基于像元二分模型的植被覆盖度反演以市为例

基于像元二分模型的植被覆盖度反演以市为例
基于像元二分模型的植被覆盖度反演以市为例

基于像元二分模型的植被覆盖度反演以市为例

文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

基于像元二分模型的植被覆盖度反演-以北京市为例

王玲

(西北大学城市与环境学院,陕西西安 710127)

摘要:采用遥感技术监测植被覆盖度具有重要意义。本文以北京市为例,基于2013年的Landsat8 OLI影像,选取NDVI值为参数,采用像元二分模型对植被覆盖度进行反演,最终反演的结果与实际情况符合,说明采用该方法反演植被覆盖度可行。

关键词:植被覆盖度、像元二分模型、NDVI、植被指数

引言

植被覆盖度(Vegetation fractional cover,简称fc)是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,即植土比。通常林冠称郁闭度,灌草等植被称覆盖度[1]。它是衡量地表植被覆盖的一个最重要的指标,被覆盖度及其变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化等都具有重要意义[2]。根据监测手段, 测量植被覆盖度的方法可分为地面测量和遥感测量两大类,测量常用于田间尺度,遥感估算常用于区域尺度。目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的地面测量单的方法就是目估法,缺点主要是主观性太强。客观的测量方法有样点法、样方法、样带法等,借助于采样仪器的测量方法,空间定量计、移动光量计等。这些方法虽然提高了测量精度,但野外操作不便,并且成本较高, 难以在大范围内快速提取植被覆盖度。而采用遥感技术为监测大面积区域的植被覆盖度,甚至全球的植被覆盖度监测提供了可能[3]。目前已有许多利用遥感技术测量植被覆盖度的方法,其中应用最广泛的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。

一、数据源

本文选取两景覆盖北京市的Landsat8 OLI影像、土地覆盖类型图以及北京行政边界矢量数据为数据源。其中,土地覆盖类型图是作为掩膜文件使用,其目的是为了便于植被覆盖度的估算;北京行政边界矢量数据是为了将两景镶嵌好的影像数据进行裁剪使用的,其目的是裁剪出北京市行政区内的范围。另外,Landsat8 OLI影像是从地理空间数据云网站上下载得到的,其成像时间为2013年10月份。与Landsat7的ETM+成像仪相比,OLI成像仪获取的遥感图像辐射分辨率达到12比特,图像的几何精度和数据的信噪比也更高。OLI成像仪包括9个短波谱段(波段1~波段9),幅宽185km,其中全色波段地面分辨率为15m,其他谱段地面分辨率为30m[4]。

表1 Landsat8 OLI陆地成像仪波段参数

二、研究方法

本文反演植被覆盖度所采用的是像元二分模型方法,像元二分模型是一种

简单实用的遥感估算模型,它假设一个像元的地表由有植被覆盖部分地表(S

V

)与

无植被覆盖部分地表(S

S

)组成,而遥感传感器观测到的光谱信息(S)也由这2个组分因子线性加权合成,各因子的权重是各自的面积在像元中所占的比率,如其中植被覆盖度可以看作是植被的权重。因此,像元二分模型的原理如下:

①遥感传感器观测到的光谱信息(S)由有植被覆盖部分地表(S

V

)与无植被覆盖部分

地表(S

S

)组成,可得出:

S = S

V + S

S ·········

公式1

②假设一个像元中有植被覆盖的面积比例为fc , 即该像元的植被覆盖度, 则裸土覆盖的面积比例为1 -fc ,如果全由植被所覆盖的纯像元所得的遥感信息为Sveg , 则混合像元的植被部分所贡献的信息Sv可以表示为Sveg与fc的乘积:

Sv =fc·Sveg

·········

式2

那么,

Ss =(1 -fc )·Ssoil

公式3

·········

③将公式2与公式3代入到公式1中,可得到:

S =fc ·Sveg +(1 -fc)S soil

公式4

·········

④对公式4进行变换, 可得以下计算植被覆盖度的公式:

fc =(S -Ssoil) (Sveg -Ssoil )

公式5

·········其中Ssoil 为纯土壤像元的信息, Sveg 为纯植被像元的信息, 因而可以根据公式5利用遥感信息来估算植被覆盖度。

⑤将归一化植被指数(NDVI)代入公式5可以被近似为:

公式6 fc =(NDVI - NDVIsoil ) (NDVIveg -NDVIsoil)

·········其中, NDVIsoil 为裸土或无植被覆盖区域的NDVI值, 即无植被像元的NDVI 值;而NDVIveg 则代表完全被植被所覆盖的像元的NDVI 值, 即纯植被像元的NDVI 值[2]。

当区域内可以近似取VFCmax=100%,VFCmin=0%,VFC = (NDVI -NDVImin)/ ( NDVImax -NDVImin),NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定;当区域内不能近似取

VFCmax=100%,VFCmin=0%,当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。当没有实测数据的情况下,取一定置信度范围内的NDVImax 和NDVImin。VFCmax和VFCmin根据经验估算。

三、数据处理

1、数据预处理

本文使用的Landsat8 OLI为L1T级别数据,不需做几何校正处理。而北京市需要两景Landsat OLI数据覆盖,因此首先要进行图像镶嵌和裁剪,然后进行大气校正等预处理过程。

