克莱姆法则及证明

克莱姆法则及证明
克莱姆法则及证明

第7节克莱姆(Cramer)法则

一、线性方程组

元线性方程组是指形式为:

(1)

的方程组,其中代表个未知量,是方程的个数,,;

称为方程组的系数,称为常数项。

线性方程组的一个解是指由个数组成的有序数组,当个

未知量分别用代入后,式(1)中每个等式都成为恒等式。方程组(1)的解的全体称为它的解集合,如果两个线性方程组有相同的解集合,就称它们是同解方程组。

为了求解一个线性方程组,必须讨论以下一些问题:

(1).这个方程组有没有解?

(2).如果这个方程组有解,有多少个解?

(3).在方程组有解时,解之间的关系,并求出全部解。

本节讨论方程的个数与未知量的个数相等(即)的情形。

二、克莱姆法则

定理1(克莱姆法则)如果线性方程组

(2)

的系数行列式:

那么这个方程组有解,并且解是唯一的,这个解可表示成:

(3)

其中是把中第列换成常数项所得的行列式,即

分析:定理一共有3个结论:方程组有解;解是唯一的;解由公式(3)给出。因此证明的步骤是:

第一,把代入方程组,验证它确实是解。这样就证明了方程组有解,并且(3)是一个解,即证明了结论与。

第二,证明如果是方程组(2)的一个解,那么一定有

。这就证明了解的唯一性,即证明了结论。

证明:先回忆行列式的一个性质,设阶行列式,则有:

接下来证明定理。首先,证明(3)确实是(2)的解。将行列式按第列展开得:

其中是行列式中元素的代数余子式。现把

代入第个方程的左端,得:

这说明将(3)代入第个方程后,得到了一个恒等式,所以(3)是(2)的一个解。

其次,设是方程组(2)的一个解,那么,将代入(2)后,得到个恒等式:

(4)

用系数行列式的第列的代数余子式依次去乘(4)中个恒等式,得到:

将此个等式相加,得:

从而有:。这就是说,如果是方程组(2)的一个解,那么一定有,所以方程组只有一个解。

三、齐次线性方程组

在线性方程组中,有一种特殊的线性方程组,即常数项全为零的方程组,称为齐次线性方程组。显然,齐次线性方程组总是有解的,因为就是它的解,这个解

称为零解;其他的,即不全为零的解(如果还有的话),称为非零解。所以,对于齐次线性方程组,需要讨论的问题,不是有没有解,而是有没有非零解。这个问题与齐次线性方程组解的个数是有密切关系的。如果一个齐次线性方程组只有零解,那么这个方程组就只有唯一解;反之,如果某个齐次线性方程组有唯一解,那么由于零解是一个解,所以这个方程组不可能有非零解。

对于方程个数与未知量个数相同的齐次线性方程组,应用克莱姆法则,有

推论1 如果齐次线性方程组

(5)

的系数行列式不等于零,那么(5)只有零解。

推论2齐次线性方程组

有非零解的必要条件是它的系数行列式等于零。

四、例子

例1解线性方程组

解:方程组的系数行列式:

所以根据克莱姆法则,这个线性方程组有唯一解。又因

所以这个线性方程组的唯一解为:

例2解线性方程组

解:方程组的系数行列式:

所以根据克莱姆法则,这个线性方程组有唯一解。又因

所以这个线性方和组的唯一解为:

例3已知三次曲线在四个点处的值分别为:,试求其系数。

解:将三次曲线在4点处的值代入其方程,得到关于的线性方程组:

它的系数行列式是范德蒙行列式:

所以根据克莱姆法则,这个线性方程组有唯一解。又因

所以,即所求的三次曲线方程为。

例4如果齐次线性方程组

有非零解,那么必须满足什么条件?

