线性代数第一章 第一节线性方程组的消元法

第一章线性方程组的消元法和矩阵的初等变换

◆线性方程组的消元法

◆矩阵的的初等变化

引例(物资调运问题)

ij

C j B i A 12,,B B 有三个生产同一产品的工厂

其年

产量分别为40、20和10,单位为吨;该产品每年有两个用户其用量分别为45和25,单位为吨;由各产地到各用户的距离为(千米)

假设每吨货物每千米的运费为1(元),问各厂的产品如何调配才能使总运费最少?

123,,,

A A A ()

1,2,3;1,2i j ==

C ij A1A2A3 B1455892 B2587236

14253640,(1)20,(2)10.

(3)

x x x x x x +=+=+=1. 对产地来讲,产品全部调出,因而有

解:假设到的产品数量,到的产品数量,到的产品数量;3个厂的总产量与两个用户的总用量刚好相等,所以:2A 1A 3A 12,B B 12,B B 25,x x 12,B B 36,x x 14,x x

12345645,(4)25.

(5)

x x x x x x ++=++=123456455892587236.

(6)

S x x x x x x =+++

++2. 对用户来讲,调查的产品刚好为其所需,因而有:

3. 考虑总运费S :

(1)-(5)每个方程都是线性方程,几个线性方程联立在一起,称之为线性方程组.

因此方程(1)-(5)构成6个未知数5个方程的线性方程组.

不少实际问题可以化为线性方程组的问题.这样的方程组所包含的未知数的个数不只是一个两个,而是更多.

因此,为了解决这类问题需要讨论含有个n个未知数m个方程的线性方程组.

11112211211222221122

(7)

n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 形式如下:

它是第个方程中第个未知量的系数;

i j j x ij a (1,2,,;1,2,)i m j n == 这里

为已知数i b (1,2,,)

i m = i 是已知数,称为第个方程的常数项。

当线性方程组(7)的常数项均为零时,则我们称它为齐次线性方程组,否则,称为非齐次线性方程组

所谓方程组(7)的一个解就是指个数

n 1122,,,n n

x x x ξξξ=== 12n ξξξξ?? ? ?=

? ???

组成的有序数组

方程组(7)的解的全体称为它的解集合解方程组实际上是找出它的全部解;如果两个方程组有相同的解集合,它们就称

为是同解的.

2、线性方程的线性组合线性方程的加法:

式与式的和

(11)(12)1111221121122222

,n n n n a x a x a x b a x a x a x b +++=+++= (11)(12)

()()()()

11211122221212n n n a a x a a x a a x b b ++++++=+ (13)

线性方程乘常数:

()()()11112211

n n a x a x a x b λλλλ+++= 线性方程的线性组合:

()()()()

1112211112222211221122n n n a a x a a x a a x b b λλλλλλλλ++++++=+ (14)

注意为任意常数,也可以为0.λ式与

式的一个线性组合。(11)(12)其中为任意常数。

12,λλ

两个线性方程组(1)和(2),如果

方程组(2)中的每个方程都是方程组(1)中的方程的线性组合,就称方程组(2)

是方程组(1)的线性组合。

方程组(1)的每一个解都是方程组(2)

的解。

如果方程组(1)和方程组(2)互为线性组合,就称这两个方程组等价(可互推)。

将方程组(1)变成同解方程组(2)的过程称为同解变换。

1231231

32314254(8)

226x x x x x x x x -+=??

++=??+=?1232323231425x x x x x x x -+=??

-=??-=?

例1解线性方程组(消元法)

解:第二个方程减去第一个方程的2倍,第三个方程减去第一个方程,就变成

将上面的第二个方程与第三个方程互换,即得

1232323231542x x x x x x x -+=??

-=??-=?

将第三个方程减去第二个方程的4倍,得

1232332315318x x x x x x -+=??

-=??=-?

将第三个方程两边乘,得

13

1232332315(9)

6x x x x x x -+=??

-=?

?=-?

将第一个方程减去第三个方程的3倍,第二个

方程加上第三个方程,得

122

321916

x x x x -=??=-??=-?

将第一个方程加上第二个方程,得

1

2321816x x x =??

=-??=-?

将第一个方程两边乘得

1

2

123

916x x x =??