(1)辐射定标

辐射定标是将传感器记录的电压或数字值转换成绝对辐射亮度的过程。目的是消除传感器本身所产生的误差,由于传感器在不断的运行中光学器件性能逐渐退化,因此定标的系数也随之不同,这些定标系数也在不断的更改,在用户获得数据的时候,这些定标系数也在影像的头文件中同时提供给用户。遥感数据辐射定标就是将传感器得到的灰度值转换为星上的辐射亮度值或星上反射率,即表观辐射度或表观反射率。辐射定标主要校正由传感器的灵敏度带来的辐射误差[5]。其目的是为FLAASH大气校正准备数据:定标符合单位要求的辐射量数据、转换数据储存顺序等。

该处理过程在中实现,具体操作:在ENVIToolbox中,选择

Toolbox/Radiometric Correction/ Radiometric Calibration,选择

*_MultiSpectral多光谱组(7个波段),打开辐射定标工具,对两景影像分别做辐射定标。

(2)影像镶嵌

因本文所使用的影像数据源是两景Landsat OLI影像,因此需进行影像镶嵌,镶嵌的目的是将不同的影像文件无缝地拼接成一幅完整的包含研究区域的影像。该处理过程在中实现,具体操作:在Toolbox中,选择

/Mosaicking/Seamless Mosaic,打开无缝镶嵌工具,然后进行相关参数设置,如下所示:

(3)影像裁剪

因本文所使用的影像数据包含了北京市行政区划以外的部分地区,因此需进行影像裁剪,以将研究区裁剪出来,并且减小了数据量,加快了数据处理速度,本文使用北京行政边界矢量裁剪图像。过程在中的具体操作如下:

在Toolbox中,选择/Regions of Interest/Subset Data from ROIs,打开裁剪工具:

影像裁剪结果如下所示:

(4)Flaash大气校正

电磁波在大气中的传输和遥感器观测过程中受光照条件以及大气作用等的影响,只

有小部分(在波段80%,在波段50%)太阳辐射能反射到遥感器,导致遥感器的测量值与地物实际的光谱辐射率不一样。辐射损失主要发生在大气吸收和散射过程,因此地表参数的遥感定量反演研究中,必须纠正目标辐射的不确定性信息[6]。

ENVI中的FLAASH模型是基于MODTRAN4+辐射传输模型,通过参数查找表来进行大气校

正的商业化软件。FLAASH大气校正模块支持多种传感器数据,其光谱处理范围μμm,可以有效地去除水蒸气/气溶胶散射效应,同时该方法基于图像像素级的校正,能够解决目标像元和邻近象元的“邻近效应”问题,校正结果精度高,简单易行[7]。

然后,对大气校正前后同一地物的光谱曲线进行对比,这里以植被为例,光谱曲线如下图所示:

校正

前的植被光谱曲线

校正后的植被光谱曲线

2、植被覆盖度估算

(1)计算NDVI

本文选取NDVI值为参数,采用像元二分模型对植被覆盖度进行反演,根据植被覆盖度的计算公式可知,要求取植被覆盖度,首先需要计算NDVI。在中的具体操作如下:

在Toolbox中,选择Spectral/Vegetation/NDVI,NDVI Calculation Input File面板中,选择图像,求算NDVI,如下:

NDVI求算结果如下:

由于大气校正后的结果有部分像元为负值,主要集中在阴影地区,这部分区域计算得到的NDVI在[-1,1]之外,为了便于后面的分析,我们这里统一将这部

分像元进行处理,即NDVI

值大于1的变为1,小于-1的变成-1。在Bandmath中的表达式为:-1>b1<1,其中b1代表的是NDVI,得到去除异常值文件:NDVI_去除异常值.dat

(2)掩膜文件制作

该过程主要是为了计算NDVI的最大值、最小值所服务的,根据土地利用分类图(共

5类,林地、农业用地、城市用地、水体与其他)制作各种土地利用类型的掩膜文件,在中的具体操作如下:

在Toolbox中选择/Raster Management/Masking/Apply Mask,打开制作掩膜工具:

采用该方法制作林地、农业用地、城市用地、水体与其他的掩膜文件,其中林地与耕地的掩膜文件制作结果如下:

(2)获取阈值

这一步就是求解NDVImax和NDVImin,使用上一步获取的掩膜文件分别对NDVI 图像文件进行统计,在一定置信度范围内获取每个掩膜文件(也就是土地覆盖类型)对应的最大和最小NDVI值。

在Toolbox中,选择/Statistics/Compute Statistics,进行统计,然后在统计结果中,取一定的置信度获取最大和最小的NDVI值。如这里的林地覆盖区域的统计结果(如下图),这个过程带有很大的主观性,我们需要根据统计学原理自

己制定一套规则(比如5%的置信度),这里我就以NDVI值对应像元数量增加到5位数字为置信区间,选择NDVImin=,NDVImax=。

同样的方法得到其他地物覆盖类型的NDVI阈值,其中,水体没有植被(水藻不属于植被),认为这部分区域的植被覆盖度为0,如下表:

(3)生成参数文件

植被覆盖度的计算公式:fc =(NDVI - NDVIsoil ) (NDVIveg -NDVIsoil),该过程是根据上面得到的NDVI阈值分别生成NDVIsoil和NDVIveg参数文件,也即NDVImin与NDVImax。该过程主要使用的bandmath工具,并且:

