纳米材料在生物传感器中的应用

纳米材料在生物传感器中的应用
纳米材料在生物传感器中的应用

纳米材料在生物传感器中的应用

生物传感器是目前生命科学及临床医学测试方法研究中最为活跃的领域之一,而纳米材料则被认为是跨世纪材料研究领域的热点,有“21 世纪最有前途的材料”的美誉,受到国内外普遍重视,进入21世纪后,纳米科技的迅猛发展为新型生物传感器的研制提供了难得的机遇。纳米生物传感器是纳米科技与生物传感器的融合,其研究涉及到生物技术、信息技术、纳米科学、界面科学等多个重要领域,因而成为国际上的研究前沿和热点。

一、生物传感器

生物传感器是一类特殊形式的传感器,是一种对生物物质敏感并将其转换为声、光、电等信号进行检测的仪器。生物传感器具有接受器与转换器的功能,由识别元件(固定化的生物敏感材料,包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、理化换能器(如氧电极、光敏管、场效应管、压电晶体等) 和信号放大装置构成。生物传感器技术是一个非常活跃的工程技术研究领域,它与生物信息学、生物芯片、生物控制论、仿生学、生物计算机等学科一起处在生命科学和信息科学的交叉区域,是发展生物技术必不可少的一种先进的检测与监控装置。与传统的分析方法相比, 具有以下特点:1)体积小、响应快、准确度高,可以实现连续在线检测;2)一般不需进行样品的预处理,可将样品中被测组分的分离和检测统一为一体,使整个测定过程简便、迅速,容易实现自动分析;3)可进行活体分析;

4)成本远低于大型分析仪器,便于推广普及。

生物传感器有许多种分类方式:1)根据生物活性物质的类别,生物传感器可以分为酶传感器、免疫传感器、DNA传感器、细胞传感器、组织传感器和微生物传感器等;2)根据检测原理,生物传感器可分光学生物传感器、电化学生物传感器和压电生物传感器等;3)按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型2种;4)可根据所监测的物理量、化学量或生物量而命名为热传感器、光传感器和胰岛素传感器等。

生物传感器的应用,涉及到医疗保健、疾病诊断、食品检测、环境监测、发酵工业等领域。

二、纳米材料

纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学物理性质。纳米粒子作为一种常用的纳米材料,具有制备方法简单、尺寸可控、表面易于修饰、表征简便等优点,在分析化学领域得到了广泛的应用。

纳米材料的特点与传感器所要求的多功能、微型化、高速化相对应。另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好等优点,纳米材料能较好地符合上述要求。纳米材料引入生物传感器领域后,提高了生物传感器的检测性能,并促发了新型的生物传感器。纳米材料的独特的化学和物理性质使得其对生物分子或者细胞的检测灵敏度大幅提高,检测的反应时间也得以缩短,并且可以实现高通量的实时检测分析。

其中纳米金和磁性纳米颗粒在生物传感器中的应用尤其受到关注。

1、金属纳米材料

金属纳米材料良好的电子传递性能使其成为电化学生物传感器中最为常用的纳米材料之一,其中尤以纳米金的应用最为广泛。纳米金制备简单、性状稳定、生物相容性良好,而且易于进行表面化学修饰,因此,利用纳米金与生物分子进行组装并介导电子传递,是构建电化学生物传感器的良好方案。

纳米金在生物传感器中的应用,主要集中在利用纳米粒子做探针载体、信号分子等方面。

1.1探针载体

纳米金能迅速、稳定地吸附核酸、蛋白质等生物分子,而这些生物分子的生物活性几乎不会发生改变,所以纳米金具有优良的生物相容性,可以作为生物分子的载体。

1.2信号分子

纳米金能广泛地应用于DNA、抗体和抗原等生物物质的标记,使得纳米金与生物活性分子结合后形成的探针可用于生物体系的检测中,纳米金在可见区有特征等离子体共振吸收,其吸收峰的等离子共振常随着尺寸的变化而发生频移,其溶液的颜色从橘红色到紫红色发生相应变化,有利于肉眼观察。

用纳米金不仅可以作为光学标记,同时还可以作为很好的电学标记。金本身是非常优良的导电材料,具有优异的电化学性质,可作为电化学传感器的指示剂。用纳米金作为信号分子能显著提高电化学传感器的检测灵敏度,而且这种方法仪器简单、无污染、检测稳定可靠、灵敏度高。

