电流互感器工作原理

电流互感器工作原理
电流互感器工作原理

电流互感器

1、原理

一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下:

120121I N I N I N ???

+=

在理想情况下,励磁电流为零,即互感器不消耗能量,则有

12120I N I N ??

+=

若用额定值表示,则

1212N N I N I N ??

=-

其中1N I ?

,2N I ?

为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,

12N N N

I K I =

P

P

Z B

电流互感器工作原理

I ?

22I N ?

22I ?

-01I N

电流互感器的等值电路如下图所示:

B

根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差?角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ?

,相位相差90?(滞后);则:

222()B E I Z Z ??

=+

式中 Z 2---二次绕组的内阻抗,

Z 2= R 2 +jX2

Z B ―――二次负荷,Z B =R B +jXB

二次电流的相位滞后于二次感应电动势α角。

22arctan B

B

X X R R α+=+

一次电流1I ?

是(2I ?

-)和

I ?

之和,一次电流与(2I ?

-)相差δ角。

可见由于励磁电流0I ?

的存在,一、二次电流在变换的大小和相位上都存在差别,这就是互感器的误差。

特别要注意,电流互感器在运行中不允许开路,如果二次开路,二次电流2I ?

为零,一次安匝全部用于励磁,铁心高度饱和,励磁磁通由正弦波变为平顶波,二次感应电动势变为峰值很高的尖顶波,对人

身和设备将造成危害。

二、电流互感器的分类

1、分类

2、电流互感器型号组成

特殊使用环境代号

电压等级

设计序号 产品型号字母

下表为部分电流互感器型号代表字母表

电流互感器型号代表字母及涵义

特殊使用环境代号主要有以下几种:

GY----高原地区使用;

W---污秽地区使用(W1、W2、W3对应污秽等级为Ⅱ、Ⅲ、Ⅳ);

TA----干热带地区使用;

TH----湿热带地区使用。

三、电流互感器的电气特性

1、术语

A、额定电流:电流互感器的误差性能、发热性能和过流性能都是以额定电流为基数作出的相应规定的。对一、二次绕组而言,就是额定一、二次电流。电力系统额定二次电流一般为1A、5A。

B、额定电流比:额定一、二次电流之比 K N=

1

2N N

I

I

C、额定二次负荷;确定互感器的准确级所依据的二次负荷。通常以视在功率VA表示。

S N =

22N

B I

Z

2、电流互感器的误差特性 2.1误差的定义

A 、电流误差

GB1208-87对电流误差的定义是

21

1

100%N K I I I γ-=?

从电流互感器的原理知道,由于励磁电流的存在,二次电流乘以额定电流比总是小于实际一次电流,所以电流互感器的误差总是负值,只有采取了补偿以后,才可能出现正值电流误差。

B 、相位误差

GB1208-87对相位误差的定义是:电流互感器的一次、二次电流相量的相位之差。从电流互感器相量图中可以看出,相位差是二次电流反转180?后与一次电流的相角之差。二次电流相量反转180?后超前于一次电流相量时,相位差为正值,通常以“分”或“厘弧度”表示。

1弧度(rad )=100厘弧度(crad )=3438分

特别注意相位差的定义只是在电流为正弦波形时是正确的。 C 、复合误差

当电流互感器通过很大电流时,铁心的磁通密度很高,励磁电流的波形畸变,二次电流也不再是正弦波,这时需要引入复合误差的概念。

GB1208-87对复合误差的定义是:在稳态时下列两个值之差的有

效值为复合误差

1) 一次电流瞬时值

2) 二次电流瞬时值与额定电流比的乘积。 复合误差以下式计算:

1

100

%I ε=

D 、仪表保安系数

仪表保安系数是针对测量用电流互感器的。仪表保安系数是额定仪表保安电流与额定一次电流之比。额定仪表保安电流是二次负荷为额定负荷时复合电流小于10%的最小一次电流值。

保护用和测量用电流互感器对复合误差的要求不同,保护用电流互感器在过流时要求复合误差误差要小,便于保护检测,而测量用电流互感器在过流时要求复合误差误差要大,便于保护二次仪表、电能表。

2、2保护用电流互感器误差(详见“白”P55~58)

GB1208-87对保护用电流互感器的误差要求如下: 机电保护用电流互感器的误差极限

随着高压、超高压和特高压电网的发展和电网传输容量加大,普通保护用电流互感器已经不能满足要求;提出保证暂态误差的电流互感器的概念。

“暂态—保护”类电流互感器的铁心要求、误差极限要求如下表:

2、3电流互感器的误差影响因素

根据误差定义和相量图,误差计算公式如下:

比值差:01

11

sin()100%I N f I N α?=-+? 相位差:0111

cos()3440

I N I N δα?=+?

转换成互感器的参数和负荷的关系上,则变为下面的公式:

42221122

2()10sin()100%

222()45()sin()100%B B I Z Z L f N S I N Z Z L N S α?μα?μ

+?=-+?+=-+?

4

2221122

2()10cos()3440

222()45()cos()3440B B I Z Z L N S I N Z Z L N S δα?μα?μ

+?=+?+=+?