NDVIsoil:b1*+b2*+b3*+b4*0+b5*

其中,b1:林地掩膜文件

b2:农业用地掩膜文件

b3:城市用地掩膜文件

b4:水体掩膜文件

b5:其他用地掩膜文件

NDVIveg:b1*+b2*+b3*+b4*0+b5*

其中,b1:林地掩膜文件

b2:农业用地掩膜文件

b3:城市用地掩膜文件

b4:水体掩膜文件

b5:其他用地掩膜文件

最终,生成的参数文件如下所示:

(4)植被覆盖度估算

利用上一步得到的NDVIsoil和NDVIveg参数文件带入公式:fc =(NDVI - NDVIsoil ) (NDVIveg -NDVIsoil),该过程也是利用中的Bandmath工具来实现的,其表达式为:(b1-b2)/(b3-b2),其中,b1为NDVI(对应的文件名为“NDVI_去除异常值.dat”)、B2为 NDVIsoil参数文件、B3:为NDVIveg参数文件,植被覆盖度估算结果如下:

我们分析下结果,会发现有一些异常值,即值在[0,1]之外,这些异常值是在NDVI置信度之外的那部分像元产生的(也包括NDVI异常像元)。这些像元数量不多,大约占%左右。还有背景和水体区域的植被覆盖度的值为-NaN,即无效值,因为分母为0造成的。

第一种异常值可以将小于 0的值变成0,大于1的值变成1,用 bandmath工具即可, Bandmath 表达式为: >b1<,其中b1为植被覆盖度;-NaN 可以用掩膜进行处理,即在Build Mask中用 -NaN生成掩膜。

去掉异常值之后,并对其进行分类显示,最终得到的植被覆盖度图如下:(5)结果验证

目前业内植被覆盖度的验证方法主要是通过野外调查结果进行验证,如下为一种方法:以与地面垂直的角度用数码相机拍摄采样点的地面照片,使用GPS定位获得采样点的经纬度坐标。为获得准确的植被覆盖度实测数据减少像片边缘变形误差,将数码相机得到的数字图像截取长、宽各三分之二的中心地带,采用非监督分类法为10类,并将分类结果分为植被、非植被两类,以此来计算出植被覆盖度。为了保证验证时能够正确定位,野外一般选取3*3个像元大小的样方,即90m*90m,并在样方中均匀拍摄多张照片。取从照片计算的平均值作为样方的植

被覆盖,取样方中心点所在3*3像元的植被覆盖度平均值作为对应的遥感估算值

进行验证。

三、结论

本文通过归一化植被指数(NDVI)像元二分模型来估算北京市的植被覆盖度,从估算结果来看,北京市市中心的植被覆盖度相比远离市中心地区的植被覆盖度相对较小,尤其是西南地区人口密集、城市化水平高,植被覆盖度相对较小。但是,对于市内绿化程度较高的地区,植被覆盖度相对较高。因此,从实际情况来看,本文中对植被覆盖度的估算结果与实际情况较为符合,说明采用NDVI 像元二分模型估算植被覆盖度的效果较好。

参考文献

[1] 吴云,曾源,赵炎.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424.

[2]陈巧,永富. QuickBird遥感数据监测植被覆盖度的研究[J].林业学研

究,2005,8(4):375-380.

[3]苗正红,刘志明.基于MOdis NDVI的吉林省植被覆盖度动态遥感监测[J].遥感技术与应用,2010,25(3):387-393.

[4] 初庆伟,张洪群,吴业炜.Landsat-8卫星数据应用探讨[J].遥感信息,2013,28(4):110-114.

[5]周婷婷.遥感影像辐射校正研究与应用[D].福建师范大学,2010年6月.

[6]钱金波.祁连山狼毒盖度地面测量与卫星遥感估算[D].兰州大学,2009年5月.

[7]任唯敏.植被指数计算区域植被覆盖度的适用性研究[D].西北大学,2012年6月.

基于像元二分模型的植被覆盖度反演-以北京市为例

基于像元二分模型的植被覆盖度反演-以北京市为例 王玲 (西北大学城市与环境学院,陕西西安 710127) 摘要:采用遥感技术监测植被覆盖度具有重要意义。本文以北京市为例,基于2013年的Landsat8 OLI影像,选取NDVI值为参数,采用像元二分模型对植被覆盖度进行反演,最终反演的结果与实际情况符合,说明采用该方法反演植被覆盖度可行。 关键词:植被覆盖度、像元二分模型、NDVI、植被指数 引言 植被覆盖度(Vegetation fractional cover,简称fc)是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,即植土比。通常林冠称郁闭度,灌草等植被称覆盖度[1]。它是衡量地表植被覆盖的一个最重要的指标,被覆盖度及其变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化等都具有重要意义[2]。根据监测手段, 测量植被覆盖度的方法可分为地面测量和遥感测量两大类,测量常用于田间尺度,遥感估算常用于区域尺度。目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的地面测量单的方法就是目估法,缺点主要是主观性太强。客观的测量方法有样点法、样方法、样带法等,借助于采样仪器的测量方法,空间定量计、移动光量计等。这些方法虽然提高了测量精度,但野外操作不便,并且成本较高, 难以在大范围内快速提取植被覆盖度。而采用遥感技术为监测大面积区域的植被覆盖度,甚至全球的植被覆盖度监测提供了可能[3]。目前已有许多利用遥感技术测量植被覆盖度的方法,其中应用最广泛的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。 一、数据源 本文选取两景覆盖北京市的Landsat8 OLI影像、土地覆盖类型图以及北京行政边界矢量数据为数据源。其中,土地覆盖类型图是作为掩膜文件使用,其目的是为了便于植被覆盖度的估算;北京行政边界矢量数据是为了将两景镶嵌好的影像数据进行裁剪使用的,其目的是裁剪出北京市行政区内的范围。另外,Landsat8 OLI影像是从地理空间数据云网站上下载得到的,其成像时间为2013年10月份。与Landsat7的ETM+成像仪相比,OLI成像仪获取的遥感图像辐射分辨率达到12比特,图像的几何精度和数据的信噪比也更高。OLI成像仪包括9个短波谱段(波段1~波段9),幅宽185km,其中全色波段地面分辨率为15m,其他谱段地面分辨率为30m[4]。

