemisinin development, sources of artemisinin, total synthesisof artemisinin, biosynthesis of artemisinin, analogs of artemisinin and artemisinin production from plant tissue cultures. Key words artemisinin; artemisinin derivatives; synthesis 青蒿素(Artemisinin)是继氯喹、乙氨嘧啶、伯喹和磺胺后最热的抗疟特效药,尤其对脑型疟疾和抗氯喹疟疾具有速

效和低毒的特点,已成为世界卫生组织推荐的药品[1]。青蒿素的抗疟机理与其它抗疟药不同,它的主要作用是通过干扰疟原虫的表膜-线粒体功能[2,3],而非干扰叶酸代谢,从而导致虫体结构全部瓦解。目前药用青蒿素是从中药青蒿即菊科植物黄花蒿的叶和花蕾(Artemisia annua L.)中分离获得的。由于青蒿的采购、收获,直至工厂加工提取,环节较多,费时费力,且不同采集地和不同采集期青蒿品质有很大的差别,同时,大量采集自然资源,必然会破坏环境和生态平衡,导致资源枯竭。因此,为增加青蒿素的资源,世界各国都在加紧开展青蒿素及其衍生物的开发研究,长期稳定地和大量地供应青蒿素成为各国科学家面临的严峻考验。 由于青蒿素是抗恶性疟疾的特效药,目前的售价为225美元/g。近年的统计资料表明世界每年有近300万人死于疟疾,尤其是非洲的发病率极高,对青蒿素的需求量较大,世界 每年的需求量为150吨,而产量仅有15吨左右,形成明显的供不应求局面,我国在“九五”期间开展青蒿素的开发研究将具有可观的经济效益和社会效益。本文将对目前国际上青蒿素研究的现状从以下几个方面进行论述。 1.青蒿素的发现及历史 青蒿入药,最早见之于马王堆三号汉墓出土(公元前168年左右)的帛书《五十二病方》,其后在《神农本草经》,《大观本草》及《本草纲目》等均有收录。从历代本草及方书医

青蒿素生物合成的研究进展(1)