式中I 2-----二次电流

Z 2 ---二次绕组内阻抗(Ω) Z B------二次负荷阻抗 N 2 ----二次绕组匝数 L-----平均磁路长度(cm ) S------铁心截面积(cm 2

μ------铁心材料的磁导率(H/cm ) I 1 N 1----一次绕组安匝(A )

电流互感器的误差影响因素主要有以下六项: A 、电流对误差的影响 B 、绕组的匝数对误差的影响 C 、平均磁路长度对误差的影响 D 、铁心截面积对误差的影响 E 、铁心材料对误差的影响 F 、二次负荷对误差的影响 2.3.1电流对误差的影响

当电流增大时,铁心的磁密按比例增大,这是铁心的磁导率和损耗角也随着增大,根据误差计算公式看出分母增加,电流互感器误差随着减小。但Sin (?+α)增大,cos (?+α)减小,因此电流互感器误差减小的少,相位差减小的多。 2.3.2绕组的匝数对误差的影响

从公式中可以看出,误差与二次绕组的匝数的平方成反比,增加了二次绕组的匝数能够减小误差;但增加了二次绕组的匝数,同时增加了二次绕组的内阻抗,在一定程度上限制了误差的减小;根据

2

1N N K N =

,同时也要增加一次绕组的匝数,从制造工艺和节省铜材的

角度,一次绕组应尽量少,多采用单匝;这种设计但当一次电流较小时,误差迅速增大,有时无法满足准确度等级要求。

2.3.3平均磁路长度对误差的影响

减小平均磁路长度,误差随着减小;并且可以节省铁心材料。磁路长度取决于铁心窗口的大小,缩小铁心窗口的面积,可以缩短磁路长度,但要保证一次、二次绕组以及它们之间的绝缘。

2.3.4铁心截面积对误差的影响

铁心截面积与误差成反比,一般来讲,增加铁心截面积可以减小误差,但是铁心截面积增加同时,增加了磁路长度,同时增加了二次绕组的阻抗,这些都大大的限制了误差的减小。

2.3.5铁心材料对误差的影响

铁心的磁导率与误差成反比。提高铁心的磁导率,可以缩小铁心的尺寸。一般来讲,铁心材料愈好,铁心的尺寸亦愈小,互感器价格就低。

用于电流互感器的铁心材料一般选高磁导率的材料.如坡莫合金、非晶、超微晶合金材料、微晶高导铁氧体簿和冷、热轧硅钢片等。2.3.6二次负荷对误差的影响

从误差公式中可以看出,误差与二次负荷成一定的正比关系。实际上当二次负荷增大,铁心的磁密增大,铁心的磁导率也略有增大。所以互感器的误差所二次负荷的增大而增大。

二次负荷的功率因数角增大,Sin(?+α)增大,cos(?+α)减小,因此二次负荷的功率因数角增大,比值差增大,相位差减小。

2.4电流互感器的误差补偿

δ

1/ I1N(%)

由于存在励磁电流和铁心损耗,未作补偿的电流互感器的误差必然是负值,上图是未补偿的电流互感器的误差曲线,多数情况下,(?+α)不超过90?,所以相位差为正值。

为使电流互感器的误差向正方向变化,就必须采取补偿措施。

下面介绍几种常用的补偿方法:

A、整数匝补偿

B、分数匝补偿

C、磁分路补偿

D、短路匝补偿

E、磁分路短路匝补偿

F、圆环磁分路电势补偿

G、电容补偿

2.4.1整数匝补偿(减匝补偿)

根据电流互感器的磁动势平衡公式

120121I N I N I N ???

+=,减少二次绕组的匝数,二次电

流增加以维持磁动势平衡,这样达到电流误差向正方向变化的目的。减匝补偿的计算公式为:

2100%b

b N

N f N =?

式中 N b ----补偿匝数,即二次绕组中减去的匝数;

N 2N ----额定二次匝数。

补偿后电流互感器的误差为 f 1 = f + f b 2.4.2分数匝补偿

在整数匝补偿的方法补偿值过大时,可以采用分数匝补偿,分数匝补偿有两种:

a 、 双铁心补偿或铁心穿孔补偿

b 、 双线或多线并绕补偿

双铁心实现分数匝补偿的原理是:电流互感器的铁心分成大小相同的两个,并在它们上面绕制二次绕组,其中有一匝只绕在一个铁心上,少绕绕组的铁心称之为辅助铁心;对整个铁心来讲,相当于少绕了半匝,这就得到半匝补偿。如果辅助铁心的截面积是整个铁心截面积的1/3,则得到三分之一补偿。分数匝补偿的误差计算公式是:

21

100%b b N S f N S

=??

式中 S b ----辅助铁心的截面积;

S----铁心的总截面积(两个铁心的截面积和)。

双铁心制作电流互感器有时不方便,可以在铁心上穿孔的办法实现分数匝补偿。同样少绕绕组的那部分铁心为辅助铁心,它的截面积是整个铁心截面积的1 /n ,就得到1/n 补偿。由于两个铁心的平均磁路长度不同,这种补偿的误差计算公式是:

21100%b b N b

S L

f N S L =???

式中 L b ----辅助铁心的平均磁路长度;

L----整个铁心的平均磁路长度。

如果二次绕组采用完全相同的两根导线并联绕制,且有一根导

线少绕一匝,相当于整个二次绕组少绕半匝,得到半匝补偿。补偿值按照下式计算:

2

100%2b

b N f N =?

如果采用两根不同线径的导线或不同材料的导线绕制,则它们

的内阻值不同,少绕少绕一匝的导线的电阻为R b ,另一根导线的电阻为R n ,则补偿值为:

21

100%n b n b

R f N R R =?+

整数匝补偿和分数匝补偿只对比值差起到补偿作用,对相位差基本不起作用。

2.4.3磁分路补偿

整数匝补偿和分数匝补偿对电流互感器误差的补偿是不变的。双铁心补偿中如果增加补偿匝数,在7%~10%额定电流时辅助铁心的导磁率和损耗角都达到或接近最大,对互感器误差的补偿也相应达到最大,这是我们所希望的,但由于电流互感器误差随电流的增加而减小,若电流达到10%~120%额定电流时,上述补偿可能反而使互感器的误差增加,此时必须减小辅助铁心的截面积,这时辅助铁心相当于一个磁分路,这种补偿方法称为磁分路补偿或小铁心补偿。磁分路补偿的特点是:7%~10%额定电流时,磁分路的导磁率和损耗角都最大,可以通过增减补偿匝数来达到。补偿数值的大小,可以通过增减磁分路的截面来调节。只要选择合适的补偿匝数和磁分路的截面,就可以使互感器误差显著减小,达到理想的补偿效果。下图为圆环磁分路补偿示意图