地表温度反演实验报告

遥感原理与及应用 地表温度反演实验报告 专业:地理信息系统 班级: XXXXXXXX 姓名: XXX 学号: XXXXXX 成绩: 指导教师: XXX 2014年12月17日 一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥

感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。

四. 实验原理 图1 TM 影像地表温度反演流程 1. 地表温度(Land Surface Temperature)反演公 式为: 2 1(1)K LST K In R ε=+, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮 度可以进一步写作: max min 6min 255L L R DN L -=?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体 辐射能的比率,其可以表示为: 1.0090.047(In )(0)NDVI NDVI ε=+>,

其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数 据查询和下载网址https://www.360docs.net/doc/9e6177370.html,/query.html ,界面如图2 所示。 图2 中国科学院遥感与数字地球研究所数据共享 网址界面

ENVI下植被覆盖度的遥感估算

ENVI下植被覆盖度的遥感估算 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。两个概念主要区别就是分母不一样。植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。 植被覆盖度的测量可分为地面测量和遥感估算两种方法。地面测量常用于田间尺度,遥感估算常用于区域尺度。目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。 估算模型 目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。下面是李苗苗等在 像元二分模型的基础上研究的模型: VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1) 其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。两个值的计算公式为: NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3) 利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。 公式(1)可变为: VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4) NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。 2)当区域内不能近似取VFCmax=100%,VFCmin=0%

基于GIS的ndvi植被覆盖度的估算

1.绪论 1.1 课题研究的目的与意义 植被,包括森林、灌丛、草地和农作物,既是生态系统的主要组成部分,也是生态系统存在的基础,具有截流降雨、减缓径流、防沙治沙、保持水土等功能,联结着土壤、大气和水分等自然过程,在陆地表面的能量交换、生物地球化学循环和水文循环等过程中扮演着重要角色,是全球变化研究中的“指示器”[1]。植被根据生态系统中水、气等的状况,调控其内部与外部的物质、能量交换。植被覆盖与气候因子关系极为密切,研究植被覆盖变化 对气候的影响是气候变化研究的主要内容之一,它影响着土壤湿度、地表温度和地表能量与水的循环(李苗苗,2004)。

植被覆盖度(vegetation fractional cover,简称FC)是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比[2]。它是植被对地面的垂直投影比例, 对于山坡进行植被覆盖度测量时,应该采用垂直于坡面的角度。植被覆盖度具有强烈的尺度效应,同一片植被,因被纳入统计的范围不同而表现为不同的植被覆盖度。如一个地区的植被覆盖度很高,但平均到全国水平就大大降低了[3]。植被覆盖度在提示地表植被分布规律, 探讨植被分布影响因子, 分析评价区域生态环境, 及时准确地掌握其动态变化, 分析其发展趋势对维护区域生态平衡等方面都具有重要意义。[4]而城市植被则是城市生态系统重要的还原组织和最重要的元素,对于保护城市生态环境具有不可忽视的作用[5] ,如有效缓解城市

“热岛效应”,改善城市区域小气候[5~7] 等。 城市化的迅速推进,带来了多样化的生态足迹,植被覆盖度,土壤污染率,地表侵蚀率,逐渐成为生态研究的热点,也成为环境保护的重点。借助于高速发展的RS与GIS技术来进行植被覆盖度的估算,将是当前环境监测的必要步骤。 徐州是由矿区发展起来的城市,由于长期开采矿产,导致了一系列严重的生态问题,如塌陷地广布,植被破坏率严重,土地侵蚀率增大,等。在此背景下,研究徐州市整体的土地覆盖情况,即是现实需要,也是未来生态城市规划的重要步骤。研究的最终结果也会给徐州市的城市规划提供信息支持与技术保障。 1.2 国内外植被覆盖度研究现状 由于植被覆盖度是许多学科的重要参数,为

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC8LGN002016/7/263:26:56 ………………………… 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标

选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中, 选择数据LC8LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC8LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨 率自动读取; 6) 设置研究区域的地面高程数据;

