微带线阶梯型阻抗变换器(50ohm到100ohm)设计with HFSS

微带线阶梯型阻抗变换器(50ohm到100ohm)设计with HFSS
微带线阶梯型阻抗变换器(50ohm到100ohm)设计with HFSS

1◆已知介质基片厚度h=1mm 、相对介电常数r =4.4、工作频率0f =2.4GHz 2◆计算得1w =1.912mm

2w =1.012mm 3w =0.442mm 2l =17.572mm

取1l =3l =3mm 介质基片宽度w =22mm 3◆HFSS 建模如下图

仿真得到理想结果曲线时的模型的尺寸数据

width of substrate height of ground height of substrate

width of the strip whose function is to convert the impedance length of the strip whose function is to convert the impedance height of strip

width of the strip whose impedance is 100 ohm length of the strip whose impedance is 100 ohm length of the strip whose impedance is 50 ohm width of the strip whose impedance is 50 ohm width of port

4◆仿真结果

仿真结果在下一页。仿真结果很好,但与后来网分仪的结果差别很大。不过从网分仪上看出此次所做的实物还是实现了在2.4GHz 频率信号下做阻抗变换的功能,同时可观察到该器件在2.556GHz 信号下效果最好。

11S

12S

5◆制作的实物

6◆网分仪结果

7◆计算贴片尺寸所用的程序的代码

#include

#include

#define PI 3.1415926

void main()

{

double c=300000000.0;

double f0;

double Z0,Er,h,LEN,Ee,t;

double w,wz,A,B,bijiao;//不能写w'

while(1)

{

printf("导带厚度t=(毫米)");

scanf("%lf",&t);

printf("工作频率f0=(赫兹)");

scanf("%lf",&f0);

printf("特性阻抗Z0=(欧姆)");

scanf("%lf",&Z0);

printf("相对介电常数Er=");

scanf("%lf",&Er);

printf("介质基片厚度h=(毫米)");

scanf("%lf",&h);

if(t==0.0)

{

bijiao=44.0-2*Er;

if(Z0>bijiao)

{

A=Z0*(sqrt(2.0*(Er+1)))/119.9+(Er-1)*(log(PI/2.0)+(log( 4.0/PI))/Er)/(2.0*Er+2.0);

w=h/((exp(A))/8.0-1/(4.0*exp(A)));

Ee=(Er/2.0+1.0/2.0)/pow((1-(log(PI/2.0)+(log(4.0/PI))/Er) *

(Er-1)/(2.0*A*(Er+1))),2);

}

if(Z0

{

B=PI*PI*59.95/(Z0*sqrt(Er));

w=h*((B-1-log(2*B-1))*2.0/PI+(Er-1)*(log(B-1)+0.293- 0.517/Er)/(PI*Er));

Ee=(Er+1)/2+(Er/2.0-1.0/2)*pow((1+10*h/w),(-0.555)); }

LEN=c*1000/(4.0*f0*(sqrt(Ee)));

printf("导体宽度w=%lf毫米\n",w);

printf("等效介电常数Ee=%lf\n",Ee);

printf("导体长度LEN=%lf毫米\n",LEN);

}

else

{ bijiao=44.0-2*Er;

if(Z0>bijiao)

{

A=Z0*(sqrt(2.0*(Er+1)))/119.9+(Er-1)*(log(PI/2.0)+(log(

4.0/PI))/Er)/(2.0*Er+2.0);

Ee=(Er/2.0+1.0/2.0)/pow((1-(log(PI/2.0)+(log(4.0/PI))/Er)*( Er-1)/(2.0*A*(Er+1))),2);

wz=h/((exp(A))/8.0-1/(4.0*exp(A)));

if(wz>(h/(2*PI)))

w=wz+(1+log(2*h/t))*t/PI;

else

w=wz+(1+log(4*PI*wz/t))*t/PI;

}

if(Z0

{

B=PI*PI*59.95/(Z0*sqrt(Er));

wz=h*((B-1-log(2*B-1))*2.0/PI+(Er-1)*(log(B-1)+0.293-

0.517/Er)/(PI*Er));

if(wz>(h/(2*PI)))

w=wz+(1+log(2*h/t))*t/PI;

else

w=wz+(1+log(4*PI*wz/t))*t/PI;

Ee=(Er+1)/2+(Er/2.0-1.0/2)*pow((1+10*h/w),(-0.555));