1 主铁心

3

磁分路

4 补偿匝数(只绕在主铁心上)

圆环磁分路的片数必须是整数片。磁分路的头尾必须搭接40~60mm,保证没有气隙。磁分路补偿对比值差和相位差都起作用。2.4.4短路匝补偿

在互感器的铁心上用导线绕1匝或2匝并短接,称为短路匝。一次安匝中除励磁安匝外,还增加了短路电流安匝,互感器的误差为励磁安匝和短路电流安匝之和。短路电流安匝对互感器的误差起到补偿作用,这种补偿称为短路匝补偿。

短路匝补偿补偿的数值为:

222211k k k B b N k N

I N N Z Z N R I N ε?

?

+=-

=-?

式中N k ----短路匝数;

R k ----短路匝内阻。

短路匝

从上述公式中发现,短路匝补偿对比值差和相位差的补偿均为负值,且与短路匝数的平方成正比,与二次绕组的匝数和短路匝的内阻成反比。

短路匝补偿主要用来补偿当二次负荷功率因数为0.8时互感器的相位差。短路匝补偿存在明显的缺陷,即当互感器出现过流时,短路匝容易被过流烧毁。 2.4.5磁分路短路匝补偿

电流互感器的相位差在5%~10%额定电流时,容易超出容许范围,采用短路匝补偿时,容易给互感器带来副作用,采用磁分路补偿对相位补偿效果不明显,人们引入在磁分路上绕制短路匝的办法,对相位差起到很好的补偿作用,这种方法称为磁分路短路匝补偿。圆环磁分路短路匝补偿示意图如下:

磁分路

主铁心

圆环磁分路短路匝补偿不仅对比值差起补偿作用,而且对相位差的补偿也很大。

2.4.5电容补偿

一般来讲,电流互感器是感抗元件,用电容补偿可以抵消感抗,减小励磁电流的无功分量,从而起到良好的误差补偿效果。电容补偿主要有:

A、并联电容补偿

B、附加绕组并联电容补偿

C、二次绕组正接附加绕组并联电容补偿

2.4.5.1并联电容补偿

二次绕组并联电容对误差的补偿为:

100b B cZ επ=

100100%b B f cX π=?

1003440b B cR δπ=-?(')

并联电容对比值差的补偿为正值,对相位的补偿为负值,并且与二次负荷阻抗值成正比,二次负荷增大,电流互感器的误差增大,并联电容对误差的补偿也增大,因而可以减弱二次负荷对互感器的误差的影响,是一种良好补偿手段。 2.4.5.2附加绕组并联电容补偿

附加绕组即在互感器的铁心上再绕制一个绕组并且并联电容器,这种设计对误差的补偿为:

2

322()100()b B N

N c Z Z N επ=+

2

322()100()100%b B N

N f c X X N π=+?

2

322()100()3440b B N

N c R R N δπ=-+?(')

附加绕组并联电容补偿的补偿值,除与并联电容和二次回路总阻抗值成正比外,还与附加绕组和二次绕组的匝数比的平方成正比;如果增加附加绕组的匝数,可以增大附加绕组并联电容补偿的补偿值。 2.4.5.3二次绕组正接附加绕组并联电容补偿

为了增大电容补偿的补偿值,将二次绕组正接附加绕组再并联电容,

示意图如下:、

附加绕组

二次绕组正接附加绕组并联电容补偿相当于二次绕组并联电容补偿和附加绕组并联电容补偿之和乘以二次绕组和附加绕组匝数之和与二次绕组匝数之比。

电流互感器的工作原理,民熔

电流互感器 是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中。 因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路 工作原理 在发电、变电、输电、配电和用电的线路中电流大小悬殊,从几安到几万安都有。 为便于测量、保护和控制需要转换为比较统一的电流,另外线路上的电压一般都比较高如直接测量是非常危险的。电流互感器就起到电流变换和电气隔离作用

对于指针式的电流表,电流互感器的二次电流大多数是安培级的(如5A等)。对于数字化仪表,采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。 电流互感器与变压器类似也是根据电磁感应原理 工作,变压器变换的是电压而电流互感器变换的是电流罢了。电流互感器接被测电流的绕组(匝数为N1),称为一次绕组(或原边绕组、初级绕组);接测量仪表的绕组(匝数为N2)称为二次绕组(或副边绕组、次级绕组)。

电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。电流互感器在额定电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。 Kn=I1n/I2n 电流互感器(Current transformer 简称CT)的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A 的电流转变为5A的电流。