植被覆盖度反演

题目:植被遥感监测具有很长的历史,植被遥感中植被覆盖反演是主要内容之一,线性分解模型是混合像元分解法的一种,根据混合像元分解及线性分解模型的原理,利用红碱淖2016年6月17日Landsat8 OLI数据,求取研究区植被覆盖度(写出详细计算过程和步骤)。 一、操作思路: 端元代表影像中的纯净像元,求取植被覆盖度即求取端元的丰度,因此采用混合像元分解及线性分解模型进行混合像元分解,得到端元以及相应的丰度影像,即为植被覆盖度影像。 二、操作步骤: 1.影像预处理 由于操作时间的限制和硬件设备的不允许,将影像选取一定的区域进行裁剪,感兴趣区域为roi1文件,得到裁剪后影像2016new文件,导入影像,进行影像的预处理,包括辐射定标和大气校正步骤,辐射定标采用Radiometric Calibration 工具,大气校正采用FLAASH工具,分别得到辐射定标结果2016_rad1和2016_ref 文件。 2.MNF变换 采用MNF变换工具,可将数据波段进行“降维”,提取出有用信息集中的波段,去除噪声信息集中的波段,利用Forward MNF Estimate Noise Statistic将数据进行MNF变换,得到MNF变换结果2016_MNF和噪声文件MNF_Noise和统计文件MNF_Statistic文件。 3.PPI变换 纯净像元指数法指像元被标记为纯净像元的次数,可以将混合像元进行分解,有效的提取出端元。 由于操作时间的限制和硬件设备的不允许,将MNF变换后影像与原影像选取一定的同样区域进行裁剪,感兴趣区域选择ROI2文件,得到裁剪结果为2016_MNF_sub和2016new_sub文件。 在MNF变换后发现有用信息集中在1、2、3波段,因此利用Pixel Purity Index 工具,将MNF变换后影像选择1、2、3波段进行端元提取,阈值设为3.00,操作的结果为2016_PPI文件。 4.N维可视化 利用N维可视化工具可以将端元更好的显示,有利于更加直观的确定端元,在N维可视化窗口中,选中1、2、3波段,在显示窗口中将较为集中的区域定为端元,进行类(class)的划定,一共确定三类,利用mean all工具将三类端元的波谱显示出来,并保存为波谱库2016_sli文件。 5.端元识别

landsat 遥感影像地表温度反演 教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教 程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时 间 中心经度中心纬度 LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程

三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。

Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数 据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。

ENVI下植被覆盖度的估算

ENVI下植被覆盖度的遥感估算 2013-05-30 | 阅:1 转:17 | 分享 修改 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。两个概念主要区别就是分母不一样。植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。 植被覆盖度的测量可分为地面测量和遥感估算两种方法。地面测量常用于田间尺度,遥感估算常用于区域尺度。 估算模型 目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。下面是李苗苗等在像元二分模型的基础上研究 的模型: VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) (1) 其中, NDVIsoil 为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg 则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。两个值的计算公式为: NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) (2) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) (3) 利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。 公式(1)可变为: VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) (4) NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax 和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图 像实际情况来定。 2)当区域内不能近似取VFCmax=100%,VFCmin=0% 当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为VFCmax和VFCmin,这两个实测数据对应图像的NDVI作为NDVImax 和NDVImin。 当没有实测数据的情况下,取一定置信度范围内的NDVImax 和NDVImin。VFCmax和

Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。 目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。 本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。 基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。 具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程): Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1) 式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。则温度为T的黑体在热红外波段的辐射亮度B(T S)为: B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2) T s可以用普朗克公式的函数获取。

T S = K2/ln(K1/ B(T S)+ 1) (1.3) 对于TM,K1 =607.76 W/(m2*μm*sr),K2 =1260.56K。 对于ETM+,K1=666.09 W/(m2*μm*sr),K2 =1282.71K。 对于TIRS Band10,K1= 774.89 W/(m2*μm*sr),K2 = 1321.08K。 从上可知此类算法需要2个参数:大气剖面参数和地表比辐射率。大气剖面参数在NASA提供的网站(https://www.360docs.net/doc/9e6177370.html,/)中,输入成影时间以及中心经纬度可以获取大气剖面参数。适用于只有一个热红外波段的数据,如Landsat TM /ETM+/TIRS数据。 主要内容就是使用BandMath工具计算公式(1.2)和公式(1.3),处理流程如下图所示。

植被覆盖度计算经验教程

ENVI5.1(5.0版本以上)计算植被覆盖度 1.加载用矢量边界裁剪过的ROI(经几何校正-辐射校正处理) 2.计算NDVI,利用ENVI5.1 Toolbox 提供的搜索功能查找NDVI模块,然 后进行NDVI计算。本例中影像数据为landsat8 影像,因此Input File Type 选项为Landsat OLI,红色波段为4,近红外为5(TM和ETM+影像的NDVI Band:Red 3 Near IR 4)

3.对计算的NDVI进行DN二值化处理,选择Toolbox 中的Band Ratio/Band Math模块,在band math 对话框中进行参数设置。首先,在Enter an expression 对话框下输入NDVI二值化公式: ((b1 lt -1)*0+((b1 ge -1) and (b1 le 1))*b1+(b1 gt 1)*1) (切记,括号为英文半角),然后单击Add to List,将波段运算表达式添加至Previous Band Math Expressions 对话框,然后OK。在新弹出的Variables to Bands Parings 对话框Avilable Bands List 对话框中选择上一步计算的NDVI,然后输出至特定位置(切记,如果电脑内存不足2G,请输出结果为File)。

