矩阵的对角化

矩阵的对角化
矩阵的对角化

摘要

矩阵的对角化指的是矩阵与对角矩阵相似,而形式最简单的对角矩阵在矩阵理论中占有重要地位,因此研究矩阵的对角化问题是很有实用价值的.矩阵是否可以对角化,是矩阵的一条很重要的性质。对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。目前对于矩阵可对角化的条件,矩阵对角化的方法和矩阵对角化的运用都有了较为全面和深入的研究。在归纳总结前人的基础之上,先给出了与对角化相关的概念,其次讨论了矩阵对角化的几个等价条件,最后总结了一些有关矩阵对角化的应用。

关键词:方阵;特征值;特征向量;对角化

Abstract

Matrix diagonalization refers similarity matrix and a diagonal matrix, The simplest form of a diagonal matrix plays an important role in matrix theory, Therefore Matrix diagonalization problem is very practical value.

Whether matrix diagonalization matrix is a very important property. To be similar to the necessary and sufficient condition for understanding keratosis, has been one of linear algebra learning difficulties. At present more comprehensive and in-depth study of the matrix can be diagonalized conditions, matrix methods and the use of matrix diagonalization diagonalization of everything. In summarizing the basis of their predecessors, with the first given diagonalization related concepts, followed by discussion of the matrix diagonalization of several equivalent conditions and, finally, the application of some of the matrix diagonalization.

Keywords: square; characteristic value; eigenvectors; diagonalization

目录

引言 (1)

一矩阵可对角化的概念 (2)

1.1 特征值、特征向量的概念 (2)

1.2 矩阵可对角化的概念 (2)

二矩阵可对角化的几个等价条件 (4)

2.1 矩阵可对角化的充分必要条件及其证明 (4)

2.2 可对角化矩阵的相似对角阵的求法及步骤 (8)

三矩阵可对角化的应用 (9)

3.1具体矩阵对角化的求解过程 (9)

3.2矩阵对角化的应用 (13)

3.2.1在反求矩阵方面的应用. (13)

3.2.2 求方阵的高次幂 (14)

3.2.3 求行列式的值 (15)

3.2.4求一些具有线性递推关系组的数列的通项和极限 (16)

3.2.5 在二次曲面上的一些应用 (17)

结论 (19)

致谢.............................................. 错误!未定义书签。参考文献.. (20)

引言

矩阵是高等代数中的重要组成部分,是许多数学分支研究的重要工具。而对角矩阵作为矩阵中比较特殊的一类,其形式简单,研究起来也非常方便。研究矩阵的对角化及其理论意义也很明显,矩阵相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式、特征根、行列式……如果只关心这类性质,那么相似的矩阵可以看作是没有区别的,这时研究一个一般的可对角化矩阵,只要研究它的标准形式——一个对角形矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。

线性代数中矩阵是否可以对角化,是矩阵的一条很重要的性质。矩阵对角化也是《高等代数》和《线性代数》中矩阵理论这一部分的主要内容。人们对此研究得出了很多有用的结论。诸如一些充要条件:n阶方阵A可以对角化的充要条件是它有n个线性无关的特征向量;方阵A可以对角化的充要条件是它的最小多项式没有重根;还有复方阵A可以酉相似于对角形矩阵的充要条件是它为正规矩阵,此外,还有一些充分条件。然而,所有这些结论都相对比较抽象,特别是对于大学一年级的新生,抽象化的结论不便于学生的理解和记忆,因此,一些学生在学完《高等数学》和《线性代数》的相关知识后不久,便相继忘掉了一些重要的结论。但是,一个普遍的现象是这些学生对高中、初中的数学知识比较熟悉,且记忆深刻,因此,若能将一些大学数学知识和高中、初中的一些知识进行类比,则这些新的数学知识与理论便会易于理解和记忆。

在本课题中通过阅读参考文献、查阅相关资料,初步总结出了矩阵可对角化的若干充分必要条件,并给予了相应的证明过程。

一 矩阵可对角化的概念

1.1 特征值、特征向量的概念

定义1 设A 是数域P 上线性空间V 的一个线性变换, 如果对于数域P 中的一个数0

λ存在一个非零向量ε使得ελε0=A ,那么0λ称为A 的一个特征值,而ε 称为A 的属于特征值0λ的一个特征向量。

求方阵A 的特征值与特征向量的步骤:

(1)由特征方程A E -λ=0求得A 的n 个特征值,设t λλλ,,,21 是A 的互异特征值,其重数分别为t n n n ,,,21 则n n n n t =+++ 21。

(2)求解齐次线性方程组()0=-X A E i λ()t i ,,2,1 =,其基础解系

s i i i p p p ,,,21 (t i n s i i ,,2,11 =≤≤,)就是A 所对应特征值i λ的线性无关的特征向量。

1.2 矩阵可对角化的概念

定义2 设A 是数域F 上一个n 阶方阵,如果存在数域F 上的一个可逆矩阵P ,使得

AP P 1-为对角形矩阵,那么就说矩阵A 可以对角化。

任意方阵A 的每一个特征值i λ都有一个与之相对应的特征向量i P 满足

i i i P AP λ=()n ,1,2

,i =,则这个方程可以写成 ()()n n P P P P P P A ,,,,,,2121 =??

???

??

? ?

?n λλλ

2

1

, (1) 我们定义矩阵()n P P P P ,,,21 =,()n diag B λλλ,,,21 =则(1)式可写成PB AP =,若矩阵P 是可逆阵,则有()n diag B AP P λλλ,,,211 ==-

引理1 设A 、B 都是n 阶矩阵,则有秩()AB ≥秩()A +秩()n B - ① 证:

000

00

n n n n

n n E E B E B E A E E A

AB -????????

= ? ? ? ?--????

????0=00=+n

n E B E A AB E AB n AB

???? ? ?-???? +- =秩秩秩秩()

注:代数中称①式为Sylverster(薛尔佛斯特)公式

引理2 设s λλλ,,,21 (n s ≤)为n 阶方阵A 的所有互异特征值,则矩阵A 的线性无关的特征向量的最大个数为()()()I A r I A r I A r sn s λλλ------- 21。

证明 设s λλλ,,,21 (n s ≤)为n 阶方阵A 的所有互异特征值,因为特征值

i λ()s ,1,2,i =相应的线性无关的特征向量的最大个数即为线性方程组()0=-X I A i λ的基

础解析所含向量的个数,所以特征值()n s s ≤λλλ,,,21 相应的线性无关的特征向量的最大个数分别为()I A r n i λ--,()I A r n 2λ--,…,()I A r n s λ--,而矩阵A 的不同特征值的线性无关的特征向量并在一起仍然线性无关,从而,矩阵A 线性无关的特征向的最大个数为

()()()I A r I A r I A r sn s λλλ------- 21。

引理3 设A 为n 阶方阵,s λλλ,,,21 是任意两两互异的数,则

()()()()()()()n s I A r I A r I A r I A I A I A r s s 1][2121---++-+-=---λλλλλλ 。

0++E B A B

A n A

B A B AB A B n

??≥ ???∴≥?≥- 秩秩+秩+秩()秩秩秩秩秩

二 矩阵可对角化的几个等价条件

2.1 矩阵可对角化的充分必要条件及其证明

定理1 数域P 上n 阶方阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量。

证明(1)充分性 假设n P P P ,,,21 是矩阵

A 的n 个线性无关的特征向量,即有i i i P AP λ=()n ,1,2,i =,令矩阵()n P P P P ,,,21 =由特征向量n P P P ,,,21 组成,因为n P P P ,,,21 是线性无关的,

因此矩阵P 是非奇异矩阵,其逆矩阵记为1-P ,根据逆矩阵的定义有P P 1-=()

n P P P P P P 1

2111,,,--- ,另一方面,由i i i P AP λ=易知,()n AP AP AP AP ,,,21 = =()n

n P P P λλλ,,,2211 ,给此式左乘矩阵1

-P ,则有

n I AP P =-1????????

?

?n λλλ

2

1=??

?????

?

?