纳米金颗粒有着优异的化学和物理性能,有着极高的比表面积,有利于提高生物分子的吸附能力,并能提高生化反应的速度,因此被广泛用于生物分析。纳米金的优异性能使得其在生物医学、分子生物学等生物标记分析领域中具有广泛而重要的应用。

2、碳纳米管

自从1991年首次被报道以来,碳纳米管(carbonnanotubes,CNTs)可以说是被研究得最多的纳米材料。与纳米金一样,CNTs同样也具备极好的电子传递能力、蛋白质的高负载能力以及良好的生物相容性,而且,由于CNTs 本身的物质基础就是碳,因此其功能化将更为方便和多样。此外,由于CNTs为一维纳米材料,意味着CNTs在电极表面的组装将呈现网络状。

碳纳米管有着优异的表面化学性能和良好的电学性能,是制作生物传感器的理想材料。无论是单壁碳纳米管还是多壁碳纳米管在生物传感器中都有应用,如利用碳纳米管改善生物分子的氧化还原可逆性、利用碳纳米管降低氧化还原反应的过电位、利用碳纳米管固定化酶、利用碳纳米管进行直接电子传递、用于药物传递和细胞病理学的研究等。碳纳米管还适用于做原子力显微镜的探针尖,在碳纳米管顶端修饰上酸性基团或碱性基团,就可以作为原子力显微镜针尖来滴定酸性或碱性基团。纳米管羧基化后可以进一步衍生化,实现与酶、抗原/抗体和脱氧核糖核酸(DNA)等分子的结合,制备出各种生物传感器。

需要提出的是,由于CNTs难以具备纳米金那样良好的形态分布,因此对有序的表面组

装提出了挑战。另外,大多数蛋白质的尺寸都属于零维的纳米级,因此在一维的CNTs表面组装相对而言缺少灵活性。出于这些考虑,将CNTs与零维的纳米颗粒,如纳米金、纳米铂等联合运用,在一定程度上可以克服两者在某些方面的缺陷,因而也是传感器构建中的良好策略。

3、纳米氧化物

除了具备纳米材料共有的一些性质外,纳米氧化物还依材料的不同具备一些特殊的效应,比如纳米Fe3O4的磁效应。纳米TiO2的光电效应等,而这些效应在新型生物传感器的构建中可以产生一些意想不到的效果。纳米TiO2 是另一种具有特殊效应、光电效应的纳米材料,由于具有极强的紫外线屏蔽能力和很高的表面活性,纳米TiO2已经被大量用于污水处理消毒杀菌,以及在化妆品和涂料中防紫外线侵蚀。

纳米TiO2 是一种在光化学和生物化学领域中非常有发展前途的纳米材料,其优良的生物相容性易于吸附生物分子的特性及良好的化学反应活性已在生物传感领域得到广泛应用。

磁性纳米颗粒是近年来发展起来的一种新型材料,因磁性纳米粒子具有特殊的超顺磁性,因而在聚磁电阻、磁记录、软磁、永磁和巨磁阻抗材料等方面具有广阔的应用前景。磁性纳米材料还可结合各种功能分子,如酶、抗体、细胞、DNA或RNA等,使其在核酸分析、临床诊断、靶向药物、细胞分离和酶的固定化等领域有着广泛的应用研究。在生物传感器领域,磁性纳米颗粒的应用为生物传感器开辟了广阔的前景,磁性纳米颗粒能显著提高生物传感器检测的灵敏度,实现生物分子的分离,提高了检测的通量。

磁性纳米颗粒在生物传感器中的应用主要体现在生物活性物质的固定、分离和检测。1.1生物活性物质的固定

磁性纳米颗粒的表面可很容易地包埋生物高分子,如多聚糖,蛋白质等形成核壳式结构。因此磁性纳米颗粒可应用于酶、抗体、寡核苷酸和其他生物活性物质的固定。

1.2生物物质的分离

在磁性分离中,针对所要进行分离的生物物质如蛋白质、DNA序列、细胞、底物、抗原的特征,在超顺磁性的纳米粒子(如5~100 nm的Fe3O4 )的表面上修饰上各种氨基、羟基、羧基、巯基等功能基团。经修饰后的磁性纳米粒子加入混合物后,能快速将靶向目标物结合到磁性颗粒表面,在外加磁场作用下,能被磁场吸引,与其他的物质分离。当撤去磁场后,磁性颗粒又可很快地均匀分散在溶液中。