电流互感器在变电运行中的应用

电流互感器在变电运行中的应用 摘要:在电力设备的运行状况,直接影响着整个电力系统的安全运行。为了对 电力设备的运行进行实施监控和检测,我们就需要电流互感器把一次系统的大电 流经过转化,成为小电流,以供保护装置以及测量仪表的使用。本为主要介绍了 电流互感器的构造、工作原理、饱和问题等等,说明变电运行中电流互感器的运用。 关键词:变电运行;电流互感器;应用 一、电流互感器概述 1、电流互感器的内部构造电流互感器是应用在电力系统中的,电流互感器的主要组成是闭合铁芯以及绕组。绕组区分为一次绕组还有二次绕组,被测电流与 一次绕组相连接,匝数只有1-2匝,匝数相对较少,通常和所测电路串联而成, 所以,电流流经也比较多;测量仪器通常与二次绕组相连接,匝数比一次绕组较多,保护回路与之相串联,例如:电流互感器的变比是400/5,这就表示可以把400A的电流转变为5A的电流。这是因为,在运行过程中,二次回路始终处于闭 合的状态,保护回路中的阻抗得以降低,这也就让电流互感器在运行时和短路的 时候相像。在电流互感器的运用过程中,接线方式必须运用串联的方法,二次侧 时要保持闭合的状态,如果在实验过程中开路,这就会致使铁芯磁化,使的线圈 被烧坏或者导致误差增加;在进行选择变比的时候,一定要与被测电流的大小相 结合后在做出合适的选择,并且二次侧一端一定要接地,以免增大误差。 2、产生误差分析在电流互感器中,内部的铁芯会产生励磁电流,所产生的励磁阻抗的性质为电抗,然而,二次负载的性质是阻抗,在电路中,不同的电阻在 经电流流过后,因为二次电动势的原因,其产生的相位以及幅值各不相同。根据 相关人士研究分析,在变电的运行过程中,如果是纯电阻,角误差最大,若是二 次负载是纯电感,那么角误差达到最小值,是零。如果二次阻抗为定值,那么励 磁阻抗与比误差成反比,即随着励磁阻抗的降低,比误差随之增大;若是励磁阻 抗为定值,那么二次阻抗与比误差成正比,即随着二次阻抗的增大,比误差随着 增大。应该注意的是,电流互感器的误差要求为:幅值的误差要小于 10%,并且 角度误差不能大于7°。 3、电流互感器饱和原因以及特征由于电流互感器内部的铁芯通常是不饱和的,因此励磁阻抗就比较大,而负载电阻和励磁电流就比较小,在这种情况下,便可 以把励磁电流忽略,这样,一次绕组和二次绕组就处于此时平衡的状态。而然, 当铁芯磁通密度逐渐增大直至饱和时,Zm就会随着饱和度的增加而快速下降, 这就会打破不同励磁电流之间的比例。而由于一次电流较大会引起铁芯的磁通密 度过大或者是由于二次负载过大从而导致铁芯磁通密度多大,这些都是导致电流 互感器饱和的原因。 二、电流互感器饱和状态下的影响及对策 1、对变压器保护的影响 1.1电压保护的依据变压系统中的重要设备就是变压器,变压器这种核心设备在变电运行中有举足轻重的作用,意义重大。从我国变电运行现状来看,对变压 器的容量要求较小,但是在安全性与可靠性方面对其要求极为严格。变压器通常 安装在35kV或者是10kV的母线上,出现低压或者是短路的情况,电流会变大, 系统短路电流和高压一侧的短路电流相等。变压器保护工作在实际应用中有非常 重要的地位,稍有差错,变压器的正常运行就有可能受到很大的阻碍,故障严重

电流互感器简单易懂的原理讲解

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直 接串联于电源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按 比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电流比: 。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变, 在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一

个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2 不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图4。 图4 不同变比电流互感器原理图 例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些

电流互感器使用注意事项

电流互感器使用注意事项 主要注意下面七个方面 1)电流互感器的接线应遵守串联原则 即一次绕阻应与被测电路串联 而二次绕阻则与所有仪表负载串联。 2)按被测电流大小 选择合适的变化 否则误差将增大。同时 二次侧一端必须接地 以防绝缘一旦损坏时 一次侧高压窜入二次低压侧 造成人身和设备事故 3)二次侧绝对不允许开路 因一旦开路 一次侧电流I1全部成为磁化电流 引起φm和E2骤增 造成铁心过度饱和磁化 发热严重乃至烧毁线圈;同时 磁路过度饱和磁化后 使误差增大。电流互感器在正常工作时 二次侧近似于短路 若突然使其开路 则励磁电动势由数值很小的值骤变为很大的值 铁芯中的磁通呈现严重饱和的平顶波 因此二次侧绕组将在磁通过零时感应出很高的尖顶波 其值可达到数千甚至上万伏 危机工作人员的安全及仪表的绝缘性能。 另外 二次侧开路使E2达几百伏 一旦触及造成触电事故。因此 电流互感器二次侧都备有短路开关 防止一次侧开路。如图l中K0 在使用过程中 二次侧一旦开路应马上撤掉电路负载 然后 再停车处理。一切处理好后方可再用。 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等

装置的需要 在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2 8个二次绕阻的电流互感器。对于大电流接地系统 一般按三相配置;对于小电流接地系统 依具体要求按二相或三相配置 5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如 若有两组电流互感器 且位置允许时 应设在断路器两侧 使断路器处于交叉保护范围之中 6)为了防止支柱式电流互感器套管闪络造成母线故障 电流互感器通常布置在断路器的出线或变压器侧。 7)为了减轻发电机内部故障时的损伤 用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障 用于测量仪表的电流互感器宜装在发电机中性点侧。

电流互感器介绍(典藏版)

电流互感器

一.基本概念和基本原理 1.基本概念 互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。 电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。 电流互感器主要分为两大类:测量级互感器和保护级互感器。 电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A,这样可以减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是: a. 传递信息供给测量仪表、仪器或继电保护、控制装置; b. 使测量、保护和控制装置与高电压相隔离; c.有利于测量仪器、仪表和保护、控制装置的小型化、标准化。 测量级互感器:专门用于测量电流和电能的电流互感器。 如:3、1、、、、、、、、、、1M、2M 保护级互感器:专门用于继电保护和自动控制的电流互感器。 如:5P、10P、C类互感器(如C800)、5PR、10PR、PX、X、PS、PL 、TPX、TPY、TPS 铁心开气隙的目的:控制剩磁 铁心需开气隙的电流互感器:5PR、10PR、TPY 执行标准: 国标:GB 1208-2006 电流互感器 GB 16847-1997 保护用电流互感器暂态特性技术要求 国际标准:IEC 60044-1、IEC 60044-6 其它国家标准:IEEE/、CAN3-C13、AS 、BS等