=-??=-?即:12391(10)

6x x x ????

? ?=- ? ?

? ?-??

??

上面解方程的过程,从(8)到(9)叫消元过程从(9)到(10)叫回代过程

从整个消元过程可以看到,它实际上是对方程组进行了以下3种变换:

(1)交换两个方程的次序;

(2)用一个非零的常数乘以某个方程

(3)把一个方程的适当倍数加到另一个方程.定义2上述三种变换均称为线性方程组的初

等变换.

定理1线性方程组的初等变换总是把方程

组变成同解方程组。证方程组进行3种初等变换

11112211211222221122(7)

n n n n m m mn n m

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=????+++=? 不妨设把第二个方程的倍加到第一个方程得到新方程组

k

()()()1121112222121221122222

1122

n n n n n m m mn n m a ka x a ka x a ka x b kb a x a x a x b a x a x a x b

++++++=+??

+++=??

?

?+++=? (16)1111221121122222

n n n n a c a c a c b a c a c a c b +++=+++= 设是的任一解,则满足的

前两个方程

(7)12(,,,)T

n c c c (7)

()()()11211122221212

n n n a ka c a ka c a ka c b kb ++++++=+ k 把二式的倍,再与第一式相加,即

12(,,,)T

n c c c (16)(16)(7)因此满足的第一个方程,又和的后个方程相同,所以也是的解。

(16)方程组的第二个方程乘以倍加到第

一个方程,得到方程组,因此,

的任一解也是的解。方程组和是同解的。(16)(16)(16)k -(7)(7)(7)线性方程组的初等变换是一种同解变换。

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组 一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中, A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803?? ? ? ? ? ? ? ? ??? 0.230 -52.322 54.000 240.236 29.304 -117.818b ?? ? ? ?= ? ? ? ? ??? T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068) 二、原理及步骤分析 设 n n ij R a A ?∈=][)1(,n n R b b b b ∈=],,,[)1()2(2)1(1 。若约化主元素 ),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。 如果在消元过程中发现某个约化主元0) (=k kk a , 则第K 次消元就无法进行。此外,即 使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。 为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。相应过程为: (1)选主元:在子块的第一列中选择一个元) (k k i k a 使) (max k ik n i k k k i a a k ≤≤= 并将第k 行元与第k i 行元互换。 (2)消元计算:对k=1,2,……n-1依次计算 ()()()?? ?? ?????++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj ik k ij k ij k kk k ik k ik ,,2,1,,2,1,,,2,1) ()()1() ()()1()() ()( (3)回代求解

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

用高斯消元法求解线性代数方程组.(优选)

用高斯消元法求解线性代数方程组 1234111 5 -413-2823113-2104151 3-21719x x x x ??????????????????=?????? ?????? ?????? 1111X *??????=?????? (X*是方程组的精确解) 1 高斯消去法 1.1 基本思想及计算过程 高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。 为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。 ??? ??=++II =++I =++III) (323034)(5 253)(6432321 321321x x x x x x x x x 把方程(I )乘(2 3 - )后加到方程(II )上去,把方程(I )乘(2 4- )后加到方程(III )上 去,即可消去方程(II )、(III )中的x 1,得同解方程组 ?? ? ??=+-II -=-I =++III) (20 223)(445.0)(6 4323232321x x x x x x x 将方程(II )乘( 5 .03 )后加于方程(III ),得同解方程组: ?? ? ??-=-II -=-I =++III) (42)(445.0)(6432332321x x x x x x 由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。 下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

线性方程组的Guass消元法求解

西京学院数学软件实验任务书 课程名称数学软件实验班级数学0901 学号0912020112 姓名*** 实验课题 线性方程组高斯消去法,高斯列主元消去法,高斯全 主元消去法 实验目的熟悉线性代数方程组高斯消去法,高斯列主元消去法,高斯全主元消去法 实验要求运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成 实验内容线性方程组高斯消去法 线性方程组高斯列主元消去法线性方程组高斯全主元消去法 成绩教师