解:由克莱姆法则知,齐次线性方程组有非零解的必要条件是其系数行列式等于零,因此有

又由:,从而必须满足的条件为。

注用克莱姆法则求解系数行列式不等于零的元非齐次线性方程组,需要计算

个阶行列式,它的计算工作量很大。实际上关于数字系数的线性方程组(包括系数行列式等于零及方程个数和未知量个数不相同的线性方程组)的解法,一般都采用后续章节介绍的方法来求解。克莱姆法则主要是在理论上具有重要的意义,特别是它明确地揭示了方程组的解和系数之间的关系。

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

克莱姆法则及证明

第7 节克莱姆(Cramer)法则 一、线性方程组 元线性方程组是指形式为: 的方程组,其中代表个未知量,是方程的个数,, 称为方程组的系数,称为常数项。 线性方程组的一个解是指由个数组成的有序数组,当个 未知量分别用代入后,式(1)中每个等式都成为恒等式。方程组(1)的解的全体称为它的解集合,如果两个线性方程组有相同的解集合,就称它们是同解方程组。 为了求解一个线性方程组,必须讨论以下一些问题: (1). 这个方程组有没有解? (2). 如果这个方程组有解,有多少个解? (3). 在方程组有解时 , 解之间的关系 , 并求出全部解。 本节讨论方程的个数与未知量的个数相等(即)的情形。 二、克莱姆法则 定理 1 (克莱姆法则)如果线性方程组 的系数行列式:

接下来证明定理。首先,证明 3)确实是(2) 的解。将行列式 按第 列展开得: 那么这个方程组有解,并且解是唯一的,这个解可表示成: 其中 是把 中第 列换成常数项 所得的行列式,即 方程组有解; 解是唯一的; 解由公式(3)给出。 因此证明的步骤是: 有解,并且(3)是一个解,即证明了结论 与 。 第二,证明如果 是方程组(2)的一个解,那么一定有 。这就证明了解的唯一性,即证明了结论 。 3) 代入方程组,验证它确实是解。这样就证明了方程组 证明:先回忆行列式的一个性质,设 阶行列式 第一,把 ,则有:

其中是行列式中元素的代数余子式。现把 代入第个方程的左端,得: 这说明将(3)代入第个方程后,得到了一个恒等式,所以(3)是(2)的 一个解。 其次,设是方程组(2)的一个解,那么,将代入(2)后,得到个恒等式: 4) 用系数行列式的第列的代数余子式依次去乘(4)中个恒等式,得到:

克拉默(Cramer)法则

§7 克拉默(Cramer)法则 现在应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量个数相等的情形. 定理4 如果线性方程组 ?????? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 222212*********,, (1) 的系数矩阵 ?? ?? ? ? ? ??=nn n n n n a a a a a a a a a A 2 1 22221 11211 (2) 的行列式 0||≠=A d 那么线性方程组(1)有解,并且解是唯一的,解可以通过系数表为 d d x d d x d d x n n === ,,,2211 , (3) 其中j d 是把矩阵A 中第j 列换成常数项n b b b ,,,21 所成的矩阵的行列式,即 .,,2,1,1,1,1 21 ,221,22111,111 ,111 n j a a b a a a a b a a a a b a a d nn j n n j n n n j j n j j j == +-+-+- (4) 定理中包含着三个结论:1)方程组有解;2)解是唯一的;3)解由公式(3)给出.这三个结论是有联系的,因此证明的步骤是: 1. 把),,,( 2 1d d d d d d n 代入方程组,验证它确是解. 2. 假如方程组有解,证明它的解必由公式(3)给出. 定理4通常称为克拉默法则. 例1 解方程组

?????? ?=+-+-=+-=--=+-+. 0674,522,963,85243 2143 24214321x x x x x x x x x x x x x x 应该注意,定理4所讨论的只是系数矩阵的行列式不为零的方程组,它只能应用于这种方程组;至于方程组的系数行列式为零的情形,将在下一章的一般情形中一并讨论. 常数项全为零的线性方程组称为齐次线性方程组.显然齐次方程组总是有解的,因为)0,,0,0( 就是一个解,它称为零解.对于齐次线性方程组,我们关心的问题常常是,它除了零解以外,还有没有其它解,或者说,它有没有非零解.对于方程个数与未知量个数相同的齐次线性方程组,应用克拉默法则就有 定理5 如果齐次线性方程组 ?????? ?=+++=+++=+++0 ,0,0221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a (10) 的系数矩阵的行列式0||≠A ,那么它只有零解.换句话说,如果方程组(10)有非零解,那么必有0||=A . 例2 求λ在什么条件下,方程组 ?? ?=+=+0 , 02121x x x x λλ 有非零解. 克拉默法则的意义主要在于它给出了解与系数的明显关系,这一点在以后许多问题的讨论中是重要的.但是用克拉默法则进行计算是不方便的,因为按这一法则解一个n 个未知量n 个方程的线性方程组就要计算1+n 个n 级行列式,这个计算量是很大的.