讲座与综述 一---……●……….-_--_……一青蒿素生物合成的研究进展 卢文婕 (广州中医药大学热带医学研究所,广东广州510405) 硎”_≯钞牟詹II:爹隧学诼 关键词青蒿素前体;生物合成;青蒿酸中图分类号:R284 文献标识码:A 文章编号:1671-0258(2009)02-0069-02 青蒿素(artemisinin)是我国自主开发的强效、低毒、无抗性抗疟特效药,尤其是治疗脑型疟疾和抗氯喹恶性疟疾的特效药。青蒿中的青蒿素含量在0.4%一1.0%之间,从天然青蒿中提取青蒿素难以满足市场需求,而青蒿素化学合成的工艺复杂、成本高、毒性大、产率低,至今未能实现工业化生产。目前,青蒿素的生物合成研究正方兴未艾[-|.利用青蒿素前体进行生物合成青蒿素的技术极有可能成为大规模生产青蒿素的重要手段。本文对青蒿素前体、青蒿素生 物合成路径、青蒿素生物合成的研究概况等方面做 一综述。 1青蒿素前体的研究 与青蒿素生物合成有关的中间体有十几种,其中最重要的是青蒿酸、青蒿素B、青蒿烯、二氢青蒿 素等。 1.1青蒿酸 青蒿酸在黄花蒿中含量高,具有适宜的化学构 象,是合成青蒿素及其衍生物的手性合成单体及前 体。1983年许杏祥等[2]最先研究了从青蒿酸前体到青蒿素的半合成,并于1986年报道了以R一(+)一2香草醛为原料.经14步合成青蒿素的合成途径。1983年SehmidG等[3]应用烯醇醚5在低温下光氧化反应中引进过氧基,完成了青蒿素的全合成。1988年。汪猷等[4]以青蒿酸为前体,用黄花蒿匀浆体系进行了青蒿素及青蒿素B的生物合成。实验过程中在匀浆中加入放射标记的青蒿酸,结果在青蒿素和青蒿素B中检测到放射性标记,故认为在由(2一-4C)一3’5一二羟基一3一甲基戊酸一8一内酯[(2_14C)一MVA]合成青蒿素和青蒿素B的过程中,青蒿酸是一种重要的中间产物。有研究报道,利用14C标记的青蒿酸和甲羟戊酸(Mevalonate,MVA)进行了青蒿素体内和体外的生物合成研究。得到了相似结论【5-6]。Jung M 等【7]的研究表明.青蒿酸在青蒿中的含量几乎为青蒿素的10倍,而且显示出同样的抗疟活性,由此进 [作者简介]卢文婕,女,在读硕士。从事中药生物工程研究 [收稿日期]2008—12—10 2009盆F-第10卷第2期 一步证实了青蒿酸是青蒿素合成过程的一种重要中 间体。1990年黄敬坚等【8]应用幼苗水插法和顶株扦 插法,在黄花蒿体内以(2-1^C)一MVA为前体,成功地合成了青蒿酸。1991年夏志强等【9j报道青蒿酸甲酯经溴化产生溴化物,再经氘解生成(15—2H)一青蒿酸甲酯,再经水解生成(15—2H)一青蒿酸,之后他们 又用同样方法合成了(15—3H)一青蒿酸。1994年 WeatherPJ等[m]在青蒿毛状根中检测到青蒿酸、青 蒿素B以及青蒿烯,故而认为青蒿酸、青蒿素B和 青蒿烯为青蒿素合成过程的中间体。2003年AbdinMz等…]亦证明了青蒿酸是青蒿素合成的中间体。 1.2青蒿素B 1987年AkihilaA等[6]报道了(3H.?4C一22)标记3RS—MVA到青蒿素和青蒿素B的转化。VergauweA等[12]认为利用基因工程手段得到的黄花蒿转基因植株.可通过刺激合成途径中某个关键酶的过量表达和抑制消耗青蒿素合成前体的其他代谢途径中的 关键酶来达到青蒿素稳定高产的目的。1996年BrownGDe¨]从青蒿的地上生长部分中分离出了新 颖的开环杜松烷和二羟基杜松交酯.用1H和BCC—NMR光谱学鉴定了其结构。并提出了由青蒿素B和 青蒿酸通过二羟基杜松交酯和4.5开环杜松烷的醇 烯互变体生物合成青蒿素的机理。青蒿素和青蒿素B均来源于青蒿酸,这与JungM和汪猷等得到的结 论一致。 1.3青蒿烯 1 994年Weather P J等[io]在发根农杆菌ATCC 15 834诱导的黄花蒿发根培养产物中检测到了青蒿烯。同年Brown G D[13J在研究由青蒿酸转化为青蒿素的 过程中,从青蒿中获得杜松烯,并推测经杜松烯合成脱氢青蒿素并最终合成青蒿素的生物合成途径。1.4二氢青蒿素 近年来,出现了以二氢青蒿素为前体原料的两种设计合成路线的方法,一种是将二氢青蒿素与三 氟乙酸酐反应制得三氟乙酰基二氢青蒿素,不经分