1.3生物活性物质的检测

磁性纳米在实现生物分子的快速、实时和高通量检测方面有着广泛的应用前景。

4、量子点

量子点作为荧光标记物,已经被广泛用于荧光示踪,以金属硫/硒/碲化物Zn/Cd/Pb-S/Se/Te 等为代表的量子点,一方面是很好的生物标记材料,另一方面,其中的金属离子Zn2+、Cd2+、Pb2+可用于阳极溶出伏安法检测,从而提供电化学信号。

近来,量子点用于生物传感器的研究备受关注。量子点是显示量子尺寸效应的半导体纳米微晶体,其尺寸小于相应体相半导体的波尔直径,通常在2~20nm。量子点可用于细胞内

的检测,相比于传统的荧光分子,量子点有3个主要的优点:量子点的发光波长可以简单地通过调节其直径大小而改变,这对应用非常重要;另外,量子点的发光波长比较窄,效率较高;更为重要的是,量子点没有光漂白效应。这3个优点使量子点在生物分子探针和生物传感器领域具有巨大的应用潜力。目前关键的问题在于如何对量子点表面进行有效的生化修饰,印度中央食品技术研究所研究人员利用碲化镉(CdTe)量子点制备出的生物荧光探针,可用于食品、环境等目标分析物的高灵敏检测。

5、复合纳米材料

不同的纳米材料各自具备一定的特性,在电化学生物传感器的设计中使用单一的材料

难以充分发挥纳米材料的性能,因此,同时使用多种纳米材料成为一个解决方案。一种思路是首先合成两种或多种纳米材料,然后在传感器的构建中同时或在不同阶段分别运用;另一种思路则是在纳米材料的合成阶段将不同的材料进行组装,即合成复合纳米材料,将不同纳米材料的特性整合到一个纳米复合体中。一个很好的例子是CNTs与金属纳米颗粒复合的材料,另一个例子则是合成核/壳结构的纳米颗粒,而且这种做法目前更为常见。

6、纳米光纤

随着纳米光纤探针和纳米敏感材料技术逐步成熟,运用纳米光纤探针和纳米级识别元件检测微环境中的生物、化学物质已成为可能,运用这种高度局部化的分析方法,能够监测细胞、亚细胞等微环境中各成分浓度的渐变以及空间分布。光纤纳米生物传感器主要有光纤纳米荧光生物传感器、光纤纳米免疫传感器等,具有体积微小、灵敏度高、不受电磁场干扰、不需要参比器件等优点。

6.1光纤纳米荧光生物传感器

一些蛋白质类生物物质自身能发荧光,另一些本身不能发荧光的生物物质可以通过标记或修饰使其发荧光,基于此,可构成将感受的生物物质的量转换成输出信号的荧光生物传感器。荧光生物传感器测量的荧光信号可以使荧光猝灭,也可以使荧光增强可测量荧光寿命,也可测量荧光能量转移。光纤纳米荧光生物传感器具有荧光分析特异性强、敏感度高、无需用参比电极、使用简便、体积微小等诸多优点,具有广泛的应用前景。

6.2光纤纳米免疫传感器

免疫传感器是指用于检测抗原抗体反应的传感器,根据标记与否,可分为直接免疫传感器和间接免疫传感器;根据换能器种类的不同,又可分为电化学免疫传感器、光学免疫传感器、质量测量式免疫传感器、热量测量式免疫传感器等。光学免疫传感器是将光学与光子学技术应用于免疫法,利用抗原抗体特异性结合的性质,将感受到的抗原量或抗体量转换成可用光学输出信号的一类传感器,这类传感器将传统免疫测试法与光学、生物传感技术的优点集于一身,使其鉴定物质具有很高的特异性、敏感性和稳定性。而光纤纳米免疫传感器是在光学免疫传感器基础上将敏感部制成纳米级,既保留了光学免疫传感器的诸多优点,又使之能适用于单个细胞的测量。

四、结语

随着纳米技术和生物传感器交叉融合的发展,涌现出越来越多的新型纳米生物传感器,如量子点、DNA、寡核苷配体等纳米生物传感器。这些生物传感器的最显著特点是快速、准确、灵敏,集多功能、便携式、一次性于一身,不仅可以检测细菌、病毒、蛋白质、酶、血糖、有毒有害小分子物质、重金属离子等,甚至该还探寻到原子、分子内部(包括细胞内)进行实时单分子水平分析。但未来的新一代纳米生物传感器也面临着诸多挑战,如更高灵敏度、特异性、生物相容性、集成多种技术、检测方法简化、制备工艺、批量化生产、成本效益等。纳米生物传感器阵列或多种纳米生物传感器的集成,是生物传感器的一个重要发展趋势。分子自组装加工工艺简单可控,可以实现快速复制,而且成本较低,对生物传感器的发展有很重要的促进作用,有利于高灵敏度、低成本、一次性纳米生物传感器的发展。而生物分子自组装技术更值得关注,具有天然的生物兼容性、优异的结合性能,是生物传感器发展的一个新领域。纳米生物传感器未来可广泛满足各种医疗诊断、药物发现、病原体检测、食品检测、环境检测、生物反恐和国家安全防御方面的需要,未来完全有可能替代当前的一些分析方法,并很可能成为生命科学分析的标准方法。