600/1A的CT二次匝数为600÷1=600

3.套管型电流互感器的基本参数及基本常识 额定电流比: 例1:300-400-600/5A,即表示此互感器有三个变比,其额定一次电流分别为300、400及600A,额定二次电流为5A,二次匝数应分别为60、80及120匝。 S1-S2:300/5、60匝 S1-S3:400/5、80匝 S1-S4:600/5、120匝 例2:600/5MR、C800 (美国标准IEEE Std ) MR:多变比 C类互感器:相当于10P20 800:二次端电压(V) C800:相当于10P20、200V A 出线标记――X2-X3 50/5 10匝 X1-X2 100/5 20匝 X1-X3 150/5 30匝 X4-X5 200/5 40匝 X3-X4 250/5 50匝 X2-X4 300/5 60匝 X1-X4 400/5 80匝 X3-X5 450/5 90匝 X2-X5 500/5 100匝 X1-X5 600/5 120匝 20匝10匝50匝40匝 X1X2X3X4X5 准确级要求

电压和电流互感器原理及结构

电压互感器: 工作原理: 其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

上图中两个尖尖一个接电压,一个接地,就形成了一次绕组,类似变压器,再有二次绕组接出来即可以。对于三个单相的电压互感器来说,每一相一端都接地,就形成了三相星型连接方式,这个接地就是PT的一次接地,即工作接地,主要作用是将中性点电位统一拉到地电位。使对地相对电压能准确统一的测量。 二次绕组必须接地,是安全接地,即:为防止高低电压绕组间绝缘击穿造成设备和人身事故,二次侧必须接地。 电磁式电压互感器

电容式电压互感器 为了获得理想的电压源,在网络中串入非线性补偿电感线圈L;为抗干扰,减少互感器开口三角形绕组的不平衡电压,提高零序保护装置的灵敏度,增设一个高频阻断线圈L’,为了抑制谐振的产生,常在互感器二次侧接入D阻尼器。