4.对二值化的NDVI进行概率统计。选择Toolbox 中Statistics/Compute Statistics模块,选择二值化处理的结果(本例中,NDVI_20131119为计算得到的NDVI结果,NDVI为二值化后的结果),同时在Mask Options 下拉菜单中选择Build Mask..选项,在弹出的Mask Definition对话框中选择Import EVFs选项,创建一个mask。然后查看统计结果。详细理论请参考https://www.360docs.net/doc/9e6177370.html,/s/blog_764b1e9d0100u29i.html

成都市植被覆盖度遥感动态监测分析

遥感地学分析课程设计实验报告成都市植被覆盖度遥感动态监测分析 团队人员胡禹贤2008043013遥感081班杨维2008043035 遥感081班胡晓2008043010 遥感081班卿晓琼2008043009 遥感081班郝争2008043007 遥感081班

摘要 本次研究以四川省成都市为研究区,选择2000年Landsat ETM数据、2007年Landsat TM 数据、成都1:50万地形图以及全国县界1:400万的矢量图作为基本信息源,对遥感数据进行波段合成、大气校正、几何校正、图像裁剪处理后,计算出两期图像的归一化植被指数(NDVI),对植被覆盖度进行估算。结果表明:成都市在七年间植被覆盖度总体上呈增高趋势,尤其是市区二环路以内,植被覆盖度有了明显的增加。但是,在成都的一些郊区,比如龙泉、郫县、以及金堂等地的植被覆盖度已经出现下降的迹象;另外,与2000年相比,成都市到2007年低植被覆盖度区域面积有了明显的减少,中低植被覆盖到中高植被覆盖度区域面积增加明显,高植被覆盖度区域面积变化不大。从研究结果上看,我们总体上认为研究区植被覆盖度变化和人类活动有不可分割的密切关系。 【关键词】:归一化植被指数;遥感;植被覆盖度;成都市。 summary The study, Chengdu, Sichuan Province as the study area, select the Landsat ETM data in 2000, Landsat TM data in 2007, Chengdu, 1:50 million, and topographic maps 1:400 million the county boundary vector as a basic source of information on remote sensingband synthetic data, atmospheric correction, geometric correction, image cropping treatment, two images to calculate the normalized difference vegetation index (NDVI), vegetation coverage estimate. The results showed that: Chengdu, vegetation coverage in the seven years, showing a rising trend in general, especially in the urban area within the Second Ring Road, the vegetation coverage has been an obvious increase.However, in some suburbs of Chengdu, such as Longquan, Pixian, and Jintang, the vegetation coverage has been signs of decline; In addition, compared with 2000, Chengdu, in 2007 ,had a significant size of the area decrease in the low vegetation cover in areas of high vegetation coverage area increased significantly and the regional area of high vegetation coverage changed little. The results from the research point of view, is generally thought that the vegetation cover change and human activities are inextricably close relationship. 【Key words】: normalized difference vegetation index; remote sensing; vegetation coverage; Chengdu.

定量遥感_地表温度反演

遥感数字影像处理 作品名称:黄河三角洲地表温度反演 +学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

植被覆盖度分布图制作

作业1: 用TM/ETM图像制作一个地区植被覆盖度分布图(要求如图所示),描述该地区的 区域概况,并分析植被分布空间差异。所用公式如下: NDVI=(B4-B3)/(B4+B3) Vr=(NDVI-NDVIb)/(NDVIv-NDVIb) 式中:NDVI是归一化植被指数。B3和B4是TM第3和4波段的图像亮度值。 NDVIb和NDVIv是裸土和植被的NDVI值,可分别取0.15和0.75。Vr是植被覆盖度(0-1)。 要求:用WORD把制作过程和分析结果记录下来。>2000字 目的:学会图像处理软件,进行图像信息提取,用各种软件共同制作有实际意 义的图像 原理与方法: NDVI——归一化植被指数NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1.NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2.-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示 有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大 而增大 3.NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比 度。对于同一幅图像,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI 增加速度,即NDVI对高植被区具有较低的灵敏度; 4.NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯 叶、粗糙度等,且与植被覆盖有关。 操作步骤如下: 一.从地理空间数据云网站下载山西省吕梁地区文水县的ETM影像,对应地区的数据如下: 表:Landsat8数据波段参数 波段波长范围(μm)空间分辨率(m) 名称 1-海岸波段0.433–0.453 30 LC81260342015159LGN00_B1 2-蓝波段0.450–0.515 30 LC81260342015159LGN00_B2 3-绿波段0.525–0.600 30 LC81260342015159LGN00_B3

《遥感图像处理》:曲靖市Landsat8遥感影像植被覆盖度反演

《遥感图像处理》实验报告 实验题目:曲靖市Landsat8遥感影像 植被覆盖度反演 姓名:___ ____ 学号: 专业:___地理科学_ __ 教师: 日期:___2017年3月15日__