实 验 报 告 实验名称:Guass 消元法编程求解线性方程 实验目的:进一步熟悉理解Guass 消元法解法思路 学习matlab 编程 实验要求: 已知:线性方程矩阵 输出:线性方程组的解 程序流程: 输入矩阵 调用函数求解矩阵 输出方程组的解 实验原理: 消元过程: 设0) 0(11 ≠a ,令乘数) 0(11 ) 0(11/a a m i i -=,做(消去第i 个方程组的i x )操 作1i m ×第1个方程+第i 个方程(i=2,3,.....n ) 则第i 个方程变为1 )1(2)1(2 ...i n in i b x a x a =++ 这样消去第2,3,… ,n 个方程的变元i x 后。原线性方程组变为 ?? ?? ? ????=++=++=++) 1()1(2)1(2)1(2)1(22)1(22)0(1)0(11)0(11... . . ... ...n n nn n n n n n b x a x a b x a x a b x a x a

这样就完成了第1步消元。 对线性方程组中有第2,3,.。。。N 个方程组成的n —1元线性方程组做同样的处理,消去其除第一个方程组之外的所有变元2x ,可得到 ???? ?? ? ??????=++=++=++=++)3()3(3)3(3)2(3)2(33)2(33)1(2)1(22)1(22)0(1)0(11)0(11... . . . ... ... ...n n nn n n n n n n n b x a x a b x a x a b x a x a b x a x a 依次类推,当做到n-1步消元后,就完成了Guass 消元过程,得到上三角方程组 实验内容:利用Guass 消元操作的原理,求解线性方程组 ?? ?? ? ????==++=++--) 1()1()1(2)1(22)1(22) 0(1)0(11)0(11 . . ... ...n n n n nn n n n n b x a b x a x a b x a x a 回代过程: 在最后的一方程中解出n x ,得:) 1() 1(/--=n nn n n n a b x 再将n x 的值代入倒数第二个方程,解出1-n x ,依次往上反推,即可求出方程组的解: 其通项为3, (1) -n 2,-n k /)() 1(1 )1()1(=- =-+=--∑k kk n k j j k kj k k k a x a b x 流程图如下:

消元法解线性方程组

消元法解线性方程组 学校:青海师范大学 院系:数学系 专业:数学与应用数学 班级:10B 指导教师:邓红梅 学号:20101611218 姓名:梅增旺

摘要:线性方程组在数学的各个分支,在自然科学,工程技术,生产实际中经常遇到,而且未知元的个数及方程的个数可达成百上千,因此它的理论是很重要的,其应用也很广泛。本篇将就解线性方程组在此做一浅谈,以消元法为主要方法。消元法是解一般线性方程组行之有效的方法,早在中学大家都已经有接触,消元法的基本思想是通消元变形把方程组化成容易求解的同解方程组进行求解。 关键字:线性方程组消元法求解 Abstract: linear equations in various branches of mathematics, natural science,engineering technology, often encountered in actual production, and the unknown element number and the number of equations can be hundreds, so itis important in the theory, its application is very extensive. This article on thesolution of linear equations based on a discussion, mainly by means ofelimination method. Elimination method is the general linear equations ofeffective early in high school, everyone has a contact, the basic idea ofelimination method is through the elimination of the equations of deformationinto easy to solve with the solution of equations. Keywords:elimination method for solving linear equations

高斯消元法解线性方程组

高斯消元法解线性方程组 C++实验报告2015年6月 一、完成人 王婧婷张子承郗滢 二、问题描述 线性方程组问题是大学阶段经常研究的问题,为了进一步熟悉理解高斯消元法的解题思路并且掌握编程语言在数学方面的应用。且为解决线性方程组问题提供便利,要求给出线性方程组的矩阵,能够输出线性方程组的解。 三、解决方案设计 基本程序流程为: (1)输入矩阵 (2)运用初等行变换将其化为阶梯型矩阵 (3)调用一个函数:r()求其秩(有解时)及其无解情况 实验原理为: (1)系数矩阵及其增广矩阵经过初等行变换所得到的矩阵对应的方程与原方程同解 (2)化为阶梯型矩阵过程(输入增广矩阵后,运用初等行变换,使其a[i][i]以下全为零,若a[i][i]为零,运用行变换交换使其不为零) (3)输出阶梯型矩阵 (4)判断解情况并输出(解情况)