}

LEN=c*1000/(4.0*f0*(sqrt(Ee)));

printf("导体宽度w=%lf毫米\n",w);

printf("等效介电常数Ee=%lf\n",Ee);

printf("导体长度LEN=%lf毫米\n",LEN);

}

printf("\n");

}

}

8◆一切经历都是财富

我仿真完全是在用数据去试。改变任何一个数据,甚至是感觉无关的数据如1l、3l和边界尺寸,即使只

改动0.1mm,

11

S也会有明显的变化。但他的变化似乎没有规律,例如1l=2mm时画出一条11

S曲线,改为1

l=2.1mm时,曲线的波谷向右边移动了,再改为

1

l=2.2mm时,波谷跑到第一条曲线的波谷的左边去了。

理论没学到家吧。

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

阶梯波发生电路的设计

阶梯波发生电路的设计 实验三阶梯波发生电路的设计 一、实验目的 1、掌握阶梯波发生器电路的结构特点。 2、掌握阶梯波发生器电路的工作原理。 3、学习复杂的集成运算放大器电路的设计。二、实验要求 1、设计一个能产生周期性阶梯波的电路,要求阶梯波周期在18ms左右,输出电压范 围10V,阶梯个数5个。(注意:电路中均采用模拟、真实器件,不可以选用计数器、555 定时器、D/A转换器等数字器件,也不可选用虚拟器件。) 2、对电路进行分段测试和调节,直至输出合适的阶梯波。 3、改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的 元器件。三、实验原理 1、阶梯波发生器原理 要设计阶梯波发生电路,首先要设计好方波发生电路,然后通过微分电路,这是会得 到上下均有尖脉冲的波形。这是要只取上面的尖脉冲,就需通过限幅电路滤除下半部分的 波形。当这些脉冲经过积分累加电路时,一个尖脉冲累加为一个固定的值,下一个脉冲到 来时又会增加同样的一个值,于是输出形成了阶梯波形。当累加结果没有超过比较器的阈 值时,会一直累加下去。而达到门限后,比较器输出电压翻转,输出正电压使振荡控制电 路工作,使方波停振,同时积分电容对地短路放电,电容器恢复起始状态累加结束。而在 电容放电之后,积分器输出由负值向零跳变,使比较器又一次翻转,振荡电路不能工作, 比较器输出变为负 阶梯波发生原理框图 2、实验原理图 阶梯波原理图 四、实验过程 1、电路设计 (1)方波发生电路设计 设计电路如图3.03所示,从图3.04所示的示波器中可读出方波的周期为3.774ms。 方波发生电路 方波波形 (2)微分电路设计

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

4.3负阻抗变换器

4.3负阻抗变换器的应用 实验报告要求 1.(1)RL=500Ω RL=500Ω U1/V 0.5 1 1.5 2 2.5 3 -R 的平均值(Ω) UR1/V -1.04 -2.02 -3.04 -4.04 -5.06 -5.6 -499.0124542 I1/mA -1.04 -2.02 -3.04 -4.04 -5.06 -5.6 -R/Ω -480.7692308 -495.049505 -493.4210526 -495.049505 -494.0711462 -535.7142857 RL=1000Ω U1/V 0.5 1 1.5 2 2.5 3 -R 的平均值(Ω) UR1/V -0.5 -0.98 -1.48 -1.97 -2.47 -3 -1010.215975 I1/mA -0.5 -0.98 -1.48 -1.97 -2.47 -3 -R/Ω -1000 -1020.408163 -1013.513514 -1015.228426 -1012.145 749 -1000

2.负内阻的电压源的伏安特性曲线 Rs=30 0Ω RL/Ω 3 5 7 9 15 30 70 90 无穷 U2/V 5.48 5.24 5.15 5.07 5.03 4.99 4.95 4.94 4.93 UR2/V -1.85 -1.04 -0.74 -0.33 -0.23 -0.16 -0.06 -0.02 -0.01 I2/mA 1.85 1.04 0.74 0.33 0.23 0.16 0.06 0.02 0.01 Rs=1k Ω RL/Ω 3 5 7 9 15 30 70 90 无穷 U2/V 7.39 6.16 5.74 5.54 5.27 5.09 4.99 4.97 4.92 UR2/V -2.46 -1.23 -0.82 -0.61 -0.35 -0.17 -0.07 -0.06 0 I2/mA 2.46 1.23 0.82 0.61 0.35 0.17 0.07 0.06

