泛函在有限元法中的应用

姓名:杨泽鹏

学号: 120130277

通过《应用泛函分析》课程的学习,了解到泛函分析是高等数学的推广,它综合了函数论、几何和代数的观点研究无穷维向量空间上的函数、算子和极限理论。半个多世纪以来,泛函分析一方面以其他众多学科所提供的素材提取自己研究的对象和某些手段,并形成了自己的许多重要分支;另一方面,它也强有力的推动者其它分析学科的发展。它的观点和方法已经渗入到不少工科技术的学科之中,成为近代分析数学的基础之一。

有限元法(Finite Element Method ,简称FEM )是求解偏微分方程定解问题的一种数值计算方法。它能成功地求解许多问题,如在热传导问题、结构工程学中的应力分析,地下水非稳定渗流问题,土力学、岩石力学中的应力-应变与稳定分析等。另外,有限元法也广泛应用在地球物理学中,由于地下地质体都是三维连续的,控制其性质的如连续性方程、运动方程、能量方程,以及这些方程相应的定解条件都非常复杂。由于这些控制方程都是偏微分方程,且大多都是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,因此,就需要通过网格划分的方法把计算域离散化,并选取适当的途径将微分方程及其定解条件转化为网格节点上相应的代数方程组,即建立离散的方程组,然后通过求解代数方程组来得到网格节点的值,而计算域内其他位置上的值则根据节点位置上的值来确定。从而得到这些控制方程的数值解,满足工程实际的需要。

有限元法是一种常用的离散化方法,它是以应变原理和剖分差值为基础的,所谓变分原理就是对偏微分方程的求解转化为求某个泛函的极值问题,剖分差值是把定解区域从几何上划分为点、线、面单元,然后按单元分别差值,最后形成整个单元集合体的差值。所以这种方法就是从变分原理出发,利用整个单元集合体的差值,把求解某个泛函的极值问题化为一个多元线性代数方程组的求解问题,从而获得所要求的数值解。下面,重点分析泛函在有限元法中的应用。 1、 泛函和极值

下面为便于说明,举一个简单的例子:在一个平面上,求链接()0,A a y ,

1(,)B b y 两点的最短曲线。为方便计,取(0,0)A ,(1,1)B ,设链接,A B 的曲线为

()y y x =,由定积分中的弧长公式,则弧长

[]()L y x =? (1)

因过,A B 两点的曲线可以很多,将过,A B 两点的所有曲线的全体记作0H 。一条曲线即一个函数,因此0H 是一个函数集合,且0H 为式(1)的容许函数类,显然n y x =(0n >)属于式(1)的函数类0H ,且y x =使弧长最短。

可以看出,0H 中任一个函数()y y x =,曲线弧长L 都有一个确定值与之对应,我们把这种建立在函数与数(实数或复数)之间的关系叫做泛函关系。所以,可以这样定义泛函:设{}()y x 是已给的函数集,如果对于集中任一函数()y x 恒有某个确定的数与之对应,记为()L y x ????或()L y ,则说()L y 是定义于集{}()y x 上的一个泛函。简言之,泛函是以函数集为定义域的实值函数。

一般地,一个自变量的泛函的一般形式为:

()'

(,,)b

a L y x F x y y dx =?????

(2) 如果在式(2)的容许函数类0H 中,存在一个函数()y y x =与另一个邻近的任一个函数1()y y x =,若有[][]1()()J y x J y x >,则称()y y x =为式(2)的极小值曲线,或称泛函[]()J y x 在曲线()y y x =上取得极小值。 2、尤拉(Euler )方程

如果()y y x =是泛函式(2)的极小值曲线,而()()1()y x y x x αη=+,()x η是任意函数,且具有连续的一阶导数,为使()1y x 0H ∈,设()()0a b ηη==,于是代入式(2)有

()''

(,,)b

a J y x F x y y dx αηαηαη+=++?????

(3) 式(3)是α的函数,当0α=时,便得泛函极小值()J y x ????,根据有极值的必要条件有

dJ

d αα==0

'''

'0

,,b

b

y y a

a dJ d F x y y dx

F f dx d d αααηαηηηα

α

==????=

++=+???

