自动抗干扰精密介质损耗测量仪

自动抗干扰精密介质损耗测量仪
自动抗干扰精密介质损耗测量仪

FS3001自动抗干扰精密介质损耗测量仪

一、产品简介:

介质损耗测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能最基本的方法。

FS3001自动抗干扰精密介质损耗测量仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机和现代化电子技术进行自动频率变换、模/数转换和数据运算;抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介质损耗测量。

二、性能特点:

1、具有多种测量方式,可选择正/反接线、内/外标准电容器、CVT和内/外试验电压进行测量。正接线可测量高压介损。

2、测量电容式电压互感器(CVT)时,无需其它外接设备。

3、内置SF6标准电容器,tgδ<0.005%,受空气湿度影响小。

4、抗干扰效果好,内置自动跟踪的变频电源,能有效地消除强烈电场干扰对测量的影响,适用于500kv极其以下电站的强干扰现场试验。

5、高压短路和突然断电时,仪器能迅速切断高压,并发出警告信息。

6、测量重复性好,电压线性好(测量准确度不受电压影响)。

7、大屏幕液晶显示,操作方便。一体化结构,便于携带。

8、仪器自带打印机,可以打印测试数据。

9、高压电缆连接至试品,保障安全;仪器未接地报警,安全措施完备。

三、技术指标:

1、介损:测量范围:不限,电容、电感、电阻三种试品自动识别

测量精度:±(读数×1.0%+0.00040)规定干扰下

介损分辨率:最小可分辨0.001%

2、电容:测量范围:内置高压3pF~60000pF/10kV 60pF~1μF/0.5kV

外加高压3pF~0.3μF/10kV

测量精度:±(读数×1.0%±2 pF)

电容分辨率:最小可分辨0.001 pF

3、输入电源:180V~270VAC 50Hz/60Hz±1%(市电或发电机供电)

4、输出高压:范围:500V~10kV,可调输出

变频频率:50Hz 固定频率

45Hz/55Hz 自动双变频

5、CVT自激法测量

输出电压3~50V,输出电流3~30A

高压电压、电流和低压电压电流4种保护限制

误选菜单不会输出激磁电压

6、供电电源:AC 220V ±10%,50Hz或发电机供电

7、工作环境:环境温度:0 ~ 40℃;

环境湿度:≤ 90%RH,不结露

8、外形尺寸:465×350×360mm2

9、重量:27.6 kg

AI-6000F介质损耗测试仪

AI-6000F介质损耗测试仪 AI-6000F介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高 压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准 电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试 品测试。频率可变为45Hz或55Hz,55Hz或65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的 难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘 油杯可测试绝缘油介质损耗。 AI-6000F全自动介质损耗仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为45Hz或55Hz,55Hz或65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯可测试绝缘油介质损耗。 1. 超大液晶中文显示 仪器配备了大屏幕(105mm×65mm)中文菜单界面,屏显分为左右两部分,左边为功能菜单区,右边为相关状态信息提示,每一步都非常清楚,操作人员不需要专业培训就能使用。一次操作,微机自动完成全过程的测量,是目前非常理想的介损测量设备。 2. 海量存储数据 仪器内部配备有日历芯片和大容量存储器,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出; 3. 科学先进的数据管理 仪器数据可以通过U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据并可生成工作报告。

介质损耗详解

1、介质损耗 什么就是介质损耗:绝缘材料在电场作用下,由于介质电导与介质极化得滞后效应,在其内部引起得能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过得电流相量与电压相量之间得夹角(功率因数角Φ)得余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,就是指介质损耗角正切值,简称介损角正切。介质损耗因数得定义如下: 如果取得试品得电流相量与电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic与电阻电流IR合成,因此: 这正就是损失角δ=(90°-Φ)得正切值。因此现在得数字化仪器从本质上讲,就是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备得绝缘状况就是一种传统得、十分有效得方法。绝缘能力得下降直接反映为介损增大。进一步就可以分析绝缘下降得原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损得同时,也能得到试品得电容量。如果多个电容屏中得一个或几个发生短路、断路,电容量就有明显得变化,因此电容量也就是一个重要参数。 4、功率因数cosΦ 功率因数就是功率因数角Φ得余弦值,意义为被测试品得总视在功率S中有功功率P所占得比重。功率因数得定义如下: 有得介损测试仪习惯显示功率因数(PF:cosΦ),而不就是介质损耗因数(DF:tgδ)。一般cosΦ