(5)输出解 四、模块及代码组织设计 其基本模块分为三大部分,7小部分。第一部分为输入矩阵阶段,用for语句实现。第二部分是对矩阵进行一系列的处理以求得线性方程组的解,先运用初等行变换化为阶梯型,并输出化简矩阵;然后以线性方程组的秩判断其是否有解(规定无解时秩为零)。第三部分是输出线性方程组的解情况及其解,如果无解即输出无解。 五、关键代码 (1)实现化为阶梯型的代码 实现此功能的代码是整个程序的重要内容,其需要进行的初等变换以实现校园的目的,使线性方程组得到简化。其实现如下: for( i=0; i<=n-1&&i

MATLAB之GAUSS消元法解线性方程组

Matlab之Gauss消元法解线性方程组 1.Gauss消元法 function x=DelGauss(a,b) %Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k);%计算行列式 end det=det*a(n,n); for k=n:-1:1%回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >>A=[1.0170-0.00920.0095;-0.00920.99030.0136;0.00950.0136 0.9898]; >>b=[101]'; >>x=DelGauss(A,b) x= 0.9739 -0.0047 1.0010 2.列主元Gauss消去法: function x=detGauss(a,b) %Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;%选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return;

(完整版)解线性方程组的消元法及其应用

解线性方程组的消元法及其应用 (朱立平 曲小刚) ● 教学目标与要求 通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵. ● 教学重点与难点 教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵. 教学难点:高斯消元法,利用消元法求逆矩阵. ● 教学方法与建议 先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。 ● 教学过程设计 1.问题的提出 由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的. 引例 解线性方程组 ??? ??=+-=+=++132724524321 21321x x x x x x x x )3()2()1( 解 (1)???→??)2()1(?????=+-=++=+13245247 232132121x x x x x x x x )3()2()1(????→?+-?+-?) 3()2()1()2()4()1(?????-=+-=+=+133524567232 3221x x x x x x )3()2()1(

????→?+-?)3()65 ()2(??????? =--=+=+76 724567233221x x x x x )3()2()1( 用回代的方法求出解即可. 问题:观察解此方程组的过程,我们总共作了三种变换:(1)交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的k 倍.那么对于高阶方程组来说,是否也可以考虑用此方法. 2.矩阵的初等变换 定义1 阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵. 定义2 下面的三种变换统称为矩阵的初等行变换: i. 互换矩阵的两行(例如第i 行与第j 行,记作j i r r ?), ii. 用数0≠k 乘矩阵的某行的所有元素(例如第i 行乘k ,记作i kr ), iii. 把矩阵某行的所有元素的k 倍加到另一行的对应元素上去(例如第j 行的k 倍加到第i 行上,记作j i kr r +). 同理可以定义矩阵的初等列变换. 定义 3 如果矩阵A 经过有限次初等变换变为矩阵B ,则称矩阵A 与B 等价,记作 A ~ B . 注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵. 3. 高斯消元法 对于一般的n 阶线性方程组 ?????? ?=++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 22221211 1212111 )()2()1(n (3.1) 若系数行列式0det ≠A ,即方程组有唯一解,则其消元过程如下: 第一步,设方程(1)中1x 的系数01≠l a 将方程)(l 与(1)对调,使对调后的第一个方程1x 的系数不为零.作)1(11 1 a a i i - ),3,2(n i Λ=,得到同解方程组 ?? ? ????=++=++=+++)1()1(2)1(2) 1(2 )1(22)1(22)0(1)0(12)0(121)0(11n n nn n n n n n b x a x a b x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛ (3.2) 第二步,设0) 1(22≠a ,保留第二个方程,消去它以下方程中的含2x 的项,得

线性代数第一章 第一节线性方程组的消元法

第一章线性方程组的消元法和矩阵的初等变换 ◆线性方程组的消元法 ◆矩阵的的初等变化

引例(物资调运问题) ij C j B i A 12,,B B 有三个生产同一产品的工厂 其年 产量分别为40、20和10,单位为吨;该产品每年有两个用户其用量分别为45和25,单位为吨;由各产地到各用户的距离为(千米) 假设每吨货物每千米的运费为1(元),问各厂的产品如何调配才能使总运费最少? 123,,, A A A () 1,2,3;1,2i j ==