?n λλλ

2

1, 即充分性得证。

(2)必要性 令矩阵A 和对角形矩阵D 相似,即存在可逆矩阵P 使得D AP P =-1,则有

PD AP =,于是记P =(n P P P ,,,21 ),()T

n

d d d D ,,,21 =则PD AP =可以写成()n AP AP AP ,,,21 =(n n P d P d P d ,,,2211 )即有i i i P d AP =()n ,1,2,i =,这说明矩阵P 的列向量i P 是矩阵A 的特征向量,而已知P 是可逆阵,故P 的n 个列向量n P P P ,,,21 线性无关,必要性得证。

定理2 设 n n P A ?=,则A 可以对角化的充分必要条件是: (1)A 的特征根都在数域P 内, (2)对A 的每个特征根λ,有

()k =--A E n λ秩,其中k 是λ的重数。

条件(2) 也可改述为:特征根λ的重数等于齐次线性方程组()0=-X A E λ的基础解系所含向量的个数(简称为代数重数等于几何重数)。

条件(2)还可改述为:令有()[]n A n r

i i =-∑=1-E λ秩,即属于A 的不同特征根的

线性无关的特征向量总数是n 。

条件(1),(2)还可改述为:A 的属于不同特征值的特征子空间的维数之和等于n 。 证明 设r λλλ,,,21 是A 的所有不同的特征根,j jt j αα,,1 是齐次线性方程组

()0=-X A E j

λ()r j ,,2,1 =的一个基础解系,则A 的特征向量

r

r

rt r t t ααααα,,,,,,,,111111

一定线性无关。

如果n t t t r =+++ 21, 则A 有n 个线性无关的特征向量, 从而A 可以对角化。若A 可以对角化, 则属于A 的不同特征根的线性无关的特征向量总数一定是n 。若不然, 则由定理1可设A 的n 个线性无关的特征向量为n ηηη,,,21 ,设j η是属于特征根j λ的特征向量,则

j η可由j

t j j αα,,1

线性表出,从而可由向量组r r rt r t t ααααα,,,,,,,,111111 线性表出,于

是,rank{n ηηη,,,21 }≤rank{t tr t r αααα,,,,,,11111 }=n t t t r <+++ 21与

n ηηη,,,21 线性无关矛盾。

定理3 设A 是n 阶复矩阵, 则A 与对角形矩阵相似的充分必要条件是A 的最小多项式()λm 无重根。

证明 充分性 因())(λλn d m =无重根,由)(λi d |)(1λ+i d 知,A 的每个不变因子)(λi d 都不能有重根,从而特征矩阵A E -λ作为复数域上的λ矩阵,其初等因子全为一次式,故A 必与对角阵相似。

必要性 因A 与对角阵相似,特征矩阵A E -λ的初等因子必均为一次式,故最后一个不变因子()λn d 也只能是不同的一次因式之积,这就证明了最小多项式())(λλn d m =无重根。

此定理3所给出的判别矩阵与对角矩阵相似的条件,形式上还可削弱,我有:

定理4 设σ是n 维向量空间V 的一个线性变换,σ的矩阵可以对角化的充分必要条件是V 可以分解为n 个在σ之下不变的一维子空间n W W W ,,,21 的直和。 证明 必要性 若σ可以对角化,则存在V 的一组基n ααα,,,21 使得σ在这 组基下的矩阵为

??

?????

? ?

?n λλλ

2

1, 令()()()n n L W L W L W ααα===,,,2211 ,则 n W W W V ⊕⊕⊕= 21, 事实上:

(1)V ∈?η,则n n k k k αααη+++= 2211,

又i i i W k ∈α()n ,1,2,i =, n W W W +++∈ 21η, 即n W W W V +++= 21。

(2)()n i i i W W W W W W ++++++∈?+- 1121ξ,()n ,1,2,i =,

i W ∈ξ且n i i W W W W W ++++++∈+- 1121ξ,

i ξξ=且n i i ξξξξξξ++++++=+- 1121,()n j W j j ,,2,1, =∈ξ ,

又j j W ∈ξ()n ,1,2,j =,j j j W L =ξ,()n ,1,2,j =,

i i n n i i i i L L L L L L ααααααξ=++++++=++-- 11112211,

即i i n n i i i i i i L L L L L L L ααααααα=+++-+++++-- 11112211又n ααα,,,21 线性无

关j L =0,()n ,1,2,j =, 即ξ=0。

充分性 若V 可分解为n 个在σ之下不变的一维子空间n W W W ,,,21 的直和,即

n W W W V +++= 21,设n W W W ,,,21 的基分别为n ηηη,,,21 则n ηηη,,,21 可构成V 的一组基。

令()()()n n n ηλησηλησηλησ===,,,222111 ,

σ在基n ηηη,,,21 下的矩阵为

??

?????

? ?

?n λλλ

2

1, 即σ可以对角化。

定理5 设A 是数域F 上的一个n 阶矩阵,A 的特征根全在F 内,若n λλλ,,,21 是A 的全部不同的特征根,其重数分别为n r r r ,,,21 ,则A 可对角化的充要条件是秩

()j

j

i i

r A I =-∑≠λ()k ,1,2,j =。

证明 设A 可对角化,则存在可逆矩阵T ,使{}n n I I I diag AT T λλλ,,,22111 =-这里右边是分块对角矩阵,i I 为i r 阶单位阵,于是有

秩()???

?

??-∏≠j i i A I λ

=秩()????

?????? ??-∏≠-T A I T j i i λ1 =秩()?

??

? ??-∏≠-j i i AT T I 1

λ =秩{}???

?

??-∏≠j i k k i

I I I diag I λλλλ,,,,2211 =秩()()(){}???

? ??---∏≠j i k k i i I I I diag λλλλλλ,,,22111 =秩()???? ?

???????-∏≠j i j j i I diag 0,,0,,,0,0 λλ =j

r 。

反之,若秩()?

??

?

??-∏≠j i i A I λ=j r ,k ,1,2,j = 则反复用本文引理1可得:

()()n k A I r i j i j 2---≥∑≠λ秩

()()n k r n j

i i 2---≥∑≠

=j j

i i r r n =-∑≠,

于是有()A -∑≠I i j

i λ秩=()∑-i r n 。

从而()A I i -λ =i r n -()k ,1,2,i =,这样A 可对角化。

定理6 设A 为n 阶方阵,则A 可以对角化的充要条件为存在两两互异的s λλλ,,,21 使得()()()021=---I A I A I A s λλλ 。

证明 必要性 设n 阶方阵A 可以对角化,s λλλ,,,21 (n s ≤)为A 的所有互异特征值,

由引理2及定理1,从而A 有n 个线性无关的特征向量,即

()()()n I A r I A r I A r sn s =-------λλλ 21故

()()()()0121=---++-+-n s I A r I A r I A r s λλλ ,

再由引理3得()()()=---][21I A I A I A r s λλλ0, 从而有()()()021=---I A I A I A s λλλ。

充分性 设A 为n 阶方阵且存在两两互异的数s λλλ,,,21 使得

()()()021=---I A I A I A s λλλ,记为()A f =()()()I A I A I A s λλλ---21。

设λ为A 的特征值,则()()()()s f λλλλλλλ---= 21必为()A f 的特征值,从而()0=A f 。

所以()()()()021=---=s f λλλλλλλ ,因此矩阵A 的特征值的取值范围为

s λλλ,,,21 ,显然当I A i λ-可逆时,i λ不是A 的特征值;当I A i λ-可逆时,i λ是A 的

特征值。因为线性方程组()0=-X I A i λ的基础解系所含向量的个数()I A r n i λ--即为A 的特征值i λ()s ,1,2,i =的重数 (当I A i λ-可逆时, i λ不是A 的特征值,此时

()0=--I A r n i λ)。从而矩阵A 线性无关的特征向量的最大个数为

()()()I A r I A r I A r sn s λλλ------- 21。

再由引理3,当()()()021=---I A I A I A s λλλ时

()()()()n s I A r I A r I A r s 121-=-++-+-λλλ ,

所以 ()()()n I A r I A r I A r sn s =-------λλλ 21,即n 阶方阵A 有n 个线性无关的特征向量,从而A 可以对角化。

2.2 可对角化矩阵的相似对角阵的求法及步骤

具体步骤 设n n P A ?∈,求可逆矩阵n n P X ?∈,使AX X 1-为对角矩阵的步骤是: (1) 求矩阵A 的全部特征根;

(2) 如果A 的特征根都在数域P 内(否则A 不可对角化), 那么对每个特征根λ, 求出齐次线性方程组()0=-X A I λ的一个基础解系;

(3) 如果对每个特征根λ,()0=-X A I λ的基础解系所含解向量个数等于λ的重数(否则

A 不可对角化), 那么A 可对角化,以所有基础解系中的向量为列即得n 阶可逆阵X , 且

AX X 1-是对角阵, 而对角线上的元素是A 的全部特征根。

三 矩阵可对角化的应用

3.1具体矩阵对角化的求解过程 例1: 判断矩阵

321222361A -?? ?=-- ? ?-??