纳米材料应用现状及发展趋势

NANO MATERIAL NANO MATERIAL NANO MATERIAL 纳米材料 应用现状及发展趋势 北京有色金属研究总院李明怡 摘要纳米材料是近期发展起来的多功能材料,本文概述了纳米材料的结构特性、主要制备工艺及应用现状和发展趋势,由于纳米材料具有许多特殊功能和效应,将在工业和国防等领域中发挥巨大潜力,并将为人类社会带来巨大影响。 关键词纳米结构功能材料制备工艺应用现状发展趋势 1前言 纳米材料是指由极细晶粒组成,特征维度尺寸在1~100纳米范围内的一类固体材料,包括晶态、非晶态和准晶态的金属、陶瓷和复合材料等,是80年代中期发展起来的一种新型多功能材料。由于极细的晶粒和大量处于晶界和晶粒内缺陷中心的原子,纳米材料在物化性能上表现出与微米多晶材料巨大的差异,具有奇特的力学、电学、磁学、光学、热学及化学等诸方面的性能,目前已受到世界各国科学家的高度重视。以纳米材料及其应用技术为重要组成部分的纳米科学技术,被认为对当代科学技术的发展有着举足轻重的作用。美国IB M公司首席科学家Ar mstrong认为:/正像70年代微电子技术产生了信息革命一样,纳米科学技术将成为下一代信息的核心。0我国科学家钱学森也指出:/纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而将引起21世纪又一次产业革命。0由于纳米科学技术具有极其重要的战略意义,美、英、日、德等国都非常重视这一技术的研究工作。美国国家基金会把纳米材料列为优先支持项目,拨巨款进行专题研究。英国从1989年起开始实施/纳米技术研究计划0。日本把纳米技术列为六大尖端技术探索项目之一,并提供1187亿美元的专款发展纳米技术。我国组织实施的新材料高技术产业化专项中也将纳米材料列为其中之一。纳米材料正在向国民经济和高技术各个领域渗透,并将为人类社会进步带来巨大影响。 2纳米材料的结构和特性 我们所使用的常规材料在三维方向上都有足够大的尺寸,具有宏观性。纳米材料则是一些低维材料,即在一维、二维甚至三维方向上尺寸极小,为纳米级(无宏观性),故纳米材料的尺寸至少在一个方向上是几个纳米长(典型为1~10nm)。如果在三维方向上都是几个纳米长,为3D纳米微晶,如在二维方向上是纳米级的,为2D纳米材料,如丝状材料和纳米碳管;层状材料或薄膜等为1D纳米材料。纳米颗粒可以是单晶,也可以是多晶,可以是晶体结构,也可以是准晶或无定形相(玻璃态);可以是金属,也可以是陶瓷、氧化物或复合材料等。纳米微晶的突出特征是晶界原子的比例很大,有时与晶内的原子数相等。这表明纳米微晶内界面很多,平均晶粒直径越小,晶界 20

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米材料的发展及应用

课程名称:化工新材料概论姓名:邓元顺 学号:1208110201 专业:化学工程与工艺班级:化工122

浅析纳米材料的发展及应用 摘要:纳米材料是纳米级结构材料的简称。狭义是指纳米颗粒构成的固体材料, 其中米颗粒的尺寸最多不超过100nm。广义是指微观结构至少在一维方向上受纳米尺度(1-100nm)限制的各种固体超细材料。【2】纳米技术是当今世界最有前途的决定性技术。纳米材料在力学、磁学、电学、热学、光学和生命等方面的重要作用和应用前景。 Abstract:Nanometer material is the abbreviation of nano structured materials.The narrow sense refers to the solid material of nano particles, in which the size of the meter particles is not more than 100nm. Generalized refers to a variety of solid ultrafine materials which are limited by nano scale (1-100nm) in the one-dimensional direction at least in one dimension.. Nanotechnology is the most promising technology in the world today. Nano materials in mechanics, magnetism, electricity, heat, optics and life and so on the important role and the application prospect. 关键词:纳米材料纳米技术发展应用 前言:纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目。【1】美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心” 一、纳米材料的发展史 1965年诺贝尔物理学奖获得者、美国加利福尼亚工学院教授费曼(R.P.Feynman)曾在1959年预言:“如果有一天可以按照人的意志来安排一个个原子,将会产生怎样的奇迹?”