EDA实验四阶梯波发生器电路的设计说明

实验四阶梯波发生器电路的设计 一、实验目的 1. 熟悉Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用方法掌握常用电路分析方法。 2. 能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。 3.熟练掌握有关阶梯波电路设计的方法,并应用相关知识来分析电路,掌握组 成阶梯波电路的各个部分的电路的在阶梯波电路中的作用,深刻体会阶梯波的调节方法,做到理论和实践相结合,加深对知识的理解。 二、实验要求 (1)设计一个能产生周期性阶梯波的电路,要求阶梯波周期在20ms左右,输出电压围10V,阶梯个数5个。(注意:电路中均采用模拟、真实器件,不可以选用计数器、555定时器、D/A转换器等数字器件,也不可选用虚拟器件。) (2)对电路进行分段测试和调节,直至输出合适的阶梯波。 (3)改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压围和周期的元器件。 三、实验步骤 1.实验所用的总电路图如下图1所示:

图1 电路输出的波形如下图2和图3所示:

图2 图3 由上面两幅图可以看出阶梯波的周期为T=23.899mS,阶梯个数为5个,输出电压 为10.024V符合实验要求。 本实验所用的电路由方波发生电路、微分电路、限幅电路、积分累加器、比较

器、电子开关电路、振荡控制电路和电源等八部分电路组成,各个部分的关系可 由 下框图所示: 振荡控制电路 输出方波发生器微分电路限幅电路积分累加电路比较器 电源电子开关电路 2.电路工作原理 ①方波发生器电路 方波发生器电路如下图4所示: 图4

实验所用方波发生电路产生的方波的周期为T=Cln(1+2),带入相应 的数据可知T=2×18.7KΩ×100nF×ln(1+2)=3.76mS。其输出的方波波形如下图5和图6所示:

射频低通滤波器设计示例

射频电路设计示例 设计任务: 用两种方法设计一个输入、输出为50Ω的低通滤波器,滤波器参数为: (1) 截止频率为3Ghz (2) 在通带内,衰减小于3dB (3) 在通带外,当归一化频率为2时,损耗不小于50dB (4) 相速为光速的60% 设计要求: (1)画出滤波器的电路图。 (2)用微带线实现上述的功能,并画出微带线的结构尺寸。 (3)画出0--3.5Ghz 的衰减曲线。 (4)给出设计的源代码本,利用具体软件(如Matlab, MW- office, ADS 、HFSS 、IE3D 等)操作方法及步骤。 方法一: 切比雪夫滤波器设计: Step1: 画出滤波器的电路图。由课本(p151)知滤波器阶数应为N=5。归一化参数为:g g 514817.3==,g g 427618.0==,5381.43=g 集中参数为:4817 .35 1 == C C ,5381 .43 =C ,2296 .14 2 == L L 图1 归一化5阶低通滤波器电路原理图 Step2:将集中参数变换成分布参数(Richards 变换:电感用短路线代,电容用开路线代): g Y Y 1 51 = =,g Z Z 2 4 2 = = ,g Y 3 3 = 。

图2 (O.C =开路线,S.C=短路线) Step3:将串联线段变为并联线段—Kuroda 规则(P162表5.6)。首先在滤波器的输入、输出端口引入两个单位元件。 因为单位元件与信号源及负载的阻抗都是匹配的,所以到入它们并不 影响滤波器的特性。对第一个并联的短线和最后一个并联短线应用Kuroda 规则-1后得: 2872.12872.014817 .3112 1 =+=+ == N N , 2231.02872.14817.31 ' ' 2 1 =?= = Z Z UE UE 7769.02872 .1151=== ' ' Z Z S S

功分器的设计原理

设计资料项目名称:微带功率分配器设计方法 拟制: 审核: 会签: 批准: 二00六年一月

微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它

负阻抗变换器的仿真分析

五.负阻抗变换器的仿真分析 一.实验目的: (1)利用运算放大器实现的负阻抗变换器的仿真分析 (2)使用multisim 仿真电路。 二.实验原理 利用回转器还可以制造负阻抗变换器,它也是一个二端口元件,NIC 的端口特性可以用T 参数来描述为 。 还有电压反响型 ,同理 称为电流方向型 ,这种电流经传输后改变方向经传输后变为 为常数,式中电流其中NIC NIC NIC I k -I k 0012 12211? ???? ?? ? ? ? ?????-? ?????-=??? ?????I U k I U 在NIC 的输出端口2—2’ 接上负载Z L ,则有U 2= -I 2Z L 。对于CNIC ,从输入端口看入的阻抗为 L in Z K I K U I U Z 1 2 121 111- === 对于VNIC ,从输入端口看入的阻抗为 L in Z K I U K I U K I U Z 22 22 2 221 11-==--== 若倒过来,把负载Z L 接在输入端口,则有U 1=-I 1Z L ,从输出端口看入,对于CNIC ,有 L in Z K I U K I K U I U Z 11 111 1 12 221-=== = NIC 还可用受控源来实现,如图