曲靖师范学院城市学院

一、实验目的 太阳辐射通过大气以某种方式入射到物体表面然后再反射回传感器,由于大气气溶胶、地形和邻近地物等影像,使得原始影像包含物体表面,大气,以及太阳的信息等信息的综合。如果我们想要了解某一物体表面的光谱属性,我们必须将它的反射信息从大气和太阳的信息中分离出来,这就需要进行大气校正过程。本实验以曲靖市的一景Landsat 8遥感影像为数据源,利用ENVI大气校正扩展模块(FLAASH)进行大气校正,并对比分析大气校正前后植被、水体、土壤、裸岩等典型底物的光谱特征差异,为后续定量遥感的应用奠定一定的基础。 二、实验准备 1.软件准备:ENVI 5.3.1 2.数据准备:LC81290422015324LGN00遥感数据、地形数据 三、实验过程 (一)遥感影像数据的辐射定标 Landsat8数据和其他TM 数据类似,发布的数据标示L1T,做过地形参与的几何校正,一般情况下可以直接使用而不需要做几何校正。为了利用其丰富的波段光谱信息,我们需要进行辐射定标处理,将原始图像上的DN值转为反射率。 1.使用ENVI5.1下的通用定标工具Radiometric Calibration进行Landsat8的辐射定标。打开LO81290422015148BJC00_MTL全波段文件,选择MultiSpectral多光谱数据进行定标,定标的范围可缩小为ROI区域。

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat 数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration 。在File Selection 对话框中,选择数据LC8LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(),打开Radiometric Calibration 面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“进行辐射定标。 Settings ,如下图。 2、大气校正

本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取; 6) 设置研究区域的地面高程数据; 7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间; 注:也可以从元文件“”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:; 8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择); 9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T); 10) 其他参数按照默认设置即可。 11) 多光谱参数设置中, K-T反演选择默认模式:Defaults->Over-Land Retrieval standard (600:2100) 波谱响应函数:默认指向.. \Program Files\Exelis\ENVI51\classic\filt_func\ 把它重新指向:..\Program Files\Exelis\ENVI51\resource\filterfuncs\ 注:这是因为版本的一个小bug,即Classic中的L8的波谱响应函数不正确,另外一个一劳永逸的方法是:将

植被覆盖度计算

植被覆盖度计算 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

ENVI下植被覆盖度的遥感估算 (植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。容易与植被覆盖度混淆的概念是植被盖度,植被盖度是指植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例。两个概念主要区别就是分母不一样。植被覆盖度常用于植被变化、生态环境研究、水土保持、气候等方面。 植被覆盖度的测量可分为地面测量和遥感估算两种方法。地面测量常用于田间尺度,遥感估算常用于区域尺度。 估算模型 目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。下面是李苗苗等在像元二分模型的基础上研究的模型: VFC=(NDVI-NDVIsoil)/(NDVIveg-NDVIsoil)(1) 其中,NDVIsoil为完全是裸土或无植被覆盖区域的NDVI值,NDVIveg则代表完全被植被所覆盖的像元的NDVI值,即纯植被像元的NDVI值。两个值的计算公式为: NDVIsoil=(VFCmax*NDVImin-VFCmin*NDVImax)/(VFCmax-VFCmin)(2) NDVIveg=((1-VFCmin)*NDVImax-(1-VFCmax)*NDVImin)/(VFCmax-VFCmin)(3) 利用这个模型计算植被覆盖度的关键是计算NDVIsoil和NDVIveg。这里有两种假设: 1)当区域内可以近似取VFCmax=100%,VFCmin=0%。 公式(1)可变为: VFC=(NDVI-NDVImin)/(NDVImax-NDVImin)(4) NDVImax和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。 2)当区域内不能近似取VFCmax=100%,VFCmin=0%

基于像元二分模型的植被覆盖度反演以市为例

基于像元二分模型的植被覆盖度反演以市为例 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

基于像元二分模型的植被覆盖度反演-以北京市为例 王玲 (西北大学城市与环境学院,陕西西安 710127) 摘要:采用遥感技术监测植被覆盖度具有重要意义。本文以北京市为例,基于2013年的Landsat8 OLI影像,选取NDVI值为参数,采用像元二分模型对植被覆盖度进行反演,最终反演的结果与实际情况符合,说明采用该方法反演植被覆盖度可行。 关键词:植被覆盖度、像元二分模型、NDVI、植被指数 引言 植被覆盖度(Vegetation fractional cover,简称fc)是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比,即植土比。通常林冠称郁闭度,灌草等植被称覆盖度[1]。它是衡量地表植被覆盖的一个最重要的指标,被覆盖度及其变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化等都具有重要意义[2]。根据监测手段, 测量植被覆盖度的方法可分为地面测量和遥感测量两大类,测量常用于田间尺度,遥感估算常用于区域尺度。目前已经发展了很多利用遥感测量植被覆盖度的方法,较为实用的地面测量单的方法就是目估法,缺点主要是主观性太强。客观的测量方法有样点法、样方法、样带法等,借助于采样仪器的测量方法,空间定量计、移动光量计等。这些方法虽然提高了测量精度,但野外操作不便,并且成本较高, 难以在大范围内快速提取植被覆盖度。而采用遥感技术为监测大面积区域的植被覆盖度,甚至全球的植被覆盖度监测提供了可能[3]。目前已有许多利用遥感技术测量植被覆盖度的方法,其中应用最广泛的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI。