全等三角形截长补短拔高练习(含答案)

八年级数学全等三角形辅助线添加之截长补短 (全等三角形)拔高练习 试卷简介:本讲测试题共两个大题,第一题是证明题,共7个小题,每小题10分;第二题解答题,2个小题,每小题15分。 学习建议:本讲内容是三角形全等的判定——辅助线添加之截长补短,其中通过截长补短来添加辅助线是重点,也是难点。希望同学们能学会熟练通过截长补短来做辅助线,进而构造出全等的三角形。 一、解答题(共1道,每道20分) 1.如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且AE=(AD+AB).问:∠1和∠2有何关系? 答案: 解:∠1+∠2=180° 证明:过点C作CF⊥AN于点F,由于AC平分∠NAM,所以CF=CE,则在Rt△ACF和Rt△ACE 中 ∴△ACF≌△ACE(HL),∴AF=AE,由于2AE=AD+AB,所以AB-AE=AF-AD ∴DF=BE,在△CFD和△CEB中所以△CFD≌△CEB(SAS),∴∠2=∠FDC,又∠1+∠FDC=180°,∴∠1+∠2=180°。 解题思路:见到角平分线就要想到作垂直,找到全等关系是解决此类问题的关键 易错点:找到三角形全等的所有条件

试题难度:四颗星知识点:三角形 二、证明题(共8道,每道10分) 1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD. 答案: 延长CE交BA的延长线于点H,由BE平分ABC,BE CE,得CE=EH=CH。 又1+H=90°,,2+H=90° 1= 2 在△ACH和△ABD中 HAC=DAB=90° AC=AB 1= 2 △ACH≌△ABD(ASA) CH=BD CE=CH=BD 解题思路: 根据题意,要证明CE=BD,延长CE与BA,由题意的垂直平分线可得CE的两倍长CH,只需证明CH=BD即可,很显然有全等可以证明出结论 易错点:不能正确利用题中已知条件BF平分∠ABC,CE⊥BD于E,做出辅助线,进而解答。试题难度:三颗星知识点:全等三角形的判定与性质 2. 如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

截长补短法例题精编版

截长补短法 例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中, ? ? ?==CD AD DF DE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°. 分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造. 证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2 ∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中, ? ? ?==BP BP PD PE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD . ∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE . F E D C B A 图1-2 A B C D P 12 N 图3-1 P 12 N A B C D E 图3-2 A B C D 图1-1

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

经典截长补短法巧解

截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长补短法有多种方法。 截长法: (1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。…… 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。……例: H P G F B A C D E 在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证) H P G F B A C D E 方法二(好证不好想) H M P G F B A C D E 例题不详解。

(第2页题目答案见第3、4页) F E D C A B (1)正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o 。 求证:EF=DE+BF (1)变形a E F D C A B 正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o 。 请问现在EF 、DE 、BF 又有什么数量关系? (1)变形b E F D C A B 正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o 。 请问现在EF 、DE 、BF 又有什么数量关系? (1)变形c j F E A B C D 正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。DB=DC ,∠BDC=120o 。请问现在EF 、BE 、CF 又有什么数量关系? (1)变形 d F E D C A B 正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o 。AD=3 求?AEF 的面积 (1)解:(简单思路)

几何证明中的截长补短法

平面几何中截长补短法的应用 授课内容:湘教版九年级上册《证明》授课教师:张羽茂授课时间: 讲评内容:证明中的“截长补短法”。 讲评目标:1、通过讲评,查漏补缺,解决几何证明中截长补短法的应用。 2、规范学生证明过程的书写格式。 3、通过讲评提高审题能力,总结解题方法和规律。 讲评重点:规范学生证明过程的书写格式 讲评难点:通过讲评,查漏补缺,解决图形中截长补短法的应用。教具准备:黑板、学生作业本 讲评过程: 一、谈话导入 1、公布全班的整体成绩。 2、表扬进步的学生。 二、讲评 如图,在△ABC中,AD平分∠BAC,∠ B=2∠C,求证:AB+BD=AC. 方法一:(截长法) 方法二:(补短法) 三、课堂练习