是否可以对角化。

解法一:

A 的特征多项式

A I -λ=1

63

222

123

+---+--λλλ =16123+-x x =()()422

--x x

解得A 的特征值是21=λ(2重),42-=λ(1重), 对于特征根-4,求出齐次线性方程组

????

?

??=????? ??????? ??-------000363222127321x x x 的一个基础解系??

?

??-1,32,31,

对于特征根2,求出齐次线性方程组

????

?

??=????? ??????? ??-----000363242121321x x x 的一个基础解系()(){}1,0,1,0,1,2-,

由于基础解系所含解向量的个数等于对应的特征根的重数,所以A 可以对角化。取

???????

?

??--=10101321231T

那么

??

??? ??-=-2000200041

AT T

说明:这种方法相对来说比较简单和基础,也是常用方法。 解法二:

{()'

A E -λ,E}=3

2310010000122601002

001212100100(2)(4)121λλλλλλλ--???? ? ?-+-→- ? ? ? ?-+-+---????

故A 的特征值是2(二重)和-4. 当=2λ时

100001100001020012=00001200(2)(4)121000123λλλλ???? ? ?- ? ? ? ?-+-----????

得()'

2,1,0和()'

3,2,1--是A 属于2的特征向量.

当=4λ-时

100001100001020012=06001200(2)(4)121000123λλλλ???? ? ?-- ? ? ? ?-+----????

得()'

3,2,1-是A 属于-4的特征向量.

于是取

011122233T ??

?=-- ? ?-??

1200020004T AT -?? ?

= ? ?-??

解法三:

由上知2和-4是矩阵A 的全部互异的特征值,我们可以计算得到

()()72112100042222242000363363000A E A E --?????? ??? ?

+-=---= ??? ? ??? ?-??????

从而矩阵A 可以对角化.由于2是二重特征根,则矩阵A 的属于2的特征向量是矩阵A+4E 列向量组的前2列;矩阵A 的属于-4的特征向量是矩阵A-2E 列向量组的前一列.由此可得到可逆矩阵

721222363T ?? ?=-- ? ???

使得

1200020004T AT -?? ?

= ? ?-??

说明:相比起来这种方法在具体对角化的过程中运算量没有明显减少,但因其步骤简单,可以作为数学软件求解的理论依据.例如在Matlab 中求解特征值和矩阵相乘只分别需要eig (A )和C=A*B 一行简单的代码即可完成.

上述三种方法各有利弊,在使用的时候须结合矩阵本身的特点加以区分对待,灵活把握.

例2:设21,λλ是两个不同的数,又n 阶矩阵A 满足()()021=--n n I A I A λλ,证明A 相似于对角阵

证明: 若01=-n I A λ,或02=-n I A λ则n I A 1λ=或n I A 2λ=结论显然成立。 故可设n n I A I A 21,λλ≠≠,此时首先证明21,λλ是A 的特证值。由于n I A 1λ≠,故有α,使得()01≠-=n I A λβ,又()()()00211==--=-ααλλβλn n n I A I A I A ,于是β是A 的属于特征值1λ的特征向量,同理2λ是A 的特征值。

又设t ηηη,,,21 是()01=-A X I n λ的基础解,因而是A 的属于1λ的线性无关的特征向量 ,设s ξξξ,,,21 是()02=-X I A n λ的线性无关的特征向量,故可知s t ξξξηηη,,,,,,,2121 线性无关,设α是任一n 维向量,有()n I 1λα-,令

1122λλλλ?? ?

? ? ?

?

? ? ???

2111λλα-=()12αλn I A -,2

121

λλα-=

()21αλn I A -,则有21ααα+=,()011=-αλn I A ,()022=-αλn I A ,因此有∑==

t

i i

i k 1

α,j s

j j k ηα∑==1

2,故α可被

s t ξξξηηη,,,,,,,2121 线性表示,于是s t ξξξηηη,,,,,,,2121 为基,令

()s t P ξξξηηη,,,,,,,2121 =

?????????

?

?

?=-22

1

1

1

λλλλ AP P 。

例3:设

1-1-1-11-1-1-11A ?? ?= ? ???

335f x x x -+()=,()B f A =, 问B 能否相似于对角阵,

若能相似于对角阵,求可逆矩阵P ,使得1P AP -是对角阵; 若不能相似于对角阵,请说明理由。

解:求A 的特征值、特征向量,

21

11

=1

1

1=+1

1

1

E A λλλλλλ----(1)(-2), 故

1231==2λλλ-=,。

当23==2λλ时由(2)=0E A X -,即

123111111=0111x x x ???? ??? ??? ???????

得23==2λλ对应的线性无关特征向量()2=1-10T

ξ,()3=10-1T

ξ 因A =ξλξ,则B =(A)()f f ξξλξ=.

故3()25B f A A A E ==-+的特征向量()i f λ其中

11=()-1=6f f μλ=(),233==f ()(2)9f μμλ==

而对应的特征向量仍是123ξξξ,,, 故存在可逆矩阵P ,

()12

3111==1-1010-1P ξξξ??

?

? ???

1600090009P AP -?? ?

= ? ???

3.2矩阵对角化的应用

本节探讨矩阵对角化在以下几个方面的应用. 3.2.1在反求矩阵方面的应用.

已知n 级矩阵A 的特征值和特征向量反求矩阵A 时,若矩阵A 可对角化,则有简单的方法.事实上,当n 级矩阵A 可对角化时,存在由矩阵A 的n 个线性无关的特征向量组成的可逆矩阵T ,使得1T AT B -=,其中B 是由A 的所有特征值组成的对角矩阵,则1A TBT -= 即为所求.

例4 :设3阶实对称矩阵A 的特征值为1λ=-1,2λ=1,3λ=1.

对应于1λ的特征向量为1P =()'

1,1,0,求矩阵A .

分析:由矩阵可对角化的条件知,实对称矩阵A 是可对角化的,为了得到可逆矩阵P ,还需求出对应于2λ=1,3λ=1的两个线性无关的特征向量,这还要利用到实对称矩阵的不同特征值对应的特征向量正交的这一性质.

解:设对应于2λ=1,3λ=1的特征向量为()'

3,2,1x x x =?,它应与特征向量1P 正交,即

0·1x +2x +3x =0。得到基础解系为()'

20,0,1=?和()'

31,1,0-=?,它们即是对应于2λ=1,3λ=1

的线性无关的特征向量. 取

P =(1P ,3,2??)=????? ??-101101010,B =???

?

? ??-100010001,

则AP P 1-=B .于是

A =1-PBP =???

?

?

??--010100001.

3.2.2 求方阵的高次幂

求方阵的高次幂k A (k 为正整数),若直接计算 32,A A ,按归纳法来寻求k A 的规律有时是很困难的.若矩阵A 可对角化,计算矩阵A 的高次幂k A 就有简单的方法.事实上,若有1T AT B -=,其中

()12120

000,,,00

n n B diag λλλλλλ???

??

???? ?

=

=??? ?

????????????

??????

有1A TBT -=, 则有

()()()()()1111111k k A TBT TBT TB T T B T T T T BT TB T -------=???=???= ,

k B =()12,,,k k k n diag λλλ???。

则有

k A =120

00

000k k k n T λλλ?????

?

???

? ????????????? ? ?????

?1

-T . 例5 设

460350361A ?? ?=-- ? ?--??

,

求100A . 解:由

???

?

? ??-+--=-16305306

4λλλλA E =()()212+-λλ=0

得A 得特征值为

2,1,1321-===λλλ.

对于特征值1,121==λλ解方程组()0=-X A E ,

得到两个对应的线性无关的特征向量为()()'

2'

11,0,0,0,1,2?-=?.

对于23-=λ,解方程组()02=--X A E ,得到对应的特征向量为()'

31,1,1--=?.

(),110101102,,321???

?

?

??---=???=T

?

???

? ??------=-021*******

T ,1200010001-?????

??-=T T A ,

100A =????

? ??------=?

????

??--122120121202222200010001101100101

1001011001100

T T .