(1) 容量与误差:实际电容量与标称电容量允许得最大偏差范围、一般使用得容量误差有:J级±5%,K 级±10%,M级±20%、 精密电容器得允许误差较小,而电解电容器得误差较大,它们采用不同得误差等级、 常用得电容器其精度等级与电阻器得表示方法相同、用字母表示:D级—±0、5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%、 (2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受得最大直流电压,又称耐压、对于结构、介质、容量相同得器件,耐压越高,体积越大、 (3) 温度系数:在一定温度范围内,温度每变化1℃,电容量得相对变化值、温度系数越小越好、 (4) 绝缘电阻:用来表明漏电大小得、一般小容量得电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆、电解电容得绝缘电阻一般较小、相对而言,绝缘电阻越大越好,漏电也小、 (5) 损耗:在电场得作用下,电容器在单位时间内发热而消耗得能量、这些损耗主要来自介质损耗与金属损耗、通常用损耗角正切值来表示、 (6) 频率特性:电容器得电参数随电场频率而变化得性质、在高频条件下工作得电容器,由于介电常数在高频时比低频时小,电容量也相应减小、损耗也随频率得升高而增加、另外,在高频工作时,电容器得分布参数,如极片电阻、引线与极片间得电阻、极片得自身电感、引线电感等,都会影响电容器得性能、所有这些,使得电容器得使用频率受到限制、 不同品种得电容器,最高使用频率不同、小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ、 不同材质电容器,最高使用频率不同、COG(NPO)材质特性温度频率稳定性最好,X7R次 之,Y5V(Z5U)最差、 贴片电容得材质规格 贴片电容目前使用NPO、X7R、Z5U、Y5V等不同得材质规格,不同得规格有不同得用途、下面我们仅就常用得NPO、X7R、Z5U与Y5V来介绍一下它们得性能与应用以及采购中应注意得订货事项以引起大家得注意、不同得公司对于上述不同性能得电容器可能有不同得命名方法,这里我们引用得就是敝司三巨电子公司得命名方法,其她公司得产品请参照该公司得产品手册、

AI-6000K全自动介质损耗测试仪说明书

AI-6000K全自动介质损耗测试仪说明书 一、产品简介: 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。AI-6000K自动抗干扰精密介损测试仪突破了传统的电桥测量方式,采用变频电源技术,利用单片机、和现代化电子技术进行自动频率变换、模/数转换和数据运算;达到抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便;电源采用大功率开关电源,输出45Hz和55Hz纯正弦波,自动加压,可提供最高10千伏的电压;自动滤除50Hz干扰,适用于变电站等电磁干扰大的现场测试。广泛适用于电力行业中变压器、互感器、套管、电容器、避雷器等设备的介损测量。 二、安全措施 1、使用本仪器前一定要认真阅读本手册。 2、仪器的操作者应具备一般电气设备或仪器的使用常识。 3、本仪器户内外均可使用,但应避开雨淋、腐蚀气体、尘埃过浓、高温、阳光直射等场所使用。 4、仪表应避免剧烈振动。 5、对仪器的维修、护理和调整应由专业人员进行。 6、在任何接线之前必须用接地电缆把仪器接地端子与大地可靠连接起来。 7、由于测试设备产生高电压,所以测试人员必须完全严格遵守安全操作规程,防止他

人接触高压部件和电路。直接从事测试的人员必须完全了解高压测试线路,及仪器操作要点。非从事测试人员必须远离高压测试区,测试区必须用栅栏或绳索、警视牌等清楚表示出来。 8、仪器的调整维修和维护,必须在不加电情况下进行,如果必须加电,则操作者必须非常熟悉本仪器高压危险部件。 9、保险管损坏时,必须确保更换同样的保险,禁止更换不同型号保险或将保险直接短路使用。 10、仪器出现故障时,关闭电源开关,等待一分钟之后再检查。 三、可测试参数 仪器可测量下列参数并数字显示: 被测试品的电容量值CX,以pF或nF为单位,1nF=1000pF。 被测试品的介质损耗值tgδ,以%显示。 四、性能特点 1、仪器采用复数电流法,测量电容、介质损耗及其它参数。测试结果精度高,便于实现自动化测量。 2、仪器采用了变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。 3、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。