变电运行中电流互感器的运用浅析

变电运行中电流互感器的运用浅析 发表时间:2018-10-19T09:44:35.320Z 来源:《电力设备》2018年第18期作者:崔鹏磊[导读] 摘要:在改革开放的新时期,我国的国民经济的得到快速的发展,人们的生活水平得到了显著的提升,我国对于电力的需求在不断的加大,介绍了一起220kV电流互感器金属膨胀器冲顶缺陷。 (大庆油田化工有限公司甲醇分公司供电车间黑龙江大庆 163000) 摘要:在改革开放的新时期,我国的国民经济的得到快速的发展,人们的生活水平得到了显著的提升,我国对于电力的需求在不断的加大,介绍了一起220kV电流互感器金属膨胀器冲顶缺陷。通过对电流互感器开展例行试验、诊断性试验及解体检查,确定电流互感器由于中间屏绝缘纸未完全干燥,导致运行过程中发生低能放电,产生大量气体,造成金属膨胀器冲顶。最后对预防该缺陷发生提出了相关的措 施与建议。 关键词:变电;电流互感器;运用 引言 电流互感器作为电力系统中的关键部件,其属于高压设备,对电力系统的安全稳定运行起到重要的保障作用。随着电力系统的发展,电路传输的容量不断提升,随之电压等级也在不断升高,传统电磁式电流互感器已经无法在继续承受较大的容量与电压负荷。为了满足现代电力系统发展的需求,电子式电流互感器要逐渐替代电磁式电流互感器,成为电力系统中的主要传感设备,担负起推动电力事业发展的责任。 1电流互感器的原理 电流互感器是根据电磁感应原理制成的一种测量电流的仪器,它是将一次侧大的电流经过转化变成二次侧小电流的。电流互感器的组成也很简单,是由闭合的铁心和绕组构成的。而对于电流互感器本身来说,它的一次侧的绕组匝数少,二次侧的绕组匝数比较多;使用时一次侧绕组需要串联使用,串联在需要测量的电流线路里,二次侧同样也是串联,需要串联在测量仪表和起保护作用的电路中,而且当电流互感器运行工作的时候,它的二次侧回路是闭合的,这样的话,因为测量的仪表和保护电路的电阻很小,所以此时电流互感器的状态可以看做是短路。 2使用原则 一是电流互感器的接线应遵守串联的原则也就是说一次侧绕组与应该被测的电路采取串联的方式,二次侧绕组与所有的仪表设备采取负载串联的方式。二是根据被测电路电流的大小,调整出一个合适的变比,不然的话会使误差增加。而且二次侧绕组的一侧必须要与地连接,避免因为电流互感器里的绝缘物的损坏,造成设备出现问题,严重的话还可能出现人身事故。三是无论是按照规定还是理论来说,二次侧绕组都不能开路,因为一旦二次侧绕组来路的话,一次侧绕组通过的电流将会转化为磁化的电流,这样的后果最终可能会导致整个电流互感器发热发烫甚至会烧毁线圈。上面提到了电流互感器在正常运行的时候,二次侧绕组与仪表设备和继电器等设备的电流线圈应该串联使用,又因为仪表和继电器等设备的电流线圈的电阻很小,所以二次侧就会产生一种就像是短路的状态。值得注意的是因为电流互感器的二次侧绕组都备有短路的开关,以免出现特殊情况使二次侧绕组开路,这样被触到的话会造成触电事故的。还有就是一旦二次侧绕组开路,要立刻去掉该电路的负载,然后立刻关掉电闸再处理突发情况,解决好故障后才能继续使用,不然会出现重大事故的。四是在实际情况中为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等设备的需要,会在发电机、变压器、出线和母线的地方进行装置分段断路器、母断和旁断的断路器等的回路电路中设两个到八个二次侧绕组的电流互感器。五是出于保护设备的目的,那些保护用电流互感器的装置地应该采取以消除主保护装置的原则来设计。比如说这里两组电流互感器,在装置地能够满足的地对于情况下,最后设在断路器的两边,这样能够使断路器处于交叉的保护范围内。六是为了避免支柱式电流互感器因形状的性出现的套管闪络而使母线出现故障的问题,这种情况下电流互感器通常装在断路器的出线位置。七是当电力设备运行时,发电机的内部经常出现这样那样的故障,我们为了减缓运行故障的伤害,此时电流互感器应该布在发电机定子绕组的出线以侧。而且为了更好的分析和发现发电机的故障,如果是用于测量仪表的电流互感器就可以装置在发电机的中性点一侧。 3对电流保护的影响 3.1电流保护的依据 在电力系统中,将电压的等级分为500kV、220kV、110kV、10kV等。其中的10kV电气设备的电流一般很小,尤其是远离电源的时候电力系统本身的阻抗会越来越大的,因为10kV的电压系统的话短路电流是随着系统规模的改变而改变的,通常情况下会是一次额定电流的几百倍,甚至会有造成成电流互感器出现饱和状态。还有,短路的电流中的不同期的分量不仅会使电流互感器的饱和速度加快,还会使感应电流变小的,在这个时候如果采用由主变低压侧开关来解决故障的话,不但使拖延了时间,还会使断电的范围扩大,影响电力系统的供电。使电力运行设备的安全失控。 3.2电流保护对策 说起电流互感器的饱和,能够真正导致电流互感器饱和的有两种,当电流互感器处于严重饱和时,原来一次电流就会转为励磁电流,这样二次感应电流和电流继电器的电流就转为了零,一旦为零,保护装置就发挥作用了,会立刻出现拒绝反应,而出于保护的目的,可以采取以下方式:一是选择电流互感器的时候不要选择变比小的互感器,要选择合适的互感器,同时要充分考虑线路出现短路时,电流互感器的饱和;二是要避免增加二次负载阻抗,尽量减少二次的负载阻抗,另外可以通过缩小二次电缆的长度来保护电流互感器。 4在智能变电站中的运用 电子式互感器作为智能化一次设备,它的应用是智能变电站的重要标志之一。而对于电子式互感器的智能化研究,关键在于采样值通信接口问题以及一、二次设备功能集成的问题。IEC61850标准作为变电站自动化系统(SAS)中第一套全面的通信规约,其对电子式互感器带来的作用及影响可概括为以下几个方面:(1)互操作性要求。在IEC61850中,互操作性指的是智能装置(intelligentelectronicdevice,IED)间的通信接口标准化,即来自不同生产厂家的IED可以在同一个网络中交换信息。互操作性是电力公司、设备供应商和标准制定机构共同的目标,所有的通信都必须允许来自多个供应商提供的IED装置实现无缝连接并成为整体,故电子式互感器的通信接口需要符合互操作性这一要求。 (2)合并单元。合并单元定义在IEC60044-8中有详细说明,其作用在于给电子式互感器提供了数字化接口。合并单元同步收集多路采样值信息,并将相应采样值(SMV)报文发送至间隔层的保护、测量二次设备。

第二章电流互感器基础学习知识原理

第二章 电流互感器原理 电流互感器是一种专门用作变换电流的特种变压器。在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器的工作原理示于图2-1。互感器的一次绕组串连在电力线路中,线路电流就是互感器的一次电流。互感器的二次绕组外部回路接有测量仪器、仪表或继电保护、自动控制装置。在图2-1中将这些串联的低电压装置的电流线圈阻抗以及连接线路的阻抗用一个集中的阻抗Z b 表示。当线路电流,也就是互感器的一次电流变化时,互感器的二次电流也相应变化,把线路电流变化的信息传递给测量仪器、仪表和继电保护、自动控制装置。 根据电力线路电压等级的不同,电流互感器的一、二次绕组之间设置有足够的绝缘,以保证所有低压设备与高电压相隔离。 电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电 流变换成较小的标准电流值,一般是5A 或1A ,这样可以减小仪表和继电器的尺寸,简化其规格。所以说电流互感器的主要作用是:①给测量仪器、仪表或继电保护、控制装置传递信息;② 使测量、保护和控制装置与高电压相隔离;③ 有利于测量仪器、仪表和继电保护、控制装置小型化、标准化。 第一节 基本工作原理 1. 磁动势和电动势平衡方程式 从图2-1看出,当一次绕组流过电流1I &时,由于电磁感应,在二次绕组中感应出电 动势,在二次绕组外部回路接通的情况下,就有二次电流2I &流通。此时的一次磁动势为一次电流1I &与一次绕组匝数N 1的乘积11N I &,二次磁动势为二次电流2I &与二次绕组匝数 N 2的乘积22N I &。根据磁动势平衡原则,一次磁动势除平衡二次磁动势外,还有极小的一 部分用于铁心励磁,产生主磁通m Φ&。因此可写出磁动势平衡方程式 102211N I N I N I &&&=+,A (2-1) 式中 1I &? 一次电流,A ; 2I &? 二次电流,A ; 0I &? 励磁电流,A ; N 1 ? 一次绕组匝数; 图2-1 电流互感器工作原理图 1?一次绕组 2?铁心 3?二次绕组 4?负荷 2

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

电流互感器介绍(典藏版)