3.2.3 求行列式的值

对于具体给出的行列式,我们常利用行列式的性质对行列式进行初等变换,将其化为三角行列式直写出其值,或者化为含0较多的行列式,进而按行(列)

展开降低行列式的阶数.求行列式的方法有很多,应针对不同的行列式类型采用最简便的方法.而计算抽象方阵的行列式时,主要是利用行列式的性质及行列式的计算公式.若抽

象方阵可对角化,求其行列式有简单的方法.

例6 设A 是n 阶方阵,n 2,,4,2???是A 的n 个特征值.E 是一个n 阶单位方阵.计算行列式E A 3-的值.

解:已知n 阶方阵A 有n 个互异的特征值,而由矩阵可对角化的条件知,n 阶方阵A

可对角化的.故存在可逆矩阵T 使得1-T AT=B=diag ()n 2,,4,2???.于是

()E B T T AT T T E A T T E A T E A 333331111-=-=-=-=-----

=()32,,1,1-???-n diag =()32311-?????-n .

3.2.4求一些具有线性递推关系组的数列的通项和极限

对于一类具有线性递推关系组的数列,可利用矩阵来表示出递推关系,然后利用矩阵对角化的方法,可得到数列的通项.若数列有极限,进而求出数列的极限.

例7 已知βα==11,b a 。2

,2111n n n n n n b

a b b a a +=+=+++()???=,2,1n .证明n n a ∞→lim 及n n b ∞→lim 存

在且相等,并求出极限.

证明:将递推关系化简为,4

3

41,212111n n n n n n b a b b a a +=+=++再改写为矩阵的形式:

???

? ???????

?

??=???=???? ????????

??=???? ??++1111434

12121434

12121

b a b a b a n

n n n n . 记

1122134

4A ?? ?=

? ? ???

. 由0=-A E λ求得矩阵A 的特征值为1,4

1

21==λλ.

分别对应的特征向量为()()'11,122'

1=-=X X ,取()???

? ??-==111221

X X X .则

,10041,3231313111

--???

? ??=????

?

?

??-=X X A X 于是得到

???? ??????

? ?????? ??=???? ??-++1111110041b a X X b a n

n n =???? ???????

?

??+?+

?-+?-+?βα324131314131324231314231n n n n . 故

βα???

??+?-+???? ??+?-=+3242313142311n n n a ,

βα???

??+?+???? ??+?-=+324

2313142311n n n b .

于是n n a ∞→lim =β3

2

31+?=n n b ∞→lim .

3.2.5 在二次曲面上的一些应用

设()AX X x x x f n '21,,,=???是n 元实二次型,那么f =1或f =0表示什么样的二次曲面呢?若把此二次曲面对应的矩阵化为对角矩阵,即作直角坐标变换使得这个二次曲面的方程在新坐标下不含有交叉项,就可看出它是什么二次曲面.

例8 设二次曲面在直角坐标系I 的方程为

01844223231212

32221=-++---x x x x x x x x x .

试问:这是什么二次曲面? 解:令

()=321,,x x x f 184422323121232221=++---x x x x x x x x x ,

则对应的的矩阵

122224242A -??

?=-- ? ?-??

()()0722

4

2

42

2

2

21

2

=+-=+---+--=-λλλλλλA E

得A 的特征值221==λλ,73-=λ.

可求出221==λλ对应的特征向量为()()'

2'

11,0,2,0,1,2=-=P P .将其正交化得

()'

110,1

,2-==?P ,()()'

11112221,54,52,,??

?

??=????-=?P P ;

矩阵的可对角化及其应用

附件: 分类号O15 商洛学院学士学位论文 矩阵的可对角化及其应用 作者单位数学与计算科学系 指导老师刘晓民 作者姓名陈毕 专业﹑班级数学与应用数学专业07级1班 提交时间二0一一年五月

矩阵的可对角化及其应用 陈毕 (数学与计算科学系2007级1班) 指导老师刘晓民 摘要:矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类特殊的矩阵,在理论上和应用上有着十分重要的意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似;线性变换 Matrix diagonolization and its application Chen Bi (Class 1,Grade 2007,The Depart of Math and Calculation Science) Advisor:Lecturer Liu Xiao Min Abstract: Matrix diagonolization problem is an important problem in matrix theory diagonolization matrix, as a kind of special matrix, in theory and application has the extremely vital significance. This paper has made diagonolization matrix

数学(本科)毕业论文题目汇总

数学毕业(学位)论文题目汇总 一、数学理论 1.试论导函数、原函数的一些性质。 2.有界闭区域中连续函数的性质讨论及一些推广。 3.数学中一些有用的不等式及推广。 4.函数的概念及推广。 5.构造函数证明问题的妙想。 6.对指数函数的认识。 7.泰勒公式及其在解题中的应用。 8.导数的作用。 9.Hilbert空间的一些性质。 10.Banach空间的一些性质。 11.线性空间上的距离的讨论及推广。 12.凸集与不动点定理。 13.Hilbert空间的同构。 14.最佳逼近问题。 15.线性函数的概念及推广。 16.一类椭圆型方程的解。 17.泛函分析中的不变子空间。 18.线性赋范空间上的模等价。 19.范数的概念及性质。 20.正交与正交基的概念。 21.压缩映像原理及其应用。 22.隐函数存在定理的再证明。 23.线性空间的等距同构。 24.列紧集的概念及相关推广。 25.Lebesgue控制收敛定理及应用。 26.Lebesgue积分与Riemann积分的关系。 27.重积分与累次积分的关系。 28.可积函数与连续函数的关系。 29.有界变差函数的概念及其相关概念。 30.绝对连续函数的性质。 31.Lebesgue测度的相关概念。 32.可测函数与连续函数的关系。 33.可测函数的定义及其性质。 34.分部积分公式的推广。 35.Fatou引理的重要作用。 36.不定积分的微分的计算。 37.绝对连续函数与微积分基本定理的关系。 38.Schwartz不等式及推广。 39.阶梯函数的概念及其作用。 40.Fourier级数及推广。

41.完全正交系的概念及其作用。 42.Banach空间与Hilbert空间的关系。 43.函数的各种收敛性及它们之间的关系。 44.数学分析中的构造法证题术, 45.用微积分理论证明不等式的方法 46.数学分析中的化归法 47.微积分与辩证法 48. 积分学中一类公式的证明 49.在上有界闭域的D中连续函数的性质 50.二次曲线中点弦的性质 51.用射影的观点指导中学初等几何内容 52.用近代公理分析中学几何中的公理系统 53.球上Hardy空间上的加权复合算子 54.多圆盘上不同Bergman空间上的加权复合复合算子 55.从加权Bergman空间到Bloch空间的加权复合算子 56.从加权Bergman空间到加权Bloch空间的加权复合算子 57.刻画I[x] ,K[x,y](进而R[x],R为Pid)中的素理想,其中I为整数环,K为域。 58.给出求方程X2+Y2=Z2 的所有整数解的三种不同方法。 59.对于每个n≥2,找出对称群Sn 在Mn(Z) 中的一个表示(模型),其中Mn(Z)为整数环Z上的n 阶矩阵环. 60.给出Euler定理(若(a,m)=1,则) 的三种不同证明。 61.试论矩阵环(代数)Mn(K)的基本结构性质,其中以为域,n≥2. 62.试述函数在数学中的地位和作用。 63.阐明函数理论在高等数学中的地位和作用。 64. 浅谈微分学(或积分学)在中学数学教学中的应用 65.论在数学教学中培养学生的创新精神。 66.初等几何变换在中学数学(代数、几何、三角)中的应用 67.从随机方法(概率方法)处理非随机数学问题看数学的统一性。 68.构造函数证题的妙想与思维方法的特点 69.数学知识的分类及其教学策略 70.数学知识的分类测量与评价 71.关于导函数性态的讨论与研究 72.泰勒公式及其应用 73.概率方法在讨论其它数学问题中的一些应用 74.随机变量函数的分布密度及其求法 75.用微积分理论证明不等式的方法 76.数学分析中的化归法 77.微积分与辩证法 78.刻画I[x] ,K[x,y](进而R[x],R为Pid)中的素理想,其中I为整数环,K为域。 79.给出求方程X2+Y2=Z2 的所有整数解的三种不同方法。 80.对于每个n≥2,找出对称群Sn 在Mn(Z) 中的一个表示(模型),其中Mn(Z)为整数环Z上的n 阶矩阵环. 81.给出Euler定理(若(a,m)=1,则) 的三种不同证明。 82.试论矩阵环(代数)Mn(K)的基本结构性质,其中以为域,n≥2.