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

纳米科学与技术的发展历史

纳米科学与技术的发展历史 物三李妍 1130060110 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性 学科领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上(0.1nm到10nm之间)研究物质(包括原子、分子)的特性和相互 作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大 空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类 能够用最小的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想 包括以下几点: (1)如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材 料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇 百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正 是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪 80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器——— 扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显微学会议在美国巴尔

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

纳米材料的应用和发展前景概要

一、文献调研部分(获取综述的参考文献—精读全文)1.利用中文(期刊、学位论文、会议论文)数据库,检出中文切题题录(批量),选择记录文摘格式10篇(其中学位论文要求不少于2篇、期刊论文6篇); [1]叶灵. 纳米材料的应用与发展前景[J]. 科技资讯. 2011(20) 摘要: 很多人都听说过"纳米"这个词,但什么是纳米,什么是纳米技术,可能很多人并不一定清楚。着名的诺贝尔奖获得者Feyneman在20世纪60年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 [2]赵雪石. 纳米技术及其应用前景[J]. 适用技术市场. 2000(12) 摘要: 纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的前景,使得纳米技术成为目前科学研究的热点之一,被认为是21世纪的又一次产业革命。 [3]何燕,高月,封文江. 纳米科技的发展与应用[J]. 沈阳师范大学学报(自然科学版). 2010(02) 摘要:纳米科技是21世纪的主导产业,世界各国把纳米科技的研究和应用作为战略重点。在第五次科学技术革命中,新材料家族被推上新一轮科技革命的顶峰。在新材料和新技术中,纳米材料和纳米技术无疑将成为核心材料和核心技术。纳米技术的最终目标是直接操纵单个原子和分子,制造新功能器件,从而开拓人类崭新的生活模式。文章概述了纳米科技的发展过程及纳米材料的性质与制备,介绍了纳米技术在部分领域的应用,并简述了纳米技术对未来社会的巨大影响及潜在的、令人鼓舞的发展前景。 [4]何彦达. 纳米材料的应用及展望[J]. 科技风. 2010(01) 摘要:纳米材料(尺寸在1-100纳米范围内)又称超细微粒、超细粉末,是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 [5]樊东黎. 纳米技术和纳米材料的发展和应用[J]. 金属热处理. 2011(02) 摘要:<正>2005年12月在克利夫兰召开了由美国金属学会和克利夫兰纳摩网主办的美国纳米技术应用峰会。许多实体企业,如波音、福特、通用、洛克希德、蒂姆肯等公司高管出席会议和发言。会议的特点是着重于纳米。 [6]张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16) 摘要:由于独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,以下概述了纳米材料的应用与发展前景。 [7]杨萍. 多功能复合纳米材料的制备及其光分析应用研究[D]. 中国科学技术大学 2012 摘要:纳米材料具有独特的化学、物理和生物性能,引起了人们的极大关注。多功能复合结构纳米材料能够将不同功能的纳米材料整合到一个纳米器件中,从而为现代工业、生物医学

简述纳米材料的发展历程

简述纳米材料的发展历程 纳米材料问世至今已有20多年的历史,大致已经完成了材料创新、性能开发阶段,现在正步人完善工艺和全面应用阶段。 “纳米复合聚氨酯合成革材料的功能化”和“纳米材料在真空绝热板材中的应用”2项合作项目取得较大进展。具有负离子释放功能且释放量可达2000以上的聚氨酯合成革符合生态环保合成革战略升级方向,日前正待开展中试放大研究。 该产品的成功研发及进一步产业化将可辐射带动300多家同行企业的产品升级换代。联盟制备出的纳米复合绝热芯材导热系数可控制为低达4.4mW/mK。该产品已经在企业实现了中试生产,正在建设规模化生产线。 联盟将重点研究开发阻燃型高效真空绝热板及其在建筑外墙保温领域的应 用研发和产业化,该技术的开发将进一步促进我国建筑节能环保技术水平的提升,带动安徽纳米材料产业进入高速发展期。 纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。 一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