、 如下图所示二端口网络中k>0 (1)求其T 参数矩阵,指出其特性。 (2)在2端接入负载RL 后,在1端的输入电阻为何值 根据KVL 和KCL 有 电阻。 端的输入电阻是一个负 为负值,说明从 可见端的输入电阻为后,端接入在) (。 电流方向型 为负阻抗变换器,且为 参数矩阵可见该二端口 由上面导出的 得:1R )(1R 1R 22NIC T 100110 011u i 2 21 1i 2211212 11122 21L L kR R k i k u i u k T i u k i u i k i u ki R u u i u u -=-=== ??? ? ?? ??-=∴?? ? ???-????????-=?????????? ??==?? ???+-== 三.仿真实验

基于ADS设计2GHz阶跃阻抗低通滤波器讲解

课程设计说明书 题目:基于ADS设计2GHz阶跃阻抗低通滤波器 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS设计2GHz阶跃阻抗低通滤波器 摘要:用微带或带状线实现低通滤波器的一种相对容易的方法是用很高和很低特征阻抗的传输线交替排列的结构。这种滤波器通常称为阶跃阻抗或高Z-低Z滤波器,由于它结构紧凑且较容易设计,因此是首选设计方法。在设计2GHz阶跃阻抗低通滤波器时,核心之一是采用阻抗和频率定标公式,用低阻抗和高阻抗线代替串联电感和并联电容。 关键词:阶跃阻抗低通滤波器;微带线;定标公式; Based on the ADS design 2 GHZ step impedance low pass filter Abstract: Using microstrip or stripline low pass filter is a relatively easy way with high and low characteristic impedance of the transmission structure arranged alternately. This filter is usually called step impedance is low or high Z - Z filter, due to its compact structure, and is easier to design, so design method is preferred. In design 2 GHZ step impedance low pass filter, one of the core is the impedance and frequency calibration formula, with low impedance and high impedance line instead of series inductance and the shunt capacitance. Key words: Step impedance low pass filter; Microstrip line. Scaling formula;

压控阶梯波发生器基于运放的信号发生器设计

北京工业大学 课程设计报告 学院电子信息与控制工程 专业通信工程 班级 120241 组号 14 题目1、压控阶梯波发生器 2、基于运放的信号发生器设计 姓名周文晨 学号12024128 指导老师张国英 成绩 2014 年05 月29 日

压控阶梯波发生器 【实验名称】压控阶梯波发生器 【设计任务】在规定时间内设计并调试一个由电压控制的阶梯波发生器。 【设计要求】 1、输出阶梯波的频率能被输入的直流电压所控制,频率控制范围为600Hz---1000Hz。 2、输出阶梯波的台阶数为10级,且比例相等。 3、输出阶梯波的电压为1V/级。 4、输入控制电压的范围为0.5V至6V。 5、电路结构简单,所用原器件尽量少,成本低。 【调试要求】利用实验室设备和指定器件进行设计,组装和调试,达到设计的要求,写出总结报告 仿真图,草图,电路图附本实验的报告后 【参考元器件】 1、运算放大器uA741,LM324,LM358. 2、TTL电路74LS20,74LS161 ,74LS175。 3、CMOS缓冲器CD4010 4、稳压管二极管 5、电阻电容电位器

设计思路 一:输出阶梯波的台阶数为十阶 想法:采用十进制计数器,确保每十个时钟信号后清零。选取74LS161芯片 二:输出阶梯波每阶比例相等,电压为1V/阶 想法:⑴采用权组网路,将数字信号转化为模拟信号 ⑵运用放大器,将输出信号放大以满足要求。选取运算放大器LM358芯片 另外,74LS161是单纯的计数功能芯片,带负载能力很弱。对于后面串上的几十千欧级的电阻显得力不从心。用万用表实测74LS161输出管脚的电压值,也确实发现高电平对应的实际电压值并不恒定。为改善这样的情况,需把74LS161输出加到74LS175上,再把74LS175的输出加到CD4010上CD4010是缓冲器,可以把不稳的输入电压缓冲为稳定的输出电压,而且电流加大,大大加强了带负载的能力。74LS175和CD4010共同组成了缓冲器,虽然对电路的逻辑功能没有影响,但却是实现电路功能不可或缺的一部分。 综上所述,电路应分为压频转换波分、计数部分、全电阻网络部分和信号放大部分。我们选取的芯片为:LM358、74LS161、74LS175、CD4010