介质损耗

电介质在交变电场作用下,所积累的电荷有两种分量:(1)有功功率。一种为所消耗发热的功率,又称同相分量;(2)无功功率,又称异相分量。异相分量与同相分量的比值即称为介质损耗。 通常用正切tanδ表示。tanδ=1/WCR(式中W为交变电场的角频率;C为介质电容;R为损耗电阻)。介电损耗角正切值是无量纲的物理量。可用介质损耗仪、电桥、Q表等测量。对一般陶瓷材料,介质损耗角正切值越小越好,尤其是电容器陶瓷。仅仅只有衰减陶瓷是例外,要求具有较大的介质损耗角正切值。橡胶的介电损耗主要来自橡胶分子偶极化。在橡胶作介电材料时,介电损耗是不利的;在橡胶高频硫化时,介电损耗又是必要的,介质损耗与材料的化学组成、显微结构、工作频率、环境温度和湿度、负荷大小和作用时间等许多因素有关。 电介质损耗(dielectric losses ):电介质中在交变电场作用下转换成热能的能量。这些热会使电介质升温并可能引起热击穿,因此,在电绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数(即电介质损耗角正切tgδ,它是电介质损耗与该电介质无功功率之比)较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3~300 兆赫)对电介质损耗大的材料(如木材、纸、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热的加热速度快、热效率高,且加热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 电介质损耗按其形成机理可分为弛豫损耗、共振损耗和电导损耗。前两者分别与电介质的弛豫极化和共振极化过程有关。对于弛豫损耗,当交变电场的频率ω=1/τ时,介质损耗达到极大值,τ为组成电介质的极性分子和热离子的弛豫时间。对于共振损耗,当电场频率等于电介质振子固有频率(共振)时,损失能量最大。电导损耗则是由贯穿电介质的电导电流引起,属焦耳损耗,与电场频率无关。 电容介质损耗和电流电压相位角之间的关系 又称介电相位角。反映电介质在交变电场作用下,电位移与电场强度的位相差。在交变电场作用下,根据电场频率、介质种类的不同,其介电行为可能产生两种情况。对于理想介质电位移与电场强度在时间上没有相位差,此时极化强度与交变电场同相位,交流电流刚好超前电压π/2。对于实际介质而言,电位移与电场强度存在位相差。此时介质电容器交流电流超前电压的相角小于π/2。由此,介质损耗角等于π/2与介质电容器交流电流超差电压的相角之差。 介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。

工频介电常数及介质损耗测试仪

工频介电常数及介质损耗测试仪 GCSTD-C 产 品 技 术 方 案 书 北京冠测精电仪器设备有限公司材料电极液体电极

GCSTD-C工频介电常数及介质损耗测试仪 满足标准: GB/T1409-2006 测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法 GB/T 5654-2007 液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量 GB/T 21216-2007 绝缘液体测量电导和电容确定介质损耗因数的试验方法 GB/T 1693-2007 硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T 5594.4-1985__电子元器件结构陶瓷材料性能测试方法__介质损耗角正切值的测试方法 …………………………………………………………………………………………… 一、产品概述 本仪器是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,测量各种绝缘材料、绝缘套管、绝缘液体、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx)。具有操作简单、中文显示、打印、使用方便、无需换算、自带高压,抗干扰能力强,测试时间短等优点。 本测试仪采用变频电源技术,利用单片机和电子技术进行自动频率变换、模/数转换和数据运算,达到抗干扰能力强、测试速度快、精度高、操作简便的功能。 二、性能特点 1、仪器测量准确度高,可满足油介损测量要求,因此只需配备标准油杯,和专用测试线即可实现油介损测量。 2、采用变频技术来消除现场50Hz工频干扰,即使在强电磁干扰的环境下也能测得可靠的数据。 3、过流保护功能,在试品短路或击穿时仪器不受损坏。 4、内附标准电容和高压电源,便于现场测试,减少现场接线。 5、仪器采用大屏幕液晶显示器,测试过程通过汉字菜单提示既直观又便于操作。 三、技术指标 技术指标 1、试验环境温度:10℃~30℃(LCD液晶屏应避免长时间日照) 2、相对湿度:20%~80% 3、供电电源:电压:220V±10% 4、外形尺寸:长*宽*高=470mm*320mm*360mm 5、重量:16kg 6、输出功率:1.5KV A