表 C ij A1A2A3 B1455892 B2587236

14253640,(1)20,(2)10. (3) x x x x x x +=+=+=1. 对产地来讲,产品全部调出,因而有 解:假设到的产品数量,到的产品数量,到的产品数量;3个厂的总产量与两个用户的总用量刚好相等,所以:2A 1A 3A 12,B B 12,B B 25,x x 12,B B 36,x x 14,x x

12345645,(4)25. (5) x x x x x x ++=++=123456455892587236. (6) S x x x x x x =+++ ++2. 对用户来讲,调查的产品刚好为其所需,因而有: 3. 考虑总运费S :

(1)-(5)每个方程都是线性方程,几个线性方程联立在一起,称之为线性方程组. 因此方程(1)-(5)构成6个未知数5个方程的线性方程组. 不少实际问题可以化为线性方程组的问题.这样的方程组所包含的未知数的个数不只是一个两个,而是更多. 因此,为了解决这类问题需要讨论含有个n个未知数m个方程的线性方程组.

第一章线性方程组的解法(新)

第一章线性方程组的解法 求解线性方程组是科学研究和工程应用中最普遍和最重要的问题,超过75%的科学研究和工程应用中的数学问题,在某一阶段都与线性方程组的求解有关.本章介绍求解线性方程组的消元法及其矩阵形式. 引例交通流量问题 随着城市人口以及交通流量的增加,城市道路交通拥堵问题已成为制约经济发展、降低人民生活质量、削弱经济活力的瓶颈之一.为解决这个世界性难题,各国政府和民间都进行了广泛的研究,提出了提高交通管理水平、增强交通参与者的素质、扩大道路容量、限制车辆增长速度等政策及车牌限行、设置单向行驶道路等措施.以上的政策和措施的一个基础性工作就是各道路的车流量的统计与分流控制.使各道路的交通流量要达到平衡,所谓交通流量平衡是指在每个路口进入的车辆数与离开的车辆数相等.图1是某一城市的道路交通网络图,所有车道都是单行道.箭头给出了车辆的通行方向,数字是高峰期每小时进入和离开路口的车辆数.在满足交通流量平衡的条件下,试问如何分流车辆. 图1 为了保证交通流量平衡,得线性方程组

12 23345461 56300,200,300,100,300.x x x x x x x x x x x x +=??-=-?? -+=??-=-??-+=? () 问题归结为讨论线性方程组()是否有解若有解,求出方程组的解. 第一节 线性方程组的消元法 一、线性方程组的概念 设12,, ,n x x x 为实未知量,12,,,,n a a a b 为实数,n 为正整数.方程 1122n n a x a x a x b ++ += 称为含未知量12,,,n x x x 的线性方程.由m 个含未知量12,, ,n x x x 的线性方程组成的方 程组 1111221121122222 1122,,, n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? () 称为n 元线性方程组,其中,(1,2, ,;1,2,,)ij i a b i m j n ==为实数.若 1122,,,n n x c x c x c === () 使()中的每一个方程都成立,则称()为方程组()的解. 如果线性方程组()有解,则称方程组()是相容的;否则,称方程组()是不相容的. 线性方程组解的全体所构成的集合称为该线性方程组的解集.显然,如果线性方程组不相容,其解集必为空集.能表示线性方程组全部解的表达式称为方程组的通解或一般解. 具有相同解集的线性方程组称为同解方程组或等价方程组. 二、线性方程组的消元法 中学所学的解线性方程组的消元法是求解线性方程组简单有效的方法.现在我们回忆消

线性代数知识点汇总第一章

线性代数知识点汇总第一章

————————————————————————————————作者:————————————————————————————————日期:

线性代数知识点总结 第一章 行列式 第一节:二阶与三阶行列式 把表达式11221221a a a a -称为 1112 2122 a a a a 所确定的二阶行列式,并记作 1112 2112 a a a a , 即1112 112212212122 .a a D a a a a a a = =-结果为一个数。 同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数 表11 1213 21 222331 32 33a a a a a a a a a 所确定的三阶行列式,记作1112 13 2122 23313233 a a a a a a a a a 。 即111213 2122 23313233 a a a a a a a a a =112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++--- 二三阶行列式的计算:对角线法则 注意:对角线法则只适用于二阶及三阶行列式的计算。 利用行列式计算二元方程组和三元方程组: 对二元方程组1111221 2112222 a x a x b a x a x b +=?? +=? 设1112 2122 a a D a a = ≠1121222 b a D b a = 111 2212 .a b D a b = 则1122221111122122 b a b a D x a a D a a == , 1112122211122122 .a b a b D x a a D a a == 对三元方程组111122133121122223323113223333 a x a x a x b a x a x a x b a x a x a x b ++=?? ++=??++=?, 设11 1213 21 222331 32 33 0a a a D a a a a a a =≠,