??

?

上式右端第二项采用分部积分公式有

''

'''

b

b

b b

a

y y y y a

a a d d

F dx F F dx F dx dx dx ηηηη=-=-?

?? 于是

''0

0b

b

b y y y y a

a a dJ

d d F dx F dx F F dx d dx dx αηηηα

=??

=-=-=???

??

??

由于()x η的任意性,所以有

'0y y d

F F dx

-

= (4) 上式即为著名的尤拉方程。

若泛函()J y x ????在()y y x =上取得极值,则()y y x =必满足尤拉方程,求泛函的极小值问题就是变分问题。通过分析,偏微分方程定解问题与相应泛函极值问题具有等价性〔2〕,我们根据这种等价性,可以将求解偏微分方程定解问题转化为求某一泛函的极小值函数问题,从而求偏微分方程定解问题的数值解。 3、常微分方程边值问题的有限元方法

设求边值问题

()()''(0)

()000

x a py qy f y y a ?<<-+=??==?? (5)

的近似解,其中()()0,0p x q x >≥;()()()',,p x q x f x 在[]0,a 上连续,而上式的近似解现在变为求泛函数的极小值函数的近似解。 下面通过具体的例子来用有限元法解边值问题

()()()''

01010y y x x y y ?-+=<

将[]0,1四等分。 解:

可知1,1,()p q f x x ===,将[]0,1四等分,1,(0,1,2,3,4)44

i i i

l x i ===

[]1,i i x x -的中点为()()111

2128i i x x i -+=-。

根据已知数据,计算

1144989511224119598244424

12i

K ??

+-+

?-??==

? ?- ???-++ ???

()

112i i i f b l ??= ???=12112111218864i i i -????-?= ? ?-????

有98959598989519598989524959898959598K -??

?-+-

?

?=-+- ?

-+- ?

?-??

1113411

3586464571277b ???? ? ?+ ? ? ? ?=+= ? ?

+ ? ? ? ?????

又由()()0400,10y y ==,于是有

1233196952951969539519692y y y ?? ?-???? ? ? ?-- ? ? ? ? ? ?-???? ?

??

解此方程组,得到 1230.03521,0.05686,0.05052y y y ===

泛函与变分

第1章 泛函和变分 1.1引言 以前我们在微积分中遇到的都是类似下面的函数极值问题: 一个足够光滑的连续函数 12(,,...,)n y f x x x =,其在区域n R Ω?内任何一点12(,,...,)T n x x x =x 都可以作以下的 Taylor 展开 2 12 1 2()()()()(||||)(),,...,T T T T n f f f f o f f f f x x x +?=+?+??+??????= ? ?????x x x x x x D x x x x ?? ( 函数在某一点有极值的必要条件是 但是,我们这们课程中要讨论的则是另一类极值问题—泛函的极值问题(泛函简单地讲, 就是函数的函数,详细见后面)。 例1.1 一个简单的变分问题: 最短线问题 图1.1最短线问题 假设经过,A B 两点距离最短的曲线方程为 *()y y x = ( 另有一任意的连续可导函数()x ηη=,()x η满足两端固定的边界条件 01()()0x x ηη== ( 显然()()y y x x αη=+依旧是过固定两点,A B 的连续曲线,其对应的长度为 1 ()x x L x α=? ( 当0α=,()y y x =时()L α取到极小值,也就是说 0d () |0d L ααα == ( 把(, 展开后有 ( )() 101 1 1 000110 000 33 d ()||d |d ''''''d d 0 x x x x x x x x x x x x L y x y y y x x y y y y y x x ααααηηη==='??==-?? ?=-=-???=????? ( 由于( 对于任意的()x ηη=都成立,根据变分引理(见, 我们可以得到 ( ) 3 '' 0y = (