一阶RC低通滤波器杂记

一阶RC低通滤波器杂记

(二) 一阶RC低通滤波器杂记 2013-09-16 11:54:26 分享: 标签:RC滤波器阻抗匹配 关于一阶滤波器的种种有很多资料可查,像截止频率啊,相移啊什么的,这些在这里就不再重复了。本文主要阐述一下阿呆在学习过程中曾被困扰的地方,及本人的简要分析。 本文从无源RC低通滤波器说起,以一个实例为讨论背景:有一个心电放大电路,最后一级输出阻抗50欧姆,但是该电路输出信号存在明显的毛刺,那么我们想通过低通滤波器滤掉高频噪声,该如何实现呢? 最简单的做法,就是在输出上直接加上一个无源RC滤波器了,心电信号频率范围是:0.05-100Hz,为确保有用信号在通带不产生过于不平衡的衰减,我们设计一个截止频率为150Hz的低通滤波器(因为在到达截止频率时,信号已经产生了3dB衰减,一般选取的截止频率值要比实际有用信号的最高频率稍大一些) 如图1所示:

图1 输出幅值变了!信号源输出峰值1V信号,在滤波器输出时,由图1可见,不足1V(每格500mV,不足两格)。怎么回事? 将该滤波器独立出来,利用理想电压源注入信号,观察滤波器输出: 图2 此时的滤波器输出就基本达到了峰值1V的输出。加上含输出阻抗的前级电路就不能达到了呢,原因何在?一直以为RC滤波器根据

在电路设计或分析时,不考虑前后级及本身的输入输出阻抗,想当然的认为后级接收到的信号峰值为±2V,有木有过?阿呆的确有过,并且因实测输出达不到±2V而迁怒于元器件参数不给力、电路板设计不给力。 那么到底给如何去分析呢,首先我们看前级输出到RC滤波器的定量关系: 图4 信号源输出阻抗为Ro1欧姆,RC滤波器输入阻抗: 则图中Point7处电压为:

阻抗变换

1变压器的简介 变压器是利用电磁感应原理传输电能或电信号的器件, 它具有变压、 变流和变阻抗的作用。 变压器的种类很多, 应用十分广泛。 比如在电力系统中用电力变压器把发电机发出的电压升高后进行远距离输电, 到达目的地后再用变压器把电压降低以便用户使用, 以此减少传输过程中电能的损耗; 在电子设备和仪器中常用小功率电源变压器改变市电电压, 再通过整流和滤波, 得到电路所需要的直流电压; 在放大电路中用耦合变压器传递信号或进行阻抗的匹配等等。 变压器虽然大小悬殊, 用途各异, 但其基本结构和工作原理却是相同的。 1.1变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N ,副绕组匝数为2N 。 图(1)变压器结构示意图

当一次绕组两端加上交流电压u 1时,绕组中通过交流电流i 1,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。 m 1144.4? ? Φ-=f N j E (1-1-1) 1111.1111.)(? ??+-=++-=I Z E I jX R E U (1-1-2) m 2244.4? ? Φ-=f N j E (1-1-3) 2222. 2222. )(? ? ? -=+-=I Z E I jX R E U (1-1-4) k N N E E U U ===2 1 2121 (1-1-5) k U U 1 2= (1-1-6) 说明只要改变原、副绕组的匝数比,就能按要求改变电压。 1.1.2 电流变换 变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流 1I 的大小则取决于2I 的大小。 012211? ??=+I N I N I N (1-2-7) K I I U U I 22121== (1-2-8) 说明变压器在改变电压的同时,亦能改变电流。