线性代数知识点总结第一章

线性代数知识点总结 第一章 行列式 第一节:二阶与三阶行列式 把表达式11221221a a a a -称为 1112 2122a a a a 所确定的二阶行列式,并记作1112 2112a a a a , 即1112 112212212122 .a a D a a a a a a = =-结果为一个数。 同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数 表11 1213 21 222331 32 33a a a a a a a a a 所确定的三阶行列式,记作1112 13 2122 23313233 a a a a a a a a a 。 即111213 2122 23313233 a a a a a a a a a =112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++--- 二三阶行列式的计算:对角线法则 注意:对角线法则只适用于二阶及三阶行列式的计算。 利用行列式计算二元方程组和三元方程组: 对二元方程组1111221 2112222 a x a x b a x a x b +=?? +=? 设1112 2122 a a D a a = ≠1121222 b a D b a = 111 2212 .a b D a b = 则1122221111122122 b a b a D x a a D a a == , 1112122211122122 .a b a b D x a a D a a == 对三元方程组111122133121122223323113223333 a x a x a x b a x a x a x b a x a x a x b ++=?? ++=??++=?, 设11 1213 21 222331 32 33 0a a a D a a a a a a =≠,

线性方程组解法综述

线性方程组解法综述 Prepared on 22 November 2020

线性方程组解法的研究综述 摘要:这篇论文在说明了线性方程组的应用目的的基础上,提出了线性方程组求解的研究现状,并列举了常用的求解方法,同时说明了它们的应用条件,剖析了各种方法的不足之处。 关键词高斯消元迭代病态方程组 一、问题提出 在自然科学和工程实际应用中,有许多问题的求解最终都转化为线性方程组的求解问题。例如,电学中的网络问题,曲线拟合中常用的最小二乘法、样条函数插值、解非线性方程组、求解偏微分方程的差分法、有限元法和边界元法以及目前工程实践中普遍存在的反演问题等。特别是在图像恢复、模型参数估计、解卷积、带限信号外推、地震勘探等众多领域,都需要求解线性方程组。 由于线性方程组问题在理论上的重要性和在工程实际应用中的大量存在,多年来人们在这方面做了广泛深入的研究和探讨,并取得了许多有价值的成果.由于模型误差、测量误差、计算误差等各种误差的存在,常常使得线性方程组中的系数矩阵和非齐次项信息具有某种程度的近似性(即扰动性),这种近似性显然会使得线性方程组的求解不容易得到真实的理论解。此时,不同的求解方法由于运算机理不一样,求解过程中误差积累程度就不一样,因此必然会使得不同的求解方法得到的解具有不同的逼近真解的误差程度,尤其对具有病态性的方程组而言,由于病态线性方程组的条件数很大,数据误差以及计算过程中引入的舍入误差往往会使线性方程组的解不稳定,即不管原始数据的误差多么小,都可能造成解的很大变化,使线性方程组的解严重失真。因此,许多现有的方

法都是无效的,病态线性方程组的求解变得相当困难。求解线性方程组的最常用的方法主要有直接法和迭代法两大类,其中直接法中最常用的方法是高斯消元法。但是,该方法求解病态线性方程组时不能得到合理的解,误差很大。 二、研究现状 目前关于线性方程组的数值解法一般有两大类。一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这类方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有需要计算机的存储单元较少,程序设计简单,原始系数矩阵在计算过程中始终不变等优点,但存在收敛性及收敛速度问题。迭代法是解大型稀疏矩阵方程组的重要方法。当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速一直是应用和体系设计者关心的问题。 三、常用方法比较 1.直接方法 直接方法是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法。事实上,由于舍入误差的存在,用直接法一般也只能求得方程组的近似解。直接方法中主要有三种方法:克拉默法则、高斯消元法、LU 分解法。 (1)克拉默法则 设有线性方程组( n 个未知数 n 个方程)