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

泛函和变分

第1章泛函和变分 1.1引言 以前我们在微积分中遇到的都是类似下面的函数极值问题:一个足够光滑的连续函数 12(,,...,)n y f x x x =,其在区域n R Ω?内任何一点12(,,...,)T n x x x =x 都可以作以下的 Taylor 展开 2 121 2()()()()(|| ||) (),,...,T T T T n f f f f o f f f f x x x +?=+?+??+??????= ? ?????x x x x x x D x x x x ??(1.1.1) 22221121222 212...()...n n n n f f f x x x x x f f f f x x x x x ??????? ?????? ???=???????????????? D x 函数在某一点有极值的必要条件是 12 ,,...,0 T n f f f f x x x ?? ???== ???????但是,我们这们课程中要讨论的则是另一类极值问题—泛函的极值问题(泛函简单地讲,就是函数的函数,详细见后面)。 例1.1一个简单的变分问题:最短线问题 图1.1最短线问题 假设经过,A B 两点距离最短的曲线方程为 *() y y x =(1.1.2) 另有一任意的连续可导函数()x ηη=,()x η满足两端固定的边界条件 01()()0 x x ηη==(1.1.3) 显然()()y y x x αη=+依旧是过固定两点,A B 的连续曲线,其对应的长度为

1 2()1('')d x x L y x ααη=++? (1.1.4) 当0α =,()y y x =时()L α取到极小值,也就是说 0d () |0d L ααα ==(1.1.5) 把(1.1.4)代入(1.1.5),展开后有 ()() 10 1 1 1 000110 000 222233 222 d ()('')'|d |d 1('') ''''d |d 1'1'1'''''''''d d 1'1'1'0 x x x x x x x x x x x x L y x y y y y x x y y y y y y y y x x y y y ααααηηααηηη ηηη==+=++'?? ?==- ?+++???? ?=--=- ?+ ?++??=?????(1.1.6) 由于(1.1.6)对于任意的()x ηη=都成立,根据变分引理(见2.2.2节),我们可以得到 ( ) 3 2 '' 1'y y =+(1.1.7) 意味着 12 y C x C =+(1.1.9) 因此,在平面上过固定两点距离最近的光滑曲线是直线。 下面我们来看几类比较典型的变分问题。例1.2最速降线问题 图1.2最速降线问题 我们在该铅直平面上取一直角坐标系,以A 为坐标原点,水平为x 轴,向下为y 轴。 曲线的方程为()y y x =,A 点坐标00 (,)(0,0)x y =,B 点坐标11(,)x y 。曲线上任意一点P 时的速度为 d 2d s v gy t = =(1.1.10)

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

应用泛函分析复习资料小结

-` 第一章实分析概要 本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。 第一节集合及其运算第 二节实数的完备性第三 节可数集与不可数集 第四节直线上的点集与连续函数第 五节点集的勒贝格测度与可测函数

-` 1

-` 第六节勒贝格积分 第一节集合及其运算 1)A∪A=A,A∩A=A; 2)A∪ Φ=A,A∩ Φ=Φ; 3)若A?B,则A∪B=B,A∩B=A,A\B=Φ; 4) 设X为基本集,则 A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \ B = A ∩ B C 又若A?B,则A C?B C。 集合的运算法则: 2

-` 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ; 结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C; ( A∩B) ∩C=A∩ (B∩C) =A∩B∩C; 分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ; ( A∩B) ∪C= ( A∪C) ∩ (B∪C) ; ( A \ B) ∩C= ( A∩C) \ (B∩C) . 定理 1.1 设X为基本集,Aα为任意集组,则 1) ( U Aα )C=I ( Aα )C (1.6) α∈I α∈I 2) ( I Aα )C=U ( Aα )C (1.7) α∈I α∈I A \ ( A \ B)= A I B 3

第二节实数的完备性 2.1有理数的稠密性 2.2实数的完备性定理 定义 2.1(闭区间套) 设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