04 矩阵的对角化

第四讲 矩阵的对角化 对角矩阵的形式比较简单,处理起来较方便,比如求解矩阵方程Ax b =时,将矩阵A 对角化后很容易得到方程的解。以前我们学习过相似变换对角化。那么,一个方阵是否总可以通过相似变换将其对角化呢?或者对角化需要什么样的条件呢?如果不能对角化,我们还可以做哪些处理使问题变得简单呢? 一、特征征值与特征向量 1. 定义:对n 阶方阵A ,若存在数λ,及非零向量(列向量)x ,使得Ax x λ=,则称λ为A 的特征值,x 为A 的属于特征值λ的特征向量。 ☆ 特征向量不唯一; ☆ 特征向量为非零向量; ☆ ()0I A x λ-=有非零解,则det()0I A λ-=,称

det()I A λ-为A 的特征多项式。 例1 12 22122 2 1A ????=?????? ,求其特征值和特征向量。 【解】1 22 det()2 122 21 I A λλλλ----=------ 2 (1)(5)λλ=+-, 特征值为 121λλ==-,35λ=, 对于特征值1λ=-,由 ()0I A x --=, 1232222220222ξξξ?? ??????=???????????? , 1230ξξξ++= , 312ξξξ=-- ,

可取基础解系为 1101x ?? ??=?? ??-?? ,2011x ????=????-??, 所以属于特征值1λ=-的全部特征向量为 1122k x k x + ,其中12,k k 为不全为零的数. 对于特征值5λ=,由 (5)0I A x -=, 1234222420224ξξξ--?? ??????--=????????--???? , 123ξξξ== , 可取基础解系为 3111x ?? ??=?????? , 所以属于特征值1λ=-的全部特征向量为 33k x ,其中3k 为非零的数. 2. 矩阵的迹与行列式

井冈山大学2020年普通专升本《数学与应用数学》专业基础科目考试大纲

井冈山大学2020年专升本《高等数学》课程考试大纲 一、考试科目概述 高等数学是理工科各本科专业的一门基础课程,是学好各专业课的重要的数学工具。通过该课程的学习,学生系统地掌握函数极限和连续、一元函数微积分、常微分方程、向量代数和空间解析几何、多元函数微积分以及级数的基本概念、基本理论、基本运算和分析方法,使学生在数学的抽象性、逻辑性与严密性方面受到必要的训练和熏陶。起到培养学生理解和运用逻辑关系、研究和领会抽象事物、认识和利用数形规律的能力,从而能够正确地运用数学工具解决专业学习中的问题的能力,为学好各门专业课程打下扎实的数学基础。 二、考试内容

三、考试方式与试卷结构 1.考试方式:闭卷,笔试 2.试卷分数:满分150分 3.考试时间:120分钟 4.题型比例: 填空题,共7小题,每小题3分,计21分。 单项选择题,共7小题,每小题3分,计21分。计算题,共8小题,每小题10分,计80分。 综合或应用解答题2题,计20分。 证明题1题,计8分.

井冈山大学2020年专升本《线性代数》课程考试大纲 一、考试科目概述 线性代数是理工科各本科专业的一门基础课程,是学好各专业课的重要的数学工具。通过本课程的学习,使学生不仅能较好地掌握行列式、矩阵特有的分析概念,并在一定程度上掌握用行列式、矩阵解决问题的方法,而且能使他们对线性代数的基本概念、基本方法、基本结果有所了解,并能运用其解决实际问题中的一些简单课题。通过该课程的学习,使学生掌握线性代数的基本理论与方法,培养学生正确运用数学知识来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。 二、考试内容 章节(名称)专题(名称)知识与技能考核点 第一章行列式行列式的性质行列式的性质及应用 行列式的计算行列式的计算 行列式按一行(列)展开行列式按一行(列)展开的应用 第二章 矩阵及其运算矩阵的概念与运算性质矩阵的运算性质 矩阵的逆逆矩阵的性质、计算和应用 矩阵的分块法运用分块矩阵思想解决矩阵相关计算问题 第三章 矩阵的初等变换与线性方程组矩阵的初等变换矩阵的初等变换的性质及应用矩阵的秩矩阵秩的性质及计算 线性方程组的解线性方程组有解的判定及计算 第四章 向量组的线性相关性向量组线性相关与线性无关向量组线性相关与线性无关的概念与判定向量组的秩向量组的秩的判定 线性方程组解的结构线性方程组通解的计算 向量空间向量空间的性质 第五章 相似矩阵及二次型向量的内积、长度及正交性向量的内积、长度及正交性的概念与性质方阵的特征值与特征向量特征值与特征向量的计算 相似矩阵利用相似变换化矩阵为对角矩阵 对称矩阵的对角化利用对角变换化矩阵为对角矩阵 二次型及其标准形二次型的矩阵及标准形的定义 用配方法化二次型为标准形用配方法化二次型为标准形 正定二次型正定二次型的判定

矩阵可对角化的判定条件开题报告

矩阵可对角化的判定条件开题报告 开题报告 矩阵可对角化的判定条件 选题的背景、意义 矩阵最初是作为研究代数学的一种工具提出的,但是经过两个多世纪的发展,现在已成为独立的一门数学分支?矩阵论。矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已应用于自然科学、工程技术、社会科学等许多领域。如在观测、导航、机器人的位移、化学分子结构的稳定性分析、密码通讯、模糊识别、计算机层析及 X 射线照相术等方面都有广泛的应用。随着现代数字计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数和矩阵计算,成为从事科学研究和工程设计的科技人员必备的数学基础。 矩阵是一个重要的数学工具,不仅在数学中有广泛的应用,在其他学科中也经常遇到。它在二十世纪得到飞速发展,成为在物理学、生物学、地理学、经济学等中有大量应用的数学分支,现在矩阵比行列式在数学中占有更重要的位置。 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多。但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结。因此,我就针对这方面进行系统的分类归纳和总结,对一些理论

进行应用和举例,给出算法。特别给出了解题时方法的选择。 矩阵的应用在现代社会中是十分广泛的,本文围绕有限维线性空间上的线性变换对角化问题与矩阵可对角化相互转换进行研究.根据矩阵的多项式对矩阵对角化问题进行判断,这种方法不仅为探讨矩阵对角化提供了一个简便的工具,也把矩阵和有限维空间相结合.在现代科技中,很多问题都是运用此类方式。 矩阵对角化问题只是矩阵理论中的一个小问题,但是一个基础问题,这样矩阵可对角化作为矩阵理论里的最基础的知识,就显得格外的重要.通过对《高等代数》,《科学计算方法》等有关资料的查阅和分析研究,为我们对判定矩阵的可对角化的条件提供了相关依据和理论. 文献[1]和[2]介绍了广义逆矩阵和一类特殊矩阵可对角化的判定条件,利用子空间关于矩阵的最小多项式研究了矩阵可广义对角化的充要条件,给出了一种更简单的判别仅有两个互异特征根的矩阵与对角阵相似以及求特征向量的方法。 文献[3]总结了利用循回阵的性质找出一个矩阵可对角化的充要条件。任意阶矩阵可以对角化的充要条件是相似于一个阶循回阵, 形式最简单的矩阵是对角阵。矩阵对角化是线性变换和化二次型到主轴上问题中经常遇到并需要解决的一个关键问题,但不是任何一个阶矩阵都可以对角化。 文献[4]总结了对矩阵的计算中用到了对角化的性质。该文详细地分析了Doolittle LU分解过程,基于分解过程的特点,在MPI(Message-Passing interface)并行环境下,提出了按直角式循环对进程进行任务分配的并行求解方法。实验证明该方法可以有效地减少进程间数据通信量,从而加快计算速度。 文献[5]?[7] 阐述了矩阵可对角化的条件以及对实对称矩阵的可对角化,

最新对角化矩阵的应用本科

对角化矩阵的应用本 科

XXX学校 毕业论文(设计) 对角化矩阵的应用 学生姓名 学院 专业 班级 学号 指导教师 2015年 4 月 25 日

毕业论文(设计)承诺书 本人郑重承诺: 1、本论文(设计)是在指导教师的指导下,查阅相关文献,进行分析研究,独立撰写而成的. 2、本论文(设计)中,所有实验、数据和有关材料均是真实的. 3、本论文(设计)中除引文和致谢的内容外,不包含其他人或机构已经撰写发表过的研究成果. 4、本论文(设计)如有剽窃他人研究成果的情况,一切后果自负. 学生(签名): 2015 年4月25日