Gauss消元法解解线性方程组

摘要 本文叙述了Gauss 顺序消元法解线性方程的算法思想以及其求解过程,同时简要叙述了Gauss 主元素消元法以及Gauss 全主元消元法。紧接着给出了 Gauss Seidel -迭代法的算法思想,本文给出了这三个消元方法以及一个迭代法 的算法流程图,由于全主元消元法是前两个算法的基础上改进而来,故本文采用第三种方法进行编程计算,前两种方法不再重复编程,然后给出一个实例的计算结果,运行时间,在文章最后分析该实例的计算结果,针对同一实例,又采用 Gauss Seidel -方法编程实现,然后对结果进行分析和对比。最后给出了本人在 编程时遇到的一些问题和解决办法。 关键词:Gauss 顺序消元法 Gauss 主元素消元法 Gauss 全主元消元法 一、算法的简要描述 1.1Gauss 顺序消元法 Gauss 消元法在中学里已经学习过,其方法实质,就是运用初等变换,将线性方程组Ax b =转化为同解的上三角矩阵方程组 1Ux L b -= (1.1.1) 其中,U 为上三角矩阵,L 为下三角矩阵。然后对式(1.1.1)进行回代求解,即得方程组的解。手算的过程是非常清楚的,现在需回答的是计算机求解,如何实现上述计算过程。 设线性方程组为 1111221331121122223322 112233n n n n n n n nn n n a x a x a x a x b a x a x a x a x b a x a x a x a x b +++???+=??+++???+=?? ????????????? ?+++???+=? 写成矩阵形式为 111211121222222122 2m m m n n a a a x b a a a x b a a a x b ?????? ????????????=??????? ??????????? (1.1.2) 设线性方程组如上式所示,记(1)A A =,(1)b b =,与是增广矩阵具有形式 (1) (1)[][]A b A b =,此时方程组为(1)(1)A x b =。 第一次消元。设(1) 110a ≠, 为将第二个方程至第n 个方程的1x 系数(1)1i a 消成零,构造乘数 (1)1 1(1)11 i i a l a = (2,3,,i n =

第9讲:线性方程组的消元解法

课题:线性方程组的消元解法 教学目的:掌握线性方程组的定义,矩阵表示式,消元解法 教学重点:高斯消元法 教学时数:二学时 教学设计: I ?引入课题 在行列式的学习中,我们学到了克莱姆法则,可以利用行列式来解线性方程组,如 X i X2 - X3 =0 ?2石+3x2+ x3 = 7 3石一2x2 _2x3 = -3 1 1 由克莱姆法则,有D=2 3 3 -2 故X1 = 1, x 2 =1,X3 =2。 克莱姆法则可以作为一种解方程组的方法,但计算量比较大,而且只能解方程个数与未知数个数相同的线性方程组,比较有局限性,今天开始,我们来学习普通的方程组的解法,并由此引入向量组的相关问题。 第三章线性方程组与向量组的线性相关性 II .新课设计 3.1线性方程组的消元解法一.线性方程组 a“X1 +a12X2 +■八+amx n =6 a21X1 +a22 X2 +"八+a2n X n =b2 形如< 的方程组,称为线性方程组,若令 i a m1X1 *a m2X2 衣*a mn x n =b m a11 a12 a1 n f 、X1 A = a 21 a 22???a 2 n ---系数矩阵,X = X2 I----未知数矩阵,b = b2 --常数矩阵。 & m1 a m 2 ???a mn」 2n」 -1 0 1 -1 1 =16 , D1 =7 3 1 =16 , -2 -3 -2 -2 1 1 0 2 3 7 =32 3 -2 -3 0 -1 7 1 =16 , D3 -3 -2 D2

(6) 线性方程组的分类 若b =0,则线性方程组为 AX =0,称为齐次线性方程组 若b = 0,则线性方程组为 AX =b ,称为非齐次线性方程组 。 对于AX b 若只改变b = 0,则称AX 0为原方程组的到处方程组。 二?线性方程组的消元解法---高斯消元法 例1 ?解线性方程组(每写一个方程组,同时写出对应的增广矩阵) X i +X 2 —X 3 =0 r 1 1 -1 0 a,彳2X t + 3x 2 + x 3 = 7 2 3 1 7 --A 3X i 一2x 2 一2X 3 = -3 3 J -2 -2 _3 J 解:(1)汉一2+(2), (1)疋 d +3 X i +X 2 -X 3 =0 q 1 一 1 b,