1.已知:如图,在正方形ABCD 中,AB=4, AE 平分∠BAC.求AB+BE 的长。 四、课后拓展 1.正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45。 求证:EF=DE+BF 。 五、板书设计 如图,在△ABC 中,AD 平分∠BAC,∠B=2∠C,求证:AB+BD=AC. 已知:如图,在正方形ABCD 中,AB=4,AE 平分∠BAC.求AB+BE 的长。 正方形ABCD 中,点E 在CD 上,点在BC 上,∠EAF=45。求证:EF=DE+BF

六、教学反思与总结 截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。 截长:1.过某一点作长边的垂线 2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。 补短:1.延长短边 2.通过旋转等方式使两短边拼合到一起。 教师工作: 采集信息-----归类点评、指导纠借-----适时检测、落实纠错 学生操作: 作业分析---个体纠借---集体纠错---针对补偿---(依据答案)主动纠错---思考领悟---针对纠错---主动补偿---消除薄弱 教学流程: 作业分析——个体纠错——集体纠错——针对补偿——课堂小结。

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

截长补短与倍长中线法证明三角形全等

1.截长补短法证明三角形全等 例1已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证: AE=AD+BE 练习1如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 AC-AB=2BE 2.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证: 3如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求 证:AD+BC=AB. P C E D B A

4在△ABC 中,?=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D , MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ?≌CEB ?;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. 6.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由 例2已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 例1. 练习已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD . 求证:∠BAP +∠BCP =180°. A B C D 图1-1 A P 1 2 N

2、倍长中线法证三角形全等 例1 、求证:三角形一边上的中线小于其他两边和的一半。 练习 1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 例2.已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 练习2已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 例3已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交 F E C A B D F E D A B C

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

(完整版)克拉默法则教案

克拉默法则 教学目标 1.线性方程的相关概念 2.克拉默法则 教学重点 克拉默法则及其应用 教学难点 克拉默法则的证明 教学方法 讲授法 教学过程 一、导入 前面我们学习了行列式的计算方法,我们也知道,二、三元线性方程组可以用二、三阶行列式求解。在此基础上我们要研究用n 阶行列式来解含n 个未知量n 个方程的线性方程组。 二、新课 n 个未知量n 个方程的线性方程组 ()?????? ?=+++????????????=+++=+++12211222212111212111n n nn n n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛ 利用方程组(1)的系数构成一个n 阶行列式 nn n n n n a a a a a a a a a D Λ M O M M ΛΛ 21 22221112 11 = 称为方程组(1)的系数行列式。 定理(克拉默法则) 若含有n 个未知量n 个方程的线性方程组(1)的系数行列式D 不等于零,则方程组(1)有且仅有一个解,且解为: ()2.,,,2211D D x D D x D D x n n =?== 其中j D ),,2,1(n j Λ=是把行列式D 的第j 列的元素换成以方程组(1)的常数项 n b b b ,,,21Λ而得的n 阶行列式。

说明:定理中包含三个结论 (1)方程组有解 (2)解是唯一的 (3)解由公式(2)给出 这三个结论是有联系的,因此证明的步骤是: 1.把 D D D D D D n ,,,2 1?代入方程组,验证它确是解 2.假如方程组有解,证明它的解必由公式(2)给出。 证明: (一)证明(2)是(1)的解,即 i n in i i b D D a D D a D D a =+++Λ2211 ),,2,1(n i Λ= 或02211=----n in i i i D a D a D a D b Λ ).,,2,1(n i Λ= 为此,将系数行列式D 添加一行一列,得1+n 阶行列式 nn n n n n n in i i i a a a b a a a b a a a b a a a b D Λ M O M M M ΛΛΛ2 1222 212112 111210= ),,2,1(n i Λ=. 把0D 按第一行展开,得 n n n in i i i i D a D a D a D a D b D 1 1 132413213121211110) 1() 1()1()1()1()1()1()1(-++++++--++--+--+-+-=Λ .2211n in i i i D a D a D a D b ----=Λ 在0D 中有两行元素完全相同,所以.00=D 因此 02211=----n in i i i D a D a D a D b Λ ).,,2,1(n i Λ= 即(2)是(1)的解。 (二)证(2)是(1)的唯一解. 设i i c x =),,2,1(n i Λ=是(1)的一个解,即 i n in i i b c a c a c a =+++Λ2211 ).,,2,1(n i Λ=