对角化矩阵的应用 摘要 矩阵对角化问题是矩阵理论中一个关键性问题.本文借助矩阵可对角化条件,可对角化矩阵性质和矩阵对角化方法来研究可对角化矩阵一些应用,包括求方阵的高次幂,反求矩阵,判断矩阵是否相似,求特殊矩阵的特征值,在向量空间中证明矩阵相似于对角矩阵,运用线性变换把矩阵变为对角矩阵,求数列通项公式与极限,求行列式的值. 【关键词】对角化;特征值;特征向量;矩阵相似;线性变换

Application of diagonalization matrix Abstract Matrix diagonalization problem is the key issue in the matrix theory. In this paper, by using matrix diagonalization conditions, diagonalization matrix properties and matrix diagonalization method we study some applications of diagonalization matrix, including for high-order exponent of matrix, finding the inverse matrix, matrix to determine whether it is similar, the eigenvalue of special matrix, in the vector space that matrix similar to a diagonal matrix, using linear transformation matrix is a diagonal matrix, for the series of general term formula and limit, the determinant of value. [Key words] The diagonalization; Eigenvalue; Feature vector; Similar; Linear transformation

矩阵可对角化的总结

矩阵可对角化的总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-

矩阵可对角化的总结莆田学院数学系02级1班连涵生 21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。 [关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵 说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。只要适当扩大原本数域使得满足以上条件就可以。复数域上一定满足,因此这样假设,就不用再去讨论数域。 引言 所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。本文主要是讨论矩阵可对角化。 定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~ B。矩阵P称为由A到B的相似变换矩阵。[]1[]2[]3[]4 2

3 定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。[]1[]2[]3[]4 定义3:设A 是数域P 上一个n 级方阵,若多项式()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。[]2 定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。[]1[]2[]3 一、 首先从特征值,特征向量入手讨论n 级方阵可 对角化的相关条件。 定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。[]1[]2[]3[]4 证明:必要性:由已知,存在可逆矩阵P ,使 121n P AP λλλ-??????=??????即12n AP P λλλ??????=?????? 把矩阵P 按列分块,记每一列矩阵为 12,, ,n P P P 即

可对角化矩阵的应用

可对角化矩阵的应用 矩阵可对角化问题是矩阵理论中的一个重要问题,可对角化矩阵作为一类,特殊的矩阵,在理论上和应用上有着十分重要的意义。下面列举几个常见的可对角化矩阵的应用的例子。 1.求方阵的高次幂 例设V 是数域P 上的一个二维线性空间,12,εε是一组基,线性变换σ在12,εε下的矩阵A =2110?? ?-?? ,试计算k A 。 解:首先计算σ在V 的另一组基12,ηη下的矩阵,这里 ()()121211,,12-?? ηη=εε ? -?? , 且 σ 在 12 ,ηη下的矩阵为 1 112 1112 12 11111121012111 01 2 1 ----?????????? ?? ??== ? ??? ????? ?----- ????????? ?????显然 1 10 10 1k k ??? ? = ? ? ?? ?? ,再利用上面得到的关系1 1121111112101201---???????? = ? ??? ?---???????? 我们可以得到 1 21111111111211 101201121201111k k k k k k k ----+????????????????=== ? ??? ? ????? ? ------+???????????????? 2.利用特征值求行列式的值。 例:设n 阶实对称矩阵2A =A 满足,且A 的秩为r ,试求行列式2E A -的值。 解:设AX=λX ,X ≠0,是对应特征值λ的特征向量,因

为2A A =,则22X X λE =AE =A =λ,从而有()20X λ-λ=,因为X ≠0, 所以()1λλ-=0,即λ=1或0,又因为A 是实对称矩阵,所以A 相似于对角矩阵,A 的秩为r ,故存在可逆矩阵P ,使 1 00 0r E P AP -??= ??? =B ,其中 r E 是r 阶单位矩阵,从而 1102220 2r n r n r E E A PP PBP E B E -----=-=-= =2 3由特征值与特征向量反求矩阵。 若矩阵A 可对角化,即存在可逆矩阵P 使,其中B 为对角矩阵,则 例 设3阶实对称矩阵A 的特征值为,对应的特征向量为,求矩阵A 。 解:因为A 是实对称矩阵,所以A 可以对角化,即A 由三个线性无关的特征向量,设对应于231λ=λ=的特征向量为 () 123,,T P X X X =,它应与特征向量 1 P 正交,即 []1123,00P P X X X =++=,该齐次方程组的基础解系为 ()() 231,0,0,0,1,1T T P P ==-,它们即是对应于231λ=λ=的特征向量。 取 ()123010100,,101,010101001P P P P B -???? ? ? === ? ? ? ?-???? ,则 1P A P B -=, 于是1110 010******* 210101010 0011010011 1010022A PBP -? ? ?-?????? ? ??? ?===- ? ??? ? ??? ? ?--??????- ??? 4判断矩阵是否相似

矩阵可对角化的总结

矩阵可对角化的总结莆田学院数学系02级1班连涵生21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n 级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。 [关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵 说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。只要适当扩大原本数域使得满足以上条件就可以。复数域上一定满足,因此这样假设,就不用再去讨论数域。 引言 所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。本文主要是讨论矩阵可对角化。 定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。矩阵P称为由A 到B的相似变换矩阵。[]1[]2[]3[]4

定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。[] 1[]2[]3[] 4 定义3:设A 是数域P 上一个n 级方阵,若多项式 ()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。[] 2 定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。[] 1[]2[] 3 一、首先从特征值,特征向量入手讨论n 级方阵可对角化的 相关条件。 定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。[] 1[]2[]3[] 4 证明:必要性:由已知,存在可逆矩阵P ,使 1 2 1 n P AP λλλ-????? ?=??????即12n AP P λλλ?? ????=????? ? 把矩阵P 按列分块,记每一列矩阵为 12,,,n P P P 即 12[,,,]n P P P P = 于是有

矩阵可对角化的条件.

第二节矩阵可对角化的条件 定义1 如果矩阵能与对角矩阵相似,则称可对角化。 例1设,则有:,即。从而 可对角化。 定理1 阶矩阵可对角化的充分必要条件是有个线性无关的特征向量。 证明:必要性如果可对角化,则存在可逆矩阵,使得 将按列分块得,从而有

因此有,所以是的属于特征值的特征向量,又由可逆,知线性无关,故有个线性无关的特征向量。 充分性设是的个线性无关的特征向量,它们对应的特征值依次为 ,则有。令,则是一个可逆矩阵且有: 因此有,即,也就是矩阵可对角化。 注若,则,对按列分块得 ,于是有 ,即 ,从而。可见,对角矩阵的元素就是矩阵的特征值,可逆矩阵就是由的线性无关的特征向量所构成的,并且特征向量的顺序依赖于对角矩阵。 定理2 矩阵的属于不同特征值的特征向量是线性无关的。

证明:设是的个互不相同的特征值,是的属于特征值的特征向量,现对作数学归纳法证明线性无关。 当时,由于特征向量不为零,因此定理成立。 假设的个互不相同的特征值对应的个特征向量是线性无关的。设 是的个互不相同的特征值,是的属于特征值的特征向量。又设 (1) 成立。则有,又将(1)式两边同乘得: 从而有,由归纳假设得 ,再由两两互不相同可得 ,将其代入(1)式得,因此有,从而 线性无关。 推论1 若阶矩阵有个互不相同的特征值,则可对角化,且 。 定理3 设是阶矩阵的个互异特征值,对应于的线性无关的特征 向量为,则由所有这些特征向量(共个)构成的向量组是线性无关的。

证明:设,记, ,则有,且或是的属于特征值的特征向量。若存在某个,,则由属于不同特征值的特征向量线性无关知 ,矛盾。因此有,,又由已知得 ,,因此向量组 线性无关。 定理4设是阶矩阵的一个重特征值,对应于的特征向量线性无关的最大个数为,则,即齐次线性方程组的基础解系所含向量个数不超过特征值的重数。 证明:用反证法。由于是的属于特征值的特征向量当且仅当是齐次线性方程组的非零解,因此对应于的特征向量线性无关的最大个数与齐次线性方程组的基础解系所含向量个数相等。设是齐次线性方程组的一个基础解系,且假设,则有。现将扩充为一个维线性无关向量组,其中 未必是的特征向量,但有是一个维向量,从而 可由向量组线性表示,即: 因而有:

矩阵对角化及应用论文

矩阵对角化及应用 理学院 数学082 缪仁东 指导师:陈巧云 摘 要:本文是关于矩阵对角化问题的初步研究,对矩阵对角化充要条件的归纳,总结,通过对实对称矩阵,循环矩阵,特殊矩阵对角化方法的计算和研究,让读者对矩阵对角化问题中求特征值、特征向量,求可逆矩阵,使对角化,提供了简便,快捷的求解途征. 关键词:对角矩阵;矩阵对角化;实对称矩阵;特征值;特征向量. 矩阵对角化是矩阵论的重要组成部分,在矩阵论中占有重要的作用,研究矩阵对角化问题很有实用价值,关于矩阵对角化问题的研究,这方面的资料和理论已经很多.但是他们研究的角度和方法只是某个方面的研究,没有进行系统的分类归纳和总结.因此,我就针对这方面进行系统的分类归纳和总结,对一些理论进行应用和举例,给出算法.特别给出了解题时方法的选择. 1.矩阵对角化概念及其判定 所有非主对角线元素全等于零的n 阶矩阵,称为对角矩阵或称为对角方阵. 定义1.1 矩阵A 是数域P 上的一个n 级方阵. 如果存在一个P 上的n 级可逆矩阵X ,使 1X AX - 为对角矩阵,则称矩阵A 可对角化. 矩阵能否对角化与矩阵的特征值特征向量密切相关. 定义 1.2 设A 是一个n 阶方阵,λ是一个数,如果方程组 AX X λ= (1) 存在非零解向量,则称λ为的A 一个特征值,相应的非零解向量X 称为属于特征值λ的特征向量. (1)式也可写成, ()0E A X λ-= (2) 这是n 个未知数n 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 =0E A λ-, (3)

即 11 121212221 2 0n n n n nn a a a a a a a a a λλλ------=--- 上式是以λ为未知数的一元n 次方程,称为方阵A 的特征方程. 其左端A E λ-是λ的n 次多项式,记作()f λ,称为方阵 的特征多项式. 11 1212122 21 2 ()||n n A n n nn a a a a a a f E A a a a λλλλλ------=-= --- 111n n n n a a a λλλ--=++ ++ 显然,A 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n 阶矩阵A 有n 个特征值. 设n 阶矩阵()ij A a =的特征值为12,,n λλλ,由多项式的根与系数之间的关系,不难证明 (ⅰ)121122n nn a a a λλλ+++=++ +; (ⅱ)12 n A λλλ=. 若λ为A 的一个特征值,则λ一定是方程=0A E λ-的根, 因此又称特征根,若λ为方程 =0A E λ-的i n 重根,则λ称为A 的i n 重特征根.方程 ()0A E X λ-=的每一个非零解向量都 是相应于λ的特征向量,于是我们可以得到求矩阵A 的全部特征值和特征向量的方法如下: 第一步:计算A 的特征多项式E A λ-; 第二步:求出特征方程=0E A λ-的全部根,即为A 的全部特征值; 第三步:对于 的每一个特征值λ,求出齐次线性方程组: ()0E A X λ-= 的一个基础解系12,,,s ξξξ,则A 的属于特征值λ的全部特征向量是 1122s s k k k ξξξ+++(其中12,,,s k k k 是不全为零的任意实数) . 设P 是数域, Mn (P ) 是P 上n ×n 矩阵构成的线性空间, A ∈Mn (P ) , 1,2t ,,λλλ 为 A 的t 个互不相同的特征值,高等代数第二版(北京大学数学系几何与代数教研室编)第四版(张和瑞、郝炳新编)课程中,我们学过了矩阵可对角化的若干充要条件如: (1) A 可对角化当且仅当A 有n 个线性无关的特征向量; (2) A 可对角化当且仅当特征子空间维数之和为n ;

矩阵可对角化的充分必要条件论文

学号 20080501050116 密级 兰州城市学院本科毕业论文 矩阵可对角化的充分必要条件 学院名称:数学学院 专业名称:数学与应用数学 学生姓名:练利锋 指导教师:李旭东 二○一二年五月

BACHELOR'S DEGREE THESIS OF LANZHOU CITY UNIVERSITY Matrix diagonalization of the necessary and sufficient condition College : Mathematics Subject : Mathematics and Applied Mathematics Name : Lian Lifeng Directed by : Li Xudong May 2012

郑重说明 本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的,所以数据、资料真实可靠。尽我所能,除文中已经注明应用的内容外,本学位论文的研究成果不包含他人享有的著作权的内容。对本论文所涉及的研究工作做出的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。 本人签名 : 日期 :

摘要 矩阵是否可以对角化,是矩阵的一条很重要的性质。对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。本文给出了矩阵可对角化的几个充分必要条件和相应的证明。 关键词:方阵;特征值;特征向量;对角化

ABSTRACT Matrix diagonalization is a very important nature of matrix.Understanding the necessary and sufficient conditions of similarity can be diagonalized , has been a difficult problem in linear algebra.In this paper, several necessary and sufficient conditions and the corresponding proofs of matrix diagonlization have been given. Key words:square;eigenvalue;eigenvector;diagonalization

特征值和特征向量的应用 数学毕业论文

河北师范大学汇华学院本科毕业论文(设计)任务书 编号: 2013230 论文(设计)题目;特征值和特征向量的应用 学部:信息工程学部专业:数学与用用数学班级: 2009级2班 学生姓名:学号:指导教师:职称:副教授 1、论文(设计)研究目标及主要任务 通过对特征向量与特征值的应用的研究,来充分利用的特征向量与特征值计算的简便解决相关问题,应用于数学解题计算中和生活实际的应用中。主要是归纳研究出特征向量和特征值在不同类形的矩阵中,怎样帮助解决相关试题。同时将特征值和特征向量应用到生活中的应用,如经济应用,环境污染的增长类型,莱斯利种群的相关问题。 2、论文(设计)的主要内容 特征值和特征向量的相关概念,性质。在数学中,按照分类矩阵来应用特征值与特征向量来解题。在生活中的几个方面的应用。 3、论文(设计)的基础条件及研究路线 首先,明白相关的定义,如特征值、特征向量、特征多项式、对角矩阵等相关的概念。其次,了解他的相关性质,并应用到解题和相关的生活中。 4、主要参考文献 [1] 王萼芳,石生明.高等代数[M].北京:高等教育出版社,2003. [2] 汤正华.关于矩阵的特征值与特征向量的探究[J].山东行政学院山东省经济管理干部学院学报,2008,(91):46—48. [3] 向以华.矩阵的特征值与特征向量的研究[J].重庆三峡学院学报,2009,25(117):135—138. [4] 吴春生.浅议线性变换与矩阵的特征值与特征向量的关系[J].连云港师范高等专科学校学报,2004,(4):75—76. [5] 何翼.求矩阵特征值与特征向量的新方法[J].铜仁学院学报,2009,11(3):139—140. [6] 杨廷俊.矩阵特征值与特征向量的同步求解法[J].甘肃联合大学学报(自然科学版),2006,20(3):20—22. [7] 李延敏.关于矩阵的特征值与特征向量同步求解问题[J].大学数学,2004,20(4):92—95. [8] 姚幕生.高等代数[M].上海:复旦大学出版社,2002 [9]邵丽丽.矩阵的特征值和特征向量的应用研究[J].菏泽学院学报,2006,(5):20—23. [10]奚传志.矩阵特征值与特征向量在递推关系上的应用[J].枣庄师专学报,1991,(2):26—30 [11]郭华,刘小明.特征值与特征向量在矩阵运算中的作用[J].渝州大学学报(自然科学版),2000,17(2):72—75. [12]同济大学数学教研室.线性代数(第二版)[M].北京:高等教育出版社.1993,115—137 [13]矩阵的特征值、特征向量和应用[J].临沂师专学报,1994,(5):1—7.