试求下列性能泛函达到极值的必要条件

10-1 试求下列性能泛函达到极值的必要条件 dt t x x g x J f t t ),,()(0 ?? = 给定边界条件为:f f f t x t x x t x ,)(,)(00==自由. 10-2 已知状态初值和终值为: 1,4)(,100>==f t t x t 但自由,,试求试下列性能泛函达到极值的极值曲线 )(t x * dt t x t x x J f t t ? ? +=0 )](2 1)(2[)( 10-3 试利用变分公式 0)]([ =+?? =εεσε σx x J J 求泛函 dt x x x F x J f t t ),,()(0 ? ???= 的变分,并写出欧拉方程。 10-4 求通过x(0)=1,x(1)=2,使下列性能指标为极值的曲线 dt x x J f t t )1()(20 +=? ? 10-5 设x=x(t),10≤≤t ,求从x(0)=0到x(1)=1间的最短曲线.Unknown 求性能指标 dt x x J )1()(210 +=? ? 在边界条件x(0)=0,x(1)自由情况下的极值曲线. 10-6 已知性能指标函数为 dt t tx t x x J )]()([)(21 0+=? 试求:(1)J δ的表达式; (2)当t x t t x 1.0,)(2==δ和t x 2.0=δ时的变分1J δ和2J δ的值. 10-7 试求下列性能指标的变分J δ dt x x t x J f t t )()(22 20 ?++ =? 10-8 试求泛函 dt x x x J )()(222 -=? ?π 在满足边界条件x(0)=1,2)2 (=π x 的极值曲线. 10-9 设泛函

应用泛函分析相关习题

泛函分析练习题 一名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共轭算子 6. 内点、内部: 7. 线性算子、线性范函: 8. 自然嵌入算子 9. 共轭算子 10. 内积与内积空间: 11. 弱有界集: 12. 紧算子: 13. 凸集 14. 有界集 15. 距离 16. 可分 17. Cauchy 列 18.自反空间 二、定理叙述 1、 压缩映射原理 2. 共鸣定理 3.逆算子定理 4. 闭图像定理 5.实空间上的Hahn-Banach 延拓定理 6、Baire 纲定理 7、开映射定理 8、Riesz 表现定理 三证明题: 1.若(,)x ρ是度量空间,则1d ρρ= +也使X 成为度量空间。 证明:,,x y z X ?∈ 显然有 (1)(,)0d x y ≥,(,)0d x y =当且仅当x y =。 (2)(,)(,)d x y d y x = (3)由1()111t f t t t = =-++,(0)t >关于t 单调递增,得 (,)(,)(,)(,)1(,)1(,)(,) x z x y y z d x z x z x y y z ρρρρρρ+=≤+++

(,)(,)1(,)1(,) x y y z x y y z ρρρρ≤+++ (,)(,)d x y d y z =+ 故d 也是X 上的度量。 2, 设H 是内积空间,,,,n n x x y y H ∈,则当,n n x x y y →→时,(,)(,)n n x y x y →,即内积关于两变元连续。 证明:22|(,)(,)||(,)|||||||||n n n n n n x y x y x x y y x x y y -=--≤-?- 已知 ,n n x x y y →→,即||||0,||||0n n x x y y -→-→。 故有 2|(,)(,)|0n n x y x y -→ 即 (,)(,)n n x y x y →。 5.设2()(),Tx t t x t =若T 是从21[0,1][0,1]L L →的算子,计算||||;T 若T 是从 22[0,1][0,1]L L →的算子再求||||T 。 解:(1)当T 是从21[0,1][0,1]L L →的算子。 1 2 10|||||()|Tx t x t dt =?≤? 所以 |||| T ≤。 取2 0()x t =,则02|||| 1.x = 4010||||Tx dt ==? 所以 |||| T ≥。 故有 |||. T = (2)当T 是从22[0,1][0,1]L L →的算子时 11 421/221/22200||||(())(())||||Tx t x t dt x t dt x =≤=?? 所以 |||| 1.T ≤

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

泛函和泛函的极值

泛函和泛函的极值 泛函是指某一个量,它的值依赖于其它一个或者几个函数。 变分法的基本问题是求解泛函的极值。 作为变分法的简单例题。考察x,y 平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中最短曲线。 设P 1(x 1,y 1)和P 2(x 2,y 2)为平面上给定的两点,y (x )为连接两点的任意曲线。于是,这一曲线的长度为 连接P 1,P 2两点的曲线有无数条,每一条曲线都有一个L 值与其对应。满足边界条件的y (x )称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L 最小的一条。 根据上式,L [y ]依赖于y (x ),而y (x )是x 的函数,因此称y (x )为自变函数;L [y ]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x =x 1时, y (x )=y 1 y'(x 1)= y'1 在x =x 2时, y (x )=y 2 y'(x 1)= y'1 的函数y (x )中,求使得泛函L [y ]为极值的特定函数。因此 y (x )称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件 y (x 1)=y 1, y (x 2)=y 2的极小值问题。