青蒿素类药物新剂型研究进展

科教论坛农村经济与科技2019年第30卷第12期(总第464期) 青蒿(Artemisia?carvifolia),别名草蒿,属菊科类一年生或二年生草本植物,青蒿素(Artemisinin)是20世纪70年代我国药学人员从菊科植物黄花蒿叶中提取的含过氧化基团结构的倍半萜内酯化合物。青蒿素的主要衍生物包括蒿甲醚(Artemethere)、蒿乙醚(Arteether)、青蒿琥酯(Artesunate)、二氢青蒿素(Dihydro?artemisinin)等。以往的报道中,青蒿素类药物主要以治疗疟疾为主,随着研究的不断深入,发现青蒿素类化合物还有许多的作用,如抗炎、抗孕、治疗艾滋病和肿瘤等。目前,临床上青蒿素类药物大量存在溶解度差、生物利用度低、首过效应高、疟原虫复燃率高、给药频繁等问题,因此,近年来青蒿素类药物的剂型研究便成为了热点。 随着制药科技的发展,很多新技术运用到青蒿素及其衍生物的制剂中来,为青蒿素多方面的治疗作用提供了可能的途径,其中,最受瞩目的为纳米制剂、固体分散体、包合物、微乳、经皮给药制剂。 1?纳米制剂 纳米给药系统为一系列粒径在纳米级的新型微小给药系统的统称,根据纳米颗粒分散运动状态及其性质的特殊性,纳米给药系统主要可以分为:纳米粒、脂质体、纳米乳、聚合物胶束、纳米混悬剂等。该系统具有良好的肿瘤靶向性,较长的体内循环时间,易被细胞摄取,可控制药物释放以及改善药物溶解度,增加药物稳定性等特点。 1.1?纳米乳 纳米乳(nano?emulsion)是由表面活性剂、助表面活性剂、油相、水相组成的一种稳定透明的胶体分散系统,?其粒径在10?~?100?nm之间。胡宏伟、刘根新等在研究用青蒿琥酯治疗牛、羊泰勒焦虫病及双芽焦虫病时,乳化剂选择聚山梨醇酯-80,助表面活性剂选择正丁醇,油酸乙酯为油相制备青蒿琥酯纳米乳注射剂。解决了青蒿琥酯在水中的溶解度不大,?口服不能避免肝脏的首过效应,?市售青蒿琥酯钠盐放置不稳定,?临床使用不方便的问题。 1.2?纳米粒 纳米粒(nanopartilcles,NP)由天然或合成高分子材料制成,是一种粒径介于1~100nm固态胶体粒子,包括纳米球(Nanospheres)和纳米囊(Nanocapsules)。活性组分(药物、生物活性材料等)能溶解、包裹于粒子内部,或者吸附、附着于粒子表面。?王霜用改良自乳化/溶剂扩散法将青蒿琥酯制成适用于人体可生物降解的纳米粒,并将肿瘤细胞表面特异性的可识别配体?Tf结合在载药纳米载体上,实现对肿瘤组织(细胞)的靶向治疗,?动物体内实验表明该新型纳米制剂具有血液及骨髓的靶向性。王东采用初生态微晶法制备了载有蒿甲醚的纳米胶囊,解决了蒿甲醚不溶于水、代谢快及利用率低的缺点,可显著提高药效。 1.3?纳米脂质体 纳米结构脂质载体(?nanostructured?lipid?carrier,?NLC)是以一定比例的液态油或其他不同的脂质(如卵磷脂、甘油三酯等)为载体,将药物包裹于类脂核中的固态胶体给药体系,粒径在50~1000?nm之间,?已被公认是一种新型的纳米给药系统。张晓云,赵鹏等采用动物肿瘤膜型研究双氢青蒿素纳米脂质载体与双氢青蒿素混悬液对肝癌瘤株的抑制作用,证实双氢青蒿素纳米脂质载体较普通混悬液对白血病细胞K562?及胶质瘤细胞U87?具有更强的增殖抑制作用,为开发高效低毒的双氢青蒿素抗癌药物提供依据。赵春霞,沈雪松等用青蒿琥酯纳米脂质体干预血管内皮生长因子(?VEGF)?及血管内皮细胞生长因子受体2(?VEGFR2)?在HepG2?中的表达,证明青蒿琥酯纳米脂质体能够抑制肿瘤血管的生成达到抗肿瘤作用,且作用强于青蒿琥酯原料药,有应用于肝癌治疗的潜在价值。 2?固体分散体 固体分散体是指药物高度分散在适宜的载体材料中类似于液体系统,形成的一种固态物质。固体分散体使得药物以无定型太、微晶态、分子分散态或胶体分散态存在,分散度很大,当与胃肠中液体接触后,溶出速度加快,药物的吸收加快,生物利用度提高。根据载体性质的不同和释药特点的不同,固体分散体又分为速释型固体分散体、缓控释型固体分散体和肠溶型固体分散体。 2.1?速释型固体分散体 速释型固体分散体是利用亲水性载体材料制备的固体分散体。药物在载体材料中高度分散,由于载体材料的亲水性,使 青蒿素类药物新剂型研究进展 李文婷1,2,张国丽2,张锐武2,段国蕾2,杨兆祥2 (1.楚雄医药高等专科学校,云南?楚雄?675005;? 2.昆药集团股份有限公司,云南?昆明?650106) [摘 要]青蒿素类的药物因为其抗疟疾的疗效为人熟知,随着研究的深入,青蒿素类化合物显现出多方面的临 床作用,近年来对肿瘤的治疗成为关注的热门,随之而来的剂型研究也成为了热点。随着制药科技的发展,新剂型与 新技术也运用到了青蒿素类药物的制剂过程中来,现查阅文献,对近年来国内外青蒿素类药物新剂型的研究进展进行 归纳总结。 [关键词]青蒿素;新剂型;抗肿瘤 [中图分类号]R284 [文献标识码]A [收稿日期]2019-04-01 -299-

相关文档
最新文档