线性代数教学大纲(本科)

“线性代数”课程教学大纲 课程编号: 学时:72学时(含课外学时)学分:4 分 适用对象:经济、计算机、环境、蒙文信息处理等专业 先修课程:初等数学 考核要求:闭卷 使用教材及主要参考书: 戴斌祥主编,《线性代数》,北京邮电大学出版社,2009年 同济大学数学系主编,《线性代数》,高等教育出版社,2007年一、课程的性质和任务 《线性代数》是我校本科各专业一门必修专业基础科,它内容较丰富,学时较多。其任务是既要为各专业后续课程提供基本的数学工具,又要培养学生应用数学知识解决本专业实际问题的意识与能力。 二、教学目的与要求 线性代数是讨论有限维空间线性理论的一门学科,它的理论和问题的处理方法是许多非线性问题处理方法的基础,且广泛地应用于各学科的领域中。本课程以线性方程组解的讨论为核心内容介绍行列式、矩阵理论、向量的线性相关性、线性方程组、二次型的理论及其有关知识。通过本课程的教学,使学生掌握线性代数的基本概念,了解其基本理论和方法从而使学生初步掌握线性代数的基本思想和方法,培养学生运用线性代数的方法分析和解决实际问题的能力。三、学时分配 章节课程内容学时 1 n阶行列式14 2 矩阵16 3 n维向量与向量空间18 4 线性方程组12 5 矩阵的特征值与二次型12 四、教学中应注意的问题 《线性代数》是一门高度抽象数学课程,在教学过程中应以启发式讲授为主,要着力培养学生抽象思维能力,要使学生丢弃三维直观空间的习惯束缚,逐步建立n维空间的概念;还要着力培养学生的科学计算能力,使学生熟练掌握教材中所给出的各种解题的一般方法。在教学中,应注意我校学生的实际,不过分追求学科的数学性、完整

矩阵的对角化的应用

矩阵的对角化的应用 摘要:矩阵是高等代数中的一个重要的基本概念,是代数学的一个主要研究对 象。对角矩阵作为一种特殊的矩阵,在理论研究和矩阵性质推广中有重要意义。本文对可对角化矩阵做出了全面的概括和分析,并利用高等代数和线性代数的有关理论给出了矩阵可对角化的若干条件,同时也讨论了化矩阵为对角形的求解方法,最后总结出可对角化矩阵在求方阵的高次幂﹑利用特征值求行列式的值﹑由特征值和特征向量反求矩阵﹑判断矩阵是否相似﹑向量空间﹑线性变换等方面的应用. 关键词:对角化;特征值;特征向量;相似 一、概念 所谓矩阵可对角化指的是矩阵与对角阵相似 定义1:如下形式的n×n矩阵= 称为对角矩阵简记为 =diag(,,,) 定义2:把矩阵A(或线性变换)的每个次数大于零的不变因子分解成互不相同的首项为1的一次因式方幂的乘积,所有这些一次因式方幂(相同的必须按出现的次数计算)称为矩阵A(或线性变换)的初等因子。 定义3:设A是数域P上的n级矩阵,如果数域P上的多项式f(x)使得f(x)=0,则称f(x)以A为根,在以A为根的多项式中,次数最低且首项系数为1的多项式称为A的最小多项式。 定义4:设V是P上的线性空间,是V上的一个变换,如果对任意V和 P都有,则称为V的一个线性变换

定义5:设是数域P上线性空间V的一个线性变换,如果存在P中的一个数 和V中非零元素使得,则称为的一个特征值,而称为的属于特征值的一个特征向量,由的属于特征值的全部特征向量再添上零元素构成的集合构成V的一个子空间,称为的一个特征子空间。 定义6:设A,B为数域P上的两个n级矩阵,如果存在数域P上的n级可逆矩阵X 使得B=AX,则称A相似于B,记为A B,并称由A变到B得变换为相似变换,称X为相似变换矩阵。 二〃矩阵对角化条件 常用的充要条件 (1)可对角化当且仅当有个线性无关的特征向量; (2)可对角化当且仅当特征子空间维数之和为; (3)可对角化当且仅当的初等因子是一次的; (4)可对角化当且仅当的最小多项式无重根。[2-5] 三. 实对称矩阵对角化的一种简化方法 设是实对称矩阵,求正交矩阵使的问题,一般方法可简述为: (1)求特征值; (2)求对应的特征向量; (3)将特征向量正交标准化; (4)写出及.

数学(本科)毕业论文题目汇总

数学(本科)毕业论文题目汇总 数学毕业(学位)论文 题目汇总 一、数学理论 1. 试论导函数、原函数的一些性质。 2. 有界闭区域中连续函数的性质讨论及一些推广。 3. 数学中一些有用的不等式及推广。 4. 函数的概念及推广。 5. 构造函数证明问题的妙想。 6. 对指数函数的 认识。 7. 泰勒公式及其在解题中的应用。 8. 导数的作 用。 9. Hilbert空间的一些性质。 10. Banach空间的 一些性质。 11. 线性空间上的距离的讨论及推广。 12. 凸集与 不动点定理。 13. Hilbert空间的同构。 14. 最佳逼近 问题。 15. 线性函数的概念及推广。 16. 一类椭圆型方程 的解。 17. 泛函分析中的不变子空间。 18. 线性赋范 空间上的模等价。 19. 范数的概念及性质。 20. 正交 与正交基的概念。 21. 压缩映像原理及其应用。 22.

隐函数存在定理的再证明。 23. 线性空间的等距同构。 24. 列紧集的概念及相关推广。 25. Lebesgue控制收敛定理及应用。 26. Lebesgue积分与Riemann积分的关系。 27. 重 积分与累次积分的关系。 28. 可积函数与连续函数的关系。 29. 有界变差函数的概念及其相关概念。 30. 绝对 连续函数的性质。 31. Lebesgue测度的相关概念。 32. 可测函数与连 续函数的关系。 33. 可测函数的定义及其性质。 34. 分部积分公式的推广。 35. Fatou引理的重要作用。 36. 不定积分的微分的计算。 37. 绝对连续函数与微积分基本定理的关系。 38. Schwartz不等式及推广。 39. 阶梯函数的概念及其作用。 40. Fourier级数及推广。 41. 完全正交系的概念及其作用。 42. Banach空间与Hilbert空间的关系。 43. 函数 的各种收敛性及它们之间的关系。 44.数学分析中的构造法证题 术, 45.用微积分理论证明不等式的方法 46.数学分析中的化归 法 47.微积分与辩证法 48. 积分学中一类公式的证明 49.在上有界闭域的D中连续函数的性质 50.二次曲线中点弦 的性质

矩阵函数以与应用毕业设计_说明

矩阵函数以及应用毕业设计 1 绪论 1.1 矩阵(Matrix)的发展与历史 人们对矩阵(Matrix)的研究历史非常悠久,在很久以前就已经有人研究过了幻方和拉丁方阵。在过去的很长时间内,矩阵都是人们解决线性问题的最主要方法。成书于汉朝前期的《九章算术》,在表示线性方程组的过程中使用了将方程中不同系数分开的方法,这种方法在后来的不断演化下最终得到方程的增广矩阵。在计算的过程中经常使用矩阵的初等变换进行消元,具体说就是通过一些计算技巧将前面给出的增广矩阵化为行最简型。但是当时我们能知道的矩阵知识非常的少,虽然过去的标准和现在的矩阵在表示上已经非常的类似了,但这两者都是以线性方程为基本标准。事实上子宫基质的控制中心和开始生活意义的地方是矩阵最开始的意义,所以说矩阵有生命的意义。在数学中,开始出现的是对现在数学都有决定性的行列式,但需要行列式的行和列相等,最终的排成的表都是方的,随着研究的深入人们发现行数等于列数的行列式已经无法满足现实生活中的实际需要了。在这种情况下,矩阵应运而生。现在对于我们来说非常熟悉的矩阵和行列式,它们的概念是非常的不一样的。行列式能按照我们的规则计算出它的结果,而矩阵是将数字按一定顺序排列得到的。在学术研究中恰当地使用矩阵,能用向量空间中的向量表示线性方程组中系数矩阵;因此,一个多元线性方程组的解的情况,以及一系列问题的理论解之间的不同关系,都可以得到彻底解决。矩阵都有自身的行和列,水平的称之为行,竖直的称之为列。这些我们现在能看到的关于矩阵的一切都是由无数数学家的摸索得来的。 矩阵(Matrix)在数学发展历史上有着非常重要的位置,它一直是数学研究的一个主要方面,是数学在研究和应用过程中经常用到的知识。“矩阵”由英国数学家叶(Sylvester)第一次使用,他使用的这个数学术语最后将矩阵的列数和早期的行列式分离开来。在数学

相关文档
最新文档