实验五负阻抗变换器的研究-USTC

实验五 负阻抗变换器的研究 一、实验目的 1. 了解负阻抗变换器的原理及其运放实现。 2. 通过负阻器加深对负电阻(阻抗)特性的认识,掌握对含有负阻的电路的分析测量方法。 二、实验原理 负阻抗变换器(NIC)是一种二端口器件,如图5—1所示。 图5—1 通常,把端口1—1’ 处的U 1和I 1称为输入电压和输入电流,而把端口2—2’ 处的U 2和-I 2 称为输出电压和输出电流。U 1、I 1和U 2、I 2的指定参考方向如图5—1中所示。根据输入电压和电流与输出电压和电流的相互关系,负阻抗变换器可分为电流反向型(CNIC)和电压反向型(VNIC)两种,对于CNIC ,有 U 1 =U 2 I 1=( 1K -)(2I -) 式中K 1为正的实常数,称为电流增益。由上式可见,输出电压与输入电压相同,但实际输出电流-I 2不仅大小与输入电流I 1不同(为I 1的1/ K 1倍)而且方向也相反。换言之,当输入电流的实际方向与它的参考方向一致时,输出电流的实际方向与它的参考方向相反(即和I 2的参考方向相同)。对于VNIC ,有 U 1= 2K - U 2 I 1 = 2I - 式中K 2是正的实常数,称为电压增益。由上式可见,输出电流-I 2与输入电流I 1相同,但输出电压U 2不仅大小与输入电压U 1不同(为U 1的1/K 2倍)而且方向也相反。若在NIC 的输出端口2—2’ 接上负载Z L ,则有U 2= -I 2Z L 。对于CNIC ,从输入端口1—1’ 看入的阻抗为 L in Z K I K U I U Z 1 2121111 -=== 对于VNIC ,从输入端口1—1`看入的阻抗为 L in Z K I U K I U K I U Z 22 22222111-==--== 若倒过来,把负载Z L 接在输入端口1—1’ ,则有U 1=-I 1Z L ,从输出端口2—2’ 看入,对于 CNIC ,有

数字电路课程设计阶梯波信号发生器

《数字电路课程设计》 说明书 题目:阶梯波信号发生器 专业:电子信息科学与技术 班级:------ 学号:------ 姓名:------

目录 1、设计题目 (3) 2.设计目的: (3) 3.设计要求 (3) 4.设计方案 (3) 5.设计原理 (4) 5.1预置数功能实现 (4) 5.2时钟信号发生器 (4) 5.3 D/A转换器 (6) 5.4整体电路图 (7) 6、心得体会 (7) 7.参考文献 (7)

正文 1、设计题目 设计一个阶梯信号发生器 2.设计目的: 1).了解D/A转换电路的工作原理。 2).掌握用集成运算放大器设计D/A转换电路。 3.设计要求 1). 以集成计数器为主要器件,设计一个阶梯波发生器,要求输出如图所示波形。周期为 2ms。 2).依据设计结果,创建实验电路。 3).仿真、调试。 4.设计方案 1)由时钟信号发生器、计数器和D/A转换器组成电路。 2)时钟信号发生器的信号频率可调,可采用由555构成的多谐振荡器。 3)由74LS161反馈置零法确定方波的阶数。 4)D/A转换器将计数器的输出值转换为模拟电压。

5.设计原理 5.1预置数功能实现 如下图 5.2时钟信号发生器 时钟信号发生器可由振荡器构成,振荡器采用555构成的多谐振荡器,通过改变阻值实现振荡器频率可调。利用555定时器组成的多谐振荡器接通电源后,电容C1被充电,当电压上升到一定数值时里面集成的三极管导通,然后通过电阻和三极管放电,不断的充放电从而产生一定周期的脉冲,通过改变电路上器件的值可以微调脉冲周期。由所学知识知T= (R1+2R2)*C1,则f=1/T,通过直接按键盘字母F(增加R2的接入阻值)或者Shift+F(减小R2的接入阻值)来改变频率。 连线电路如下图:

阻抗变换器的设计与仿真

摘要 射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。本文介绍了一种中心频率为400MHz、频宽为40MHz的50~75欧姆T型阻抗变换器的设计与仿真过程。文中概述了射频阻抗变换器的种类、用途及发展。在分析了阻抗匹配理论基本知识的基础上,论述了射频阻抗变换器的设计过程,然后通过ADS软件进行设计和仿真,并对仿真结果进行了分析总结。 关键词:射频;阻抗匹配;阻抗圆图;VSWR(电压驻波比);ADS 目录 摘要 (1) ABSTRACT................................................ 错误!未定义书签。第一章引言 (2) 1.1 概述 (2) 1.2 射频阻抗变换电路的类型 (2) 1.3 射频阻抗变换器的用途 (2) 1.4射频阻抗变换器设计的发展 (3) 第二章基本原理 (3) 2.1 阻抗匹配 (3) 2.2 史密斯圆图 (4) 2.2.1 等反射圆 (4) 2.2.2 等电阻圆图和等电抗圆图 (5) 2.2.3 Smith圆图(阻抗圆图) (7) 2.3 电压驻波比 (8) 第三章 T型阻抗变换器的设计 (9) 3.1 T型阻抗变换器(R S