生物传感器的原理及应用

生物传感器的原理及应用 摘要: 随着信息技术与生物工程技术的发展,生物传感器得到了极为迅速的发展,当今各发达国家都把生物传感器列为21世纪的关键技术,给予高度的重视。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在空间生命科学、食品工业、环境监测和军事等领域广泛应用。 关键词:生物传感器;原理;应用;发展 Abstract: As information technology and biological engineering technology, bio-sensors has been very rapid development,today's developed countries regard the biosensor technology as the key to the 21st century, given a high priority. Biosensors are widely used in traditional medicine not only to promote the development of medicine, but also in space life science, food industry, environmental monitoring and widely used in military and other fields. Keyword s: biosensor; principle; application; development

目录 一. 引言 (4) 二. 生物传感器的原理 (4) 三. 生物传感器的应用 (5) 3.1.生物传感器在医学领域的应用 (5) 3.1.1. 基于中医针灸针的传感针 (5) 3.1.2.生物芯片 (5) 3.1.3.生物传感器的临床应用 (5) 3.2.生物传感器在非传统医学领域的应用 (6) 3.2.1.在空间生命科学发展中的应用 (6) 3.2.2.在环境监测中的应用 (6) 3.2.3.在食品工程中的应用 (6) 3.2.4.在军事领域的应用 (6) 四. 生物传感器的未来 (7) 五. 结束语 (7) 六. 参考文献 (7)

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手段。纳米技术以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 2、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 3、纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。 纳米技术的发展史 1959年著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小 的机器制做更小的机器,最后将变成根据人类意愿,逐个地排列原 子,制造产品,这是关于纳米技术最早的梦想。 20世纪70年代科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家 唐尼古奇最早使用纳米技术一词描述精密机械加工 1982年科学家发明研究纳米的重要工具——扫描隧道显微镜,揭示了一个 可见的原子、分子世界,对纳米科技发展产生了积极的促进作用。1990年7月第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科

生物传感器原理及应用

Chapter 1生物传感器 (Biosensors) ? 1.1 Generalization(概述)? 1.2 Principle (基本原理)? 1.3 Classification(分类)? 1.4 Application(应用)

1.2 生物传感器工作原理 被测对象生物敏 感膜 (分子 识别感 受器) 电 信 号 换 能 器 物理、化学反应 化学物质 力 热 光 声 . . . 图16-1 生物传感器原理图

BIOSENSORS 1.2 生物传感器原理 无论是基于电化学、光学、热学或压电 晶体等不同类型的生物传感器,其探头均由 两个主要部分组成,一是感应器,它是由对 被测定的物质(底物)具有高选择性分子识 别功能的膜构成。二是转换器,它能把膜上 进行的生化反应中消耗或生成的化学物质, 或产生的光、热等转变成电信号,最后把所 得的电信号经过电子技术的处理后,在仪器 上显示或记录下来。

换能器(T r a n s d u c e r )感受器(R e c e p t o r )= 分析物(Analyte ) 溶液(Solution )选择性膜(Thin selective membrane ) 识别元件(Recognition )生物传感器工作机理 测量信号(Measurable Signal ) BIOSENSORS

(1)将化学变化转变成电信号 酶传感器为例,酶催化特定底物发生化学反应,从而使特定生成物的量有所增减。用能把这类物质的量的改变转换为电信号的装置和固定化酶耦合,即组成酶传感器.常用转换装置有氧电极、过氧化氢。

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

纳米材料发展史

纳米材料发展史 专业 --------- 姓名—————— 学号 _________ 一、什么是纳米材料 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1

微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其

具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 二.纳米材料的发展历程 1959年12月29日

理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。1974年 日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年 格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1985年 赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使用最广泛的纳米材料之一。 1986年 在苏黎世的IBM研究实验室中,卡尔文?夸特(Calvin Quate)和克里斯托?格柏(Christoph Gerber)与德国物理学家宾尼(Binnig)协作,发明了原子力显微镜。它成为在纳米尺度成像,测量和操作的最重要的工具之一,这是纳

纳米材料的应用及发展前景

纳米材料的应用及发展前景 摘要 纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。本文概要的论述了纳米材料的发现发展过程,并简述了纳米材料在各方面的应用及其在涂料和力学性能材料方面的发展前景。 关键词:纳米材料、纳米技术、应用、发展前景 一、前言 从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。 纳米级结构材料简称为纳米材料(nanometer material),是指其结构单元的尺寸介于1 纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展

相关文档
最新文档