几何证明的好方法截长补短

几何证明的好方法——截长补短 有一类几何题其命题主要是证明三条线段长度的“和”或“差”及其比例关系。这一类题目一般可以采取“截长”或“补短”的方法来进行求解。所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系。所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等。然后求出延长后的线段与最长的已知线段的关系。有的是采取截长补短后,使之构成某种特定的三角形进行求解。 截长法: (1)过某一点作长边的垂线 (2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。…… 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。…… 几种截长补短解题法类型 我们大致可把截长补短分为下面几种类型; 类型①a±b=c 类型②a±b=kc 类型③ ±a b c 类型④c2=a·b 对于类型①,可采取直接截长或补短,绕后进行证明。或者化为类型②证明。 对于②,可以将a±b与c构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30°的直角三角形等。 对于类型③,一般将截长或补短后的a±b与c构建在一个三角形中,与类型②相同。实际上是求类型②中的k值。 对于类型④,将c2=a·b化为c a = b c 的形式,然后通过相似三角形的比例关系进 行证明。在证明相似三角形的过程中,可能会用到截长或补短的方法。例:

B A 在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系 方法一(好想不好证) B A 方法二(好证不好想) B A M 例题不详解。 (第2页题目答案见第3、4页)

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;? ??≥<=∞→时当不存在,时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,)(x g ~

第三讲克拉默法则与矩阵的概念

§1.6 克拉默法则 含有n 个未知数n x x x ,,,21 的n 个线性方程的方程组 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111,, (1) 与二、三元线形方程组相类似,它的解可以用n 阶行列式表示,即有 1、克拉默法则:如果线形方程组(1)的系数行列式不等于零,即 ,01111≠=nn n n a a a a D 那么,方程组(1)有唯一解 ,,,,2211D D x D D x D D x n n === (2) 其中),,2,1(n j D j =是把系数行列式D 中的j 列的元素用方程组右端的常数项代替后所得到的n 阶行列式,即 .1,1,1,1,1111 111nn n n n n n j a j a b j a a a j a b j a a D +-+-= 例1 解线性方程组???? ?????=+-+-=+-=--=+-+0674,522,963,852432143 24214321x x x x x x x x x x x x x x 解 ,2727332770103531277212135712 770212060311357067412120603115122321242122=---=-------==----=-----==-----=++--c c c c r r r r D

,1086 7012 15060911 582,81674021256039151821-=-----==------=D D ,270 7415 12090318 512,27604125206931181243=-----=-=---=D D 于是得 .1,1,4,34321=-=-==x x x x 2、定理1: 如果线形方程组(1)的系数的系数行列式0≠D ,则(1)一定有解,且解是唯一的. 3、定理2(定理1的逆否定理):如果线性方程组(1)无解或有两个不同的解,则它的系数行列式必为零. 4、定义:线性方程组(1)右端的常数项n b b b 、、、 21不全为零时,线形方程组(1) 叫做非齐次线性方程组,当n b b b 、、、 21全为零时,线形方程组(1)叫做齐次线性 方程组. 5、定理3:如果齐次线形方程组的系数行列式0≠D ,则齐次线形方程组只有非零解. 推论:如果齐次线形方程组有非零解,则它的系数行列式必为零. 例2 问λ取何值时,齐次线形方程组 ?? ???=-+=-+=++-0)4(2,0)6(2,022)5(z x y x z y x λλλ (1) 有非零解? 解:若齐次线形方程组(1)有非零解,则(1)的系数行列式0=D 而

相关文档
最新文档