电流互感器 基本概念和基本原理 1.基本概念 互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。 电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。 电流互感器主要分为两大类:测量级互感器和保护级互感器。电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A ,这样可以 减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是: a. 传递信息供给测量仪表、仪器或继电保护、控制装置; b. 使测量、保护和控制装置与高电压相隔离; c. 有利于测量仪器、仪表和保护、控制装置的小型化、标准化。 测量级互感器:专门用于测量电流和电能的电流互感器。

女口:3、1、0.5、0.2、0.1、0.5S、0.2S 0.1S、0.3、0.6、1.2、1M、2M 保护级互感器:专门用于继电保护和自动控制的电流互感器。 女口:5P、10P、C 类互感器(如C800)、5PR、10PR、PX、X、PS PL、TPX、TPY、TPS 铁心开气隙的目的:控制剩磁 铁心需开气隙的电流互感器:5PR、10PR、TPY 执行标准: 国标:GB 1208-2006 电流互感器 GB 16847-1997 保护用电流互感器暂态特性技术要求 国际标准:IEC 60044-1、IEC 60044-6 其它国家标准:IEEE/C57.13、CAN3-C13、AS 60044.1、BS 等

型号说明: 2. 基本原理 P1-P2:互感器的原边,即一次绕组。 套管型电流互感器:一次绕组匝数为 1匝(即高压套管); 独立式电流互感器:一次绕组为1匝或多匝(如供上海ABB 产品、间隙电流互 感器)。 S1-S2:互感器的副边,即二次绕组。 Rct :互感器二次绕组直流电阻(折算到 75C ); Z :额定二次负荷,用VA 或Ω表示,功率因数cos φ =0.8(没有特殊指定时); 套管型电流互感器常用计算公式: 额定二次匝数Z 2=额定一次电流÷额定二次电流 女口: 600/5A 的 CT 二次匝数为 600÷ 5=120 600/1A 的CT 二次匝数为600÷仁600 3. 套管型电流互感器的基本参数及基本常识 3.1额定电流比: 51 52 I2 RCt '般为 5A 或 1A JL Z 压匝 T

电流互感器基础知识

电流互感器的基本原理 1.1 电流互感器的基本等值电路如图1所示. 图1 电流互感器基本等值电路 图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流,,Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组 电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗 电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电 流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一 次电流之比等于一次绕组与二次绕组匝数比。 即:IpN1=IsN2 Is=Ip×N1/N2=Ip/Kn 1.2. 电流互感器极性标注 电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。 由于电流方向相反,且铁心中合成磁通为零。因此得下式: N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。 推出:Is=N1/N2*Ip 可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。这正是减极性标注的优点。 1.3. 电流互感器的误差 在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以在图1中看到。实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁

电流互感器异常运行的处理

电流互感器异常运行的处理 1.电流互感器运行声音异常: 1) 电流互感器在运行中发生声音异常的原因有: ①铁芯松动,发出不随一次负荷变化的“嗡嗡”声;此外半导体漆涂刷的不均钥成内部电晕以及夹铁螺钉松动等也会使电流互感器产生较大声响。 ②某些离开叠层的硅钢片,在空载或轻负荷时,会有一定的“嗡嗡”声。 ③二次回路开路。 2) 电流互感器运行声音异常的处理: ①在运行中,若发现电流互感器有异常声音,可从声响、表计指示及保护异常倒等情况判断是否二次回路开路;若是,则可按二次回路开路的处理方法进行处理。 ②若不属于二次回路开路故障,而是本体故障,应转移负荷并申请停电处理。 ③若声音异常较轻,可不立即停电;但必须加强监视,同时向上级调度及主管汇报,安排停电处理。 2.电流互感器过负荷及处理 电流互感器不允许长时间过负荷运行。电流互感器过负荷一方面可使铁芯磁通密度到饱和或过饱和,使电流互感器误差增大,测量不准确,不容易掌握实际负荷;另一方由于磁通增大,使铁芯和二次绕组过热、绝缘老化快甚至出现损坏等情况。当发现电流互感器过负荷时,应立即向调度汇报,设法转移负荷或减负荷。 3.内部故障的处理 1) 隔离故障电流互感器。 2) 隔离故障电流互感器,在未停电之前,禁止在故障的电流互感器二次回路工作。 3) 故障的电流互感器停电后,应将该电流互感器的二次侧所接保护及自动装停用。 4) 电流互感器着火,切断电源后,用干粉、1211灭火器灭火。 5) 故障的电流互感器在停电前应加强监视。 6) 故障的电流互感器在停电前应加强监视。 7) 电流互感器在以下情况应立即停用:

①电流互感器发热,温度过高,甚至冒烟起火。 ②电流互感器内部有“噼啪”声或其他噪声。 ③电流互感器内部引线出口处有严重喷油、漏油现象。 ④电流互感器内部发出焦臭味且冒烟。 ⑤绕组与外壳之间或引线与外壳之间有火花放电,电流互感器本体有单相接地。 4.二次回路开路的处理 电流互感器一次电流的大小与二次负荷的大小无关。互感器正常工作时,由于阻抗很小,接近于短路状态,一次电流所产生的磁化力大部分被二次电流所补偿,总磁通密度不大,二次绕组电势也不大。当电流互感器二次开路时,其二次阻抗无限大,二次绕组电流等于零,二次绕组磁化力等于零,总磁化力等于原绕组的磁化力。也就是一次电流完全变成了励磁电流,使电流互感器的铁芯骤然饱和,并在二次侧感应出很高的电压,甚至高达数千伏,危及人身及设备的安全。同时,二次开路还将使铁芯过热,使绕组温度过高而加速老化,甚至烧毁电流互感器。 1)引起电流互感器二次回路开路的原因: ①交流电流回路中的接线端子接触不良,造成开路。 ②检修工作中失误,误断开了电流互感器二次回路,或对电流互感器本体试验后未将二次接线接上等。 ③二次线端子触头压接不紧,回路中电流很大时,发热烧断或氧化过热而造成开路。 ④室外端子箱、接线盒受潮,端子螺钉和垫片锈蚀过重,接触不良或造成开路。 2)电流互感器二次开路的后果 ①由于磁通饱和,电流互感器的二次侧产生数千伏的高压,对二次绝缘构成威胁,对于设备和运行人员产生危险。 ②由于铁芯的骤然饱和,铁芯损耗增加,电流互感器严重发热,可能损坏绝缘。 ③将在铁芯中产生剩磁,使电流互感器的比差和角差增大,影响计量的准确性。 3)电流互感器二次开路的现象 ①有功、无功功率表指示不正常,电流表三相指示不一致,电能表计量不正常。 ②监控系统相关数据显示不正常。