高斯消元法解线性方程组

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=??????? (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时, 称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=??????? (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a 212222111211,X = ????????????n x x x 21, B = ????? ???????n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

线性方程组的平方根解法

浅析线性方程组的平方根解法 在求解线性方程组时,直接解法有顺序高斯消元法、列主元高斯消元法、全主元高斯消元法、高斯约当消元法、消元形式的追赶法、LU 分解法、矩阵形式的追赶法,当我们遇到对称正定线性方程组时,我们就要用到平方根法(对称LLT 分解法)来求解,为了熟悉和熟练运用平方根法求解线性方程组,下面对运用平方根法求解线性方程组进行解析。 一、运用平方根法求解线性方程组涉及到的定理及定义 我们在运用平方根法求解线性方程组时,要判定线性方程组Ax=b 的系数矩阵A 是否是对称正定矩阵,那么我们就要了解正定矩阵的性质和如下定理及定义: 1、由线性代数知,正定矩阵具有如下性质: 1) 正定矩阵A 是非奇异的 2) 正定矩阵A 的任一主子矩阵也必为正定矩阵 3) 正定矩阵A 的主对角元素均为正数 4) 正定矩阵 A 的特征值均大于零 5) 正定矩阵A 的行列式必为正数 定义一 线性方程组Ax=b 的系数矩阵A 是对称正定矩阵,那么Ax=b 是对称正定线性方程组。 定义二 如果方阵A 满足A=AT ,那么A 是对称阵。 2.1.4 平方根法和改进的平方根法 如果A 是n 阶对称矩阵,由定理2还可得如下分解定理: 定理2 若A 为n 阶对称矩阵,且A 的各阶顺序主子式都不为零,则A 可惟一分解为:A =LDLT ,其中L 为单位下三角阵,D 为对角阵。 证明 因为A 的各阶顺序主子式都不为零,所以A 可惟一分解为:A =LU 因为 ,所以可将 U 分解为: ??????? ??=nn u u u U 2211??????? ?? ??11122211112 u u u u u u n nn n 1DU = 其中 D 为对角矩阵,U1为单位上三角阵.于是:A =LDU1=L(DU1) 因为A 为对称矩阵,所以,A =AT =U1TDTLT =U1T(DLT),由 A 的 LU 分解的惟一性即得:L =U1T ,即U1=LT ,故A =LDLT 。 工程技术中的许多实际问题所归结出的线性方程组,其系数矩阵常有对称正定性,对于具有此类特殊性质的系数矩阵,利用矩阵的三角分解法求解是一种较好的有效方法,这就是对称正定矩阵方程组的平方根法及改进的平方根法,这种方法目前在计算机上已被广泛应用。 定理3 对称矩阵A 为正定的充分必要条件是A 的各阶顺序主子式大于零。 2 对称正定矩阵的三角分解 定理 (Cholesky 分解)设A 为n 阶对称正定矩阵,则存在惟一的主对角线元素都

用高斯列主元消元法解线性方程组

用C 语言编写软件完成以下任务: 请用高斯列主元消元法解下列线性方程组: ?????=++=++=++53367435522321321321x x x x x x x x x ????? ???????=?????????????????????????n n nn n n n n b b b x x x a a a a a a a a a 21212122221 11211 方法说明(以4阶为例): 第1步消元——在增广矩阵(A ,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A ,b )做初等行变换使原方程组转化为如下形式: ????? ???????=?????????????????????????*******0***0***0****4321x x x x 第2步消元——在增广矩阵(A ,b )中的第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为: ????? ???????=?????????????????????????******00**00***0****4321x x x x 第3步消元——在增广矩阵(A ,b )中的第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为: ????? ???????=?????????????????????????*****000**00***0****4321x x x x 按x 4 → x 3→ x 2→ x 1 的顺序回代求解出方程组的解

总体流程图(一)

相关文档
最新文档