新型谐波抑制微带低通滤波器的设计

新型谐波抑制微带低通滤波器的设计 摘要—一种新型的谐波抑制微带低通滤波器(LPF)被提出,这种新型滤波器由地面缺陷结构(DGS),一系列并联阶梯阻抗存根以及在通带中的分流元件组成。通过两种谐振器的衰减极,结果发现不仅谐波响应被有效抑制,而且阻带中的抑制也很大。此外,由于两种谐振器有慢波特性,提出的低通滤波器能被紧凑实施。 I. 引言 最近,在许多通信系统中,非常需要一个谐波抑制低通滤波器(LPF)来消除由功率放大器、混频器和振荡器引起的杂散响应。为此,一个集总元件如晶片电容器[1]或电阻片[2]已经被包含在在分布式线电路中,以便打破其周期与频率。另一种方法是采用定期带隙(PBG)的结构[3]或地面缺陷结构(DGS)[4]。特别是,由于DGS有一个简单的等效电路模型,并产生了一个具有宽阻带低通特性,许多研究活动已经完成为了以便将它应用到低通滤波器的设计[4]- [7]。然而,他们大多并没有关注谐波的抑制,或者他们的设计程序太依赖全波电磁(EM)的优化,以至于很难适用传统的低通滤波器的设计方法。本文中,提出了一种新型的谐波抑制微带低通滤波器以及其设计程序。传统的哑铃型DGS和阶梯并联阻抗存根(SISS)是分别作为低通滤波器串联和并联分子使用。据悉,他们有简单的双彼此等效电路并且他们都提供低通滤波器的阻带衰减极点。通过适当的调整器共振频率,不影响原来正常的低通特性,提出的结构被证明是能够有效抑制谐波响应并提供深且宽的阻带。由于两种谐振器的慢波影响,提出的低通滤波器比传统的物理长度较短,但对于紧凑的设计,这是很有帮助的。 II.程序设计 如图1所示,一个单位的分散型发电和单位SISS的等效电路分别被一个串联并联左旋C和一个并联连接系列L- C的谐振器所呈现[4], [8]。注意到,单位SISS通过将两个长方形贴片电容分成较小的两个之后由两个相同的臂组成。在此图中,一个DGS单位的平行L-C谐振器就像一个简单的串联电感,并且在低频区域一个SISS的串联L - C谐振器就像是一个简单的并联电容,因此,他们可以被当做低通滤波器的一个元器件来使用。根据[4]提出的处理方法,他们的电路值与通过在截止频率对原始值的频率匹配以及阻抗频率缩放获得的相应的元素值相等。然后,很容易就可以获得所需的低通响应。[4]中,一旦在低于截止频率时它的长度足够短,两个相邻元素之间的微带线截面作用被忽略。然而,在我们的研究领域里,这种SISS和DGS之间的线截面应是被考虑的,因为它虽然是短,但我们发现它在通带特性和截止频率是有显著影响。为此,该线截面被建模为一个L形的网络,该网络由如图1所示串联L和一个分流C组成。通常,一件T-或∏-网络模型用于其完全等效二端口网络。但是,下列近似的ABCD参数显示短线截面可

1/4波长阻抗变换器地分析报告

1/4波长阻抗变换器的分析 摘要:阻抗匹配网络已经成为射频微波电路中的重要组成部分,主要是由于匹配使得电路中的反射电压波变少,从而损耗减少。同时,匹配网络对器件的增益,噪声,输出功率还有着重要的影响。在微波传输系统,它关系到系统的传输效率、功率容量与工作稳定性,关系到微波测量的系统误差和测量精度,以及微波元器 λ 件的质量等一系列问题。本文讨论了传输线的阻抗匹配方法,并着重分析了4 λ阻抗变换器的优点。 阻抗变换器,并举例说明了多节4 关键字:阻抗匹配;匹配网络;匹配方法,阻抗变换器