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

变电运行中电流互感器(CT)二次回路开路问题的分析

变电运行中电流互感器(CT)二次回路开路问题的分析 摘要在变电运行中,电流互感器二次回路开路对电网的安全运行有着严重的影响,所以在电力系统中电流互感器二次回路开路是必须杜绝的,根据二次回路开路的原因,提出对其的处理措施,并进行分析。 关键词变电运行;电流互感器;二次回路;开路;处理措施 电流互感器(CT)是变电运行中一种特殊的变换器,可以使电网中的一次大电流转换成和其成正比的二次小电流,输入到变电运行自动装置或测量仪表中。因此,电流互感器二次回路开路问题对于电力安全、稳定运行有很大的影响。 1 电流互感器二次回路开路的原因 根据多个工作现场的实际情况,造成电流互感器二次回路开路的原因如下:1)交流电流回路中的电流端子,由于结构或质量上的缺陷造成开路。例如 一个220kV 变电所220kV母联电流互感器端子箱内部分电流端子的连接片出现细小的裂纹,导致B相CT 出现较大的异常声响的情况出现。后来查明这是由于该端子箱采用的电流端子的质量不过关,在用力紧固连接片螺丝的过程中,连接片出现肉眼不宜发现的裂痕,导致电流回路负载增大,CT出现异常声响。经更换合格的电流端子后,消除了上述缺陷。还出现过因电流实验端子的接线螺丝本身不带弹簧垫,导致螺丝松动,造成电流回路接触不良,使该端子片及相邻端子片严重烧损,继续运行必然造成开路。 2)外部环境的影响。由于户外端子箱、电流互感器二次端子接线盒长期处在风吹雨淋的环境下,电流接线端子易受潮,端子螺栓和垫片发生严重锈蚀,长期运行导致电流互感器二次回路开路。 3)工作人员的失误。如工作中电流端子接线螺丝未拧紧或工作后忘记恢复已打开的电流端子,造成电流二次回路开路。当电流互感器一次电流较大时,将引起开路点处电流端子绝缘击穿,端子排烧毁等情况。还有就是在运行的电流互感器二次回路上工作,误打开运行的电流回路造成开路。 2 CT二次回路不得开路和二次负载要小的原因 电流互感器一次绕组匝数少,使用时一次绕组串联在被测线路里,二次绕组匝数多,与测量仪表和继电器等电流线圈串联使用,测量仪表和继电器等电流线圈阻抗很小,所以正常运行时CT 是接近短路状态的。电流互感器在正常运行时,二次电流产生的磁通势起去磁作用,励磁电流很小,铁芯中的总磁通很小,二次绕组的感应电动势不超过几十伏。如果二次侧开路,二次电流的去磁作用消失,其一次电流完全变为励磁电流,使铁芯高度饱和,加之二次绕组的匝数较多,会在二次绕组两端产生很高(可达数千伏甚至上万伏)的电压,严重威胁二次设备

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

电流互感器的工作原理

电流互感器的工作原理 在供电用电的线路中电流大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 目前显示仪表大部分是指针式的电流表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 电流互感器由一次线圈、二次线圈、铁心、绝缘支持及出线端子等组成,如图1所示。 电流互感器的铁心由硅钢片叠制而成,其一次线圈与主电路串联,且通过被测电流I1,它在铁心内产生变磁通,使二次线圈感应出相应的二次电流I2(其额定电流为5A)。如将励磁损耗忽略不计,则I1n1=I2n2,其中n1和n2分别为一、二次线圈的匝数,电流互感器的变流比K=I1/I2=n2/n1。由于电流互感器的一次线圈连接在主电路中,所以一次线圈对地必须采取与一次线路电压相相适应的绝缘材料,以确保二次回路与人身的安全。二次回路由电流互感器的二次线圈、仪表以及继电器的电流线圈串联组成。 电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 一、测量用电流互感器 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。测量用电流互感器主要要求: 1、绝缘可靠, 2、足够高的测量精度, 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。 二、保护用电流互感器 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。保护用互感器主要要求: 1、绝缘可靠, 2、足够大的准确限值系数, 3、足够的热稳定性和动稳定性。 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P,表示在额定准确限值一次电流时的允许误差5%、10% 线路发生故障时的冲击电流产生热和电磁力,保护用电流互感器必须承受。二次绕组短路情况下,电流互感器在一秒内能承受而无损伤的一次电流有效值,称额定短时热电流。二次绕组短路情况下,电流互感器能承受而无损伤的一次电流峰值,称额定动稳定电流。 保护用电流互感器分为: 1、过负荷保护电流互感器, 2、差动保护电流互感器, 3、接地保护电流互感器(零序电流互感器)。 diandao999

相关文档
最新文档