假设函数y(x)是使得泛函L[y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L []的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y', 称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量

泛函分析的应用

现代数学基础学习报告 泛函分析应用 院系: 专业: 导师: 姓名: 学号:

摘要 信号与系统的泛函分析是以泛函理论为工具描述和研究信号与系统特性的近代分析方法。这种方法可使信号与系统的表示更加抽象与概括,并使连续与离散、时域与频域、分析与综合达到统一,从而在信号与系统学科中得到了日益广泛的应用。本文仅就其基本理论及其在电路设计中的应用加以简要的介绍。本文将利用泛函分析中的度量空间的理论研究信号处理纠错的问题,首先介绍度量空间相关理论,然后举例分析其在信号纠错处理中的解决过程,通过应用泛函知识,使纠错过程变得更简便和概括。然后简单介绍泛函的理论知识,使其应用到求解最低功耗电源的设计中,结果表明应用泛函理论可以将求解过程变得更加简便和清晰。

1.泛函分析介绍 泛函分特点和内容[1] 泛函分析是20世纪30年代形成的分科,是从变分问题,积分方程和的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和。它可以看作无限维向量空间的解析几何及。泛函分析在,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的。 泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是“”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。 泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个的系统的运动,实际上需要有新的来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多力学系统的例子。一般来说,从力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的理论就属于无穷自由度系统。 正如研究有穷自由度系统要求n维空间的几何学和作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因此,泛函分析也可以通俗的叫做无穷的几何学和微积分学。古典分析中的基本方法,也就是用的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。 泛函分析是分析数学中最“年轻”的分支,是古典分析观点的推广,综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、等等;另一方面,它也强有力地推动着其他不少分析学科的发展。它在、概率论、函数论、连续介质力学、、计算数学、、等学科中都有重要的应用,还是建立理论的基本工具,也是研究无限个自由度的重要而自然的工具之一。今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。 泛函分析在数学物理方程、、、、等学科有着广泛的应用。近十几年来,泛函分析在工程技术方面有获得更为有效的应用。它还渗透到数学内部的各个分支中去,起着重要的作用。 泛函的理论[2]

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

第二章-泛函极值及变分法(补充内容)

第二章 泛函极值及变分法(补充内容) 2.1 变分的基本概念 2.1.1 泛函和变分 泛函是一种广义的函数,是指对于某一类函数{y (x )}中的每一个函数y (x ),变量J 有一值与之对应,或者说数J 对应于函数y (x )的关系成立,则我们称变量J 是函数y (x )的泛函,记为J [y (x )]。 例1:如果表示两固定端点A (x A ,y A ),B (x B ,y B )间的曲线长度J (图2.1.1),则由微积分相关知识容易得到: dx dx dy J B A x x ? += 2)/(1 (2.1.1) 显然,对于不同的曲线y (x ),对应于不同的长度J ,即J 是函数y (x )的函数,J =J [y (x )]。 图2.1.1 两点间任一曲线的长度 例2:历史上著名的变分问题之一——最速降线问题,如果2.1.2所示。设在不同铅垂线上的两点P 1与P 2连接成某一曲线,质点P 在重力作用下沿曲线由点P 1自由滑落到点P 2,这里不考虑摩擦作用影响,希望得到质点沿什么样的曲线滑落所需时间最短。 图2.1.2 最速降线问题 选取一个表示曲线的函数y (x ),设质点从P 1到P 2沿曲线y =y (x )运动,则其运动速度为:

ds v dt == 其中,S 表示曲线的弧长,t 表示时间,于是: dt = 设重力加速度为g ,则gy v 2=。 因为P 1和P 2点的横坐标分别为x 1到x 2,那么质点从P 1到P 2所用时间便为: 1 [()]x x J y x =? 2 1 1/2 211[()]2[()()]x x y x dx g y x y x ??'+=??-?? ? (2.1.2) 则最速降线问题对应于泛函J [y (x )]取最小值。 回顾函数的微分: 对于函数的微分有两种定义: 一种是通常的定义,即函数的增量: ),()()()(x x x x A x y x x y y ?+?=-?+=?ρ (2.1.3) 其中A (x )与?x 无关,且有?x →0时ρ(x ,?x )→0,于是就称函数y (x )是可微的,其 线性部分称为函数的微分()()dy A x x y x x '=?=?,函数的微分就是函数增量的主部。 函数微分的另外一种定义: 通过引入一小参数ε,对)(x x y ?+ε关于ε求导数,并令ε→0的途径得到,即: dy x x y x x x y d x x dy =?'=??+'=?+→→)()() (00 εεεε ε (2.1.4) 上式说明)(x x y ?+ε在ε=0处关于ε的导数就是函数y (x )在x 处的微分。相应地,在泛函J [y (x )]中,变量函数y (x )的增量在其很小时称为变分,用δy (x )或δy 表示,

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

最 优 控 制 教 案2.2 泛函与变分的基本概念

2.2 泛函与变分的基本概念 2.2.1 泛函 函数:对应于定义域中的每一个x 值, y 都有一值与之对应,则称y 是x 的函数,记作 y =f (x)。 x — 自变量。函数是变量与变量之间的关系。 泛函:如果对于变量x ,存在一类函数{y (x )},对于每一个函数y (x ),某变量J 都有一确定值与之对应,则称变量J 是函数y (x )的泛函,记作 J=J[y (x )]。 y — 宗量。 泛函是函数与变量之间的关系,可理解为“函数的函数”。 例,连接平面上A,B 两点的弧长是一泛函。 ① 泛函宗量的增量 泛函J 的宗量y 的增量,指两函数间的差0()()y y x y x δ=?,其中y(x)是y 0(x)领域内与y 0(x)属同一函数类的任意函数。 ② 泛函的连续性 函数连续:若对于x 的微小变化,有函数f (x)的微小变化与之对应,则说f (x)是连续。 泛函连续:若对于y(x)的微小变化,泛函J 的变化也很微小,则说泛函J 是连续。 曲线y(x)与曲线 y 0(x) 21222 [()]x x dl dx dy J y x l =+===∫y 1012()()()y x y x x x x ε?≤≤≤具有零阶相近度 012012()()()()()()y x y x x x x y x y x x x x εε?≤≤≤?≤≤≤ 具有一阶相近度 例,1110001()(),;()cos ,cos sin12J x t dt x t t J tdt x t t J tdt =======∫∫∫当当

③ 线性泛函 2.2.2 泛函的变分 函数微分 ←→ 泛函变分 函数y =f (x), 增量表示为:()()()(,)y f x x f x y x x r x x Δ=+Δ?=Δ+Δ 当0x Δ→时,第二项可以忽略。第一项叫做函数增量的线性主部,即函数的微分,记作: ()()dy y x dx f x dx ′== 参照函数微分的定义,泛函变分定义如下: 若泛函宗量的增量 0()()y y x y x δ=? 连续泛函[()]J y x 的增量可表示为 [()][()][(),][(),]J J y x y J y x L y x y r y x y δδδΔ=+?=+ 第一项为泛函增量的线性主部,称为泛函的变分,记作 [(),]J L y x y δδ= 定理2.1 泛函J[y(x)] 的变分 0[()]J J y x y εδεδε=?=+? 1212()()()()(),J x x J x J x J x J x R ααα+=+=∈泛函J 连续 第一项为x Δ的线性函数 第二项为x Δ的高阶无穷小 第一项为y δ的线性泛函 第二项为y δ的高阶无穷小 例,120()J x t dt =∫求泛函的变分 解: 泛函的增量为 {}11220012011200[()()]()[2()()[()]2()()[()]J x t x t dt x t dt x t x t x t dt x t x t dt x t dt δδδδδΔ=+?=+=+∫∫∫∫∫ 泛函的变分 1 02()()J x t x t dt δδ=∫