1引言 传输理论指出,通常情况下,传输线传输的电压或电流是由该点的入射波和反射波叠加而成的,或者说是由行波和驻波叠加而成的。 在由信号源及负载组成的微波系统中,如果传输线和负载不匹配,传输线上将形成驻波。有了驻波一方面使传输线功率容量降低,另一方面会增加传输线的衰减。如果信号源和传输线不匹配,既会影响信号源的频率和输出功率的稳定性,又会使信号源不能给出最大功率、负载又不能得到全部的入射功率。因此传输线一定要匹配。 匹配可分为始端匹配和终端匹配。始端匹配是为了使信号源的输出功率最大,采用的方法是共轭匹配;终端匹配是为了使传输线上无反射波,使传输功率最大,采用的方法是阻抗匹配。 2.匹配理论 2.1共轭匹配 共轭匹配的目的是使信号源的功率输出最大,这就要求传输线信号源的内阻和传输线的输入阻抗互成共轭值。 假设信号源的内组为g g g jX R Z +=,传输线的输入阻抗为in in in jX R Z +=,如图1.1所示。 则 * =g in Z Z 即 g in g in X X R R -==,

GHZ微带渐变阻抗变换器设计报告

微带渐变阻抗变换器设计报告 一、设计任务 名称:设计一个工作频率为,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。 主要技术指标:S11低于-20dB,S21接近,re(Z0)接近50Ω,VWAR接近1。 二、设计过程 1.原理: 1.1 阻抗匹配的概念 阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。一旦匹配完善,传输线即处于行波工作状态。 在微波电路中,常用的匹配方法有: (1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。 (2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。 (3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)

将不匹配负载产生的反射波吸收掉。 传输线的核心问题之一是功率传输。对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。 .阻抗匹配的方法 阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。 图3-1 阻抗匹配 匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。常用的匹配器有有λ/4阻抗变换换器和支节匹配器。本论文主要采用λ/4阻抗变换器。 . λ/4阻抗变换器 λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

阻抗变换器设计

射频电路设计实训报告 设计题目阻抗变换器设计 系别 年级专业 设计组号 学生姓名/学号 指导教师

摘要:射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。阻抗变换器就是起到将压电传感器的高阻抗变换为信号放大处理部分需要的低阻抗。本设计是关于阻抗匹配和阻抗转换器的一些阻抗匹配电路以及阻抗匹配的方法,用以实现匹配以及50Ω到75Ω以及75Ω到50Ω的阻抗转换器。从而得到所需要的输出阻抗以达到变换的目的。本次实验以2个无源阻抗匹配器为例,分别采用简单的电容电感的方式设计所需要的阻抗转换器,制作出实物并进行测试。 Abstract: One of the main RF design is a part of the circuit and the other part of the match between the two parts to achieve maximum power transfer, which requires adding the RF circuit impedance converter to achieve impedance matching purposes. Impedance transformer is played to a high impedance piezoelectric sensor signal amplification process is transformed into some of the needs of low impedance. This design is about impedance matching and impedance converter circuit and impedance matching impedance matching some of the methods used to achieve matching and 50Ω to 75Ω and 75Ω to 50Ω impedance converter. In order to get the required output impedance of achieving the purpose of transformation. The experiment with two passive impedance matching device, for example, capacitance and inductance, respectively, a simple way to design the required impedance converter to produce a physical and tested. 关键词: 射频设计 阻抗变换器 阻抗匹配 无源 一、基本阻抗匹配理论 当负载阻抗与传输线特性阻抗不相等或连接两段特性阻抗不同的传输线时,由于阻抗不匹配会产生反射现象,从而导致传输系统的功率容量和传输效率下降,负载不能获得最大功率。为了消除这种不良反射现象,可在其间接入阻抗变换器,以获得良好的匹配。 由图2-1(a )可知,当R L =R S 时可得最大输出功率,称此状况为匹配状态。 图(a ) 输入输出功率关系图 图(b ) 广义阻抗匹配 此时:2 2 2 () S out L L S L V P I R R R R =?=?+ L S R k R =? 22 (1) S S in S L S V V P R R R k == ++ ? 1o u t i n k P P k =?+ 推而广之,如图2-1(b )所示,当输入阻抗Z S 与负载阻抗Z L 互为共轭,即Z S =Z L * 时,形成广义阻抗匹配。因此,阻抗匹配电路亦可称为阻抗变换器。

相关文档
最新文档