植被覆盖率

植被覆盖率估算模型 一:研究区域数据获取 本次实验主要是对植被覆盖率估算,因此实验区域的影像因尽量选择植被茂盛的季节。在数据源选取上,我在马里兰大学的网站下了Landsat 5 1T 级数据,包够了红,绿,蓝,近红外,热红外7个波段。下载的地区是覆盖了福建省中部地区2009年6月6日的影像。 下图(图1)为原始数据的假彩色合成 图一:原始数据假彩色合成 二:数据预处理 进行植被覆盖率估算,需要用到归一化植被指数(NDVI)。NDVI的物理依据是地物反射率的差异变化,所以用反射率来计算是比较客观准确的。 TM原始数据就是DN值,不能用来直接计算NDVI,必须通过辐射定标计算成反射率,才能用来计算NDVI。因此,要对对实验数据先进行辐射校正和大气校正。下载的L1T级数据,头文件()有详细影像参数,控制点文件()中有控制点高程信息用于大气校正的地形参数,可以利用这两个文件做辐射校正和大气校正。 (1)辐射定标 实验使用数据为L1T级数据,经过系统辐射校正的数据。由于1级产品的DN值是由辐射亮度线性变换得到的,因此从1级产品计算辐射亮度只需利用相关参数(Gain和Bias)进行线性反变换即可,计算过程比较简单。各参数可在影像头文件中找到,Calibration Type 注意

选择为Radiance。 图2:辐射定标参数设置 (2)大气校正 大气校正是采用ENVI的FLAASH模块,FLAASH模块要求输入辐亮度图像,输出反射率图像。之前对进行了辐射定标,得到辐亮度图像,在这里要把BSQ 格式的图像转换为BIL 或者BIP 格式的图像。FLAASH校正输入图像后,程序会让你选择Scale Factor,即原始辐亮度单位与ENVI 默认辐亮度单位之间的比例。ENVI 默认的辐亮度单位是μW/cm2 ?sr?nm,而之前我们做辐射定标时单位是W/m2 ?sr?μm,二者之间转换的比例是10,因此在下图中选择Single scale factor,填写10.000。其中参数中心坐标,影像获取时间,都可以在头文件中获取,大气参数可以查看ENVI help来确定,还有研究区域的平均高程,可以通过GCP文件大致估算。FLAASH的参数设置如下图(图3)。 图3:FLAASH参数设置 三:研究区域裁剪 本来想以福建省为研究区域,但是这景影像覆盖了福建省中部百分之90左右的距离,但并没有覆盖完整,所以无法用矢量边界裁剪,我就规则裁剪了一块区域做研究 图5:裁剪区域 四:分类 这里我选择了用最大似然法进行监督分类 (1)训练区选择

基于TM8卫星热红外数据地表温度反演及模型实例应用分析

基于TM8卫星热红外数据地表温度反演及模型实例应用分析摘要:本文采用ENVI/IDL编程技术,针对Landsat 8卫星运行陆地成像仪(OLI) 和热红外传感器(TIRS)数据波段特点,对劈窗算法进行了推导,提出适合Landsat 8新的劈窗算法模型流程图,推导新的劈窗算法系数,对地表比辐射率和 大气透过率这两个关键参数进行了重新拟合、分析和反演,最后反演出Landsat 8 卫星珠三角区域的LST。 关键词:地表温度;TM8卫星;模型实例;反演 1地表温度以及TM8卫星 地表温度(LST,Land surface temperature)是区域和全球地表生物、物理和 化学过程中的关键因子,在地表和大气交互及能量交换中发挥着重要的作用,对 地表能量平衡的研究以及气候、水文、生态和生物等学科研究均有重要意义。在 农业气象和气候、作物长势和农业干旱监测、农业大面积病虫害监测、农作物估产、农田耗水量估算、林业灾害预测和地震红外辐射异常等环境生态检测评价研 究中发挥着举足轻重的作用。由于遥感卫星获取地物信息具有速度快、周期短、 范围广、信息量大和连续监测等优点,借助遥感卫星能为反演地表温度提供一个 重要途径。 由于TM8卫星是在原Landsat卫星基础上继承和发展并在原来Landsat卫星 上进行重要的改进,因此具有很强的一致性,所以对TM8卫星研究分析农业中的利用有助于使TM8数据向TM和ETM+数据的平稳过度。 2 地表比辐射率和大气透过率反演 2.1 地表比辐射率反演 研究表明,地表比辐射率对地表温度变化很大,比辐射了每变化0.01可以引 起地表温度的差别接近2K,因此地表比辐射率是LST反演的关键参数。由于TM8 卫星OLI传感器提供了丰富的地表信息,可以利用Sobrino等人提供的NDVI阈值 法估算地表比辐射率,该方法具有较高的精度和可操性。首先在影像上确定纯植 被的NDVI最大值为0.89,裸土NDVI最小值为0.05。 2.2 大气透过率反演 大气透过率跟大气中的成分有很大关系,而大气中的水分含量变化是大气透 过率波动的主要因素。由于以往的劈窗算法均没有针对TM8卫星进行研究过大气透过率与水汽含量之间的关系,为此本文在Modtran基础上对TIRS10和TIRS11 通道对大气透过率和水汽含量进行了模拟。 3 模型实例应用分析 本文选取的珠三角2013年11月29日上午10:53TM8卫星地表温度反演影 像和温度产品图1所示 图1 劈窗算法影像反演图和MOD11_L2影像产品图 注:a为影像反演图,b为温度产品图 4.1 LST空间分布分析与精度验证 从图1可以明显看出,即使获取的影像已经是11月29日上午10:53,但是珠三角大部分地方仍然普遍温度较高,大部分区域大于18℃,以珠三角中心城区 为主的广州城区、东莞、佛山、江门北部和中山围成的区域普遍温度在25℃以上,

相关文档
最新文档