SX-9000全自动介质损耗测试仪使用说明书

SX-9000全自动介质损耗测试仪使用说明书全自动介质损耗测试仪 使 用 讲 明 书

目录 1概述 (2) 2技术指标 (2) 3内部结构与工作原理 (3) 4使用和操作 (5) 5注意事项 (9) 6仪器成套性 (9) 7保管及免费修理期限 (9) 8附录1、2、3…………………………………..……...(10-12) 1.概述 SX-9000(CVT)型全自动介质损耗测试仪是在我公司生产智能化介质 损耗测量仪和变频(异频)抗干扰介质损耗测试仪之后,研制成功第五代 一种新型的测量仪,随着城乡电网改造的持续深入,更高电站越来越多, 倒相法、移相法,已不能满足现场测试需求,异频测量(变频),把50HZ 变成其它频率,能够排除干扰。但由于电子技术的限制,其变频后的频率 一样离50HZ有一定距离,其50Hz条件下的电容值cx及tgδ值是换算模拟出来的,与真实工频测试有一定的距离,专门对少数被试品,测出数据 就有明显误差,通过综合比较,现研制一种新型介质损耗测量仪,其原理 不改变频率,能得到50HZ条件下电容值cx及tgδ值,提升测量可靠性和准确性,完全抑制电场干扰,满足电场下的使用要求,SX-9000(CVT)型全自动介质损耗测试仪体积最小,重量最轻,便于携带。有灵活的扩展性, 通过接口与运算机连接,使用强大的软件附件,对仪器升级,人性化设计,

全自动操作本仪器适合500kv及以下电站有干扰现场的试验。本仪器通过 国家电力研究所及行业专家的鉴定,并获得国家高电压计量站的校准证书。 ●具有多种测量方式,可选择正/反接线、内/外标准电容器、CVT和内/外试验电压进行测量。正接线可测量高压介损。 ●测量电容式电压互感器(CVT)时,无需其它外接设备。 ●内置SF6标准电容器,tgδ<0.005%,受空气湿度阻碍小。 ●抗干扰成效好;能有效地排除强烈的电场干扰对测量的阻碍,适用 于500kv极其以下电站的强干扰现场试验。 ●高压短路和突然断电时,仪器能迅速切断高压,并发出警告信息。 ●测量重复性好,电压线性好(测量准确度不受电压阻碍) ●一体化结构,重量适中,便于携带。 ●大屏幕带背光中文液晶显示器信息提示操作,使用方便。 ●仪器自带打印机,及时储存测试数据。 ●高压电缆连接至试品,保证安全;仪器未接地报警,安全措施完备。 2.技术指标 2.1额定工作条件 2.1.1环境温度:0~40℃(当温度超出20℃±5℃时,每变化10℃仪器差不多误差的改变量不超过差不多误差限的1/2。) 2.1.2相对湿度:30%~85% 2.1.3供电电源:市电。电压:220V±22V, 频率:50±1Hz 2.2外型尺寸:a×b×h,mm:450×330×380 2.3仪重视量:不大于18kg 2.4电子电路功耗:不大于40VA 2.5测量范畴: 2.5.1介质损耗(tgδ): 0~1 辨论率0.0001 2.5.2电容量(Cx): ≤60000PF 最小辨论率0.01P F 2.5.2.1内接方式 试验电压试品电容量

介质损耗试验

电容和介质损耗测量 一试验目的 测量介质损耗的目的是判断电气设备的绝缘状况。测量介质损耗因数在预防性试验中是不可缺少的项目。因为电气设备介质损耗因数太大,会使设备绝缘在交流电压作用下,许多能量以热的形式损耗,产生的热量将升高电气设备绝缘的温度,使绝缘老化,甚至造成绝缘热击穿。绝缘能力的下降直接反映为介质损耗因数的增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。所以,在出厂试验时要进行介质损耗的试验,运行中的电气设备亦要进行此种试验。测量介质损耗的同时,也能得到试品的电容量。电容量的明显变化,反映了多个电容中的一个或几个发生短路、断路。 二概念及原理 介质损耗是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 在交流电压作用下,电介质内流过的电流相量和电压相量之间的夹角为功率因数角(Φ),而余角(δ)简称介损角。 介质损耗正切值δ tg又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。 介质损耗因数(δ tg)的测量在电气设备制造、绝缘材料电气性能的鉴定、绝缘的试验等都是不可缺少的。因为测量绝缘介质的δ tg值是判断绝缘情况的一个较灵敏的试验方法。在交流电压作用下,绝缘介质不仅有电导的损耗,还有极化损耗。介质损耗因数的定义如下:

如果取得试品的电流相量和电压相量,则可以得到如下相量图: 合成,因此: 总电流可以分解为电容电流Ic和电阻电流I R 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。有的介损测试仪习惯显示功率因数(PF:cos Φ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

高压套管的介质损耗测试

三高压套管的介质损耗测试 (一)试验目的 高压套管大量采用油纸电容型绝缘结构,这类绝缘结构具有经济实用的优点。但当绝缘中的纸纤维吸收水分后,纤维中的β氢氧根之间的相互作用变弱,导电性能增加,机械性能变差,这是造成绝缘破坏的重要原因。受潮的纸纤维中的水分,可能来自绝缘油,也可能来自绝缘中原先存在的局部受潮部分,这类设备受潮后,介质损耗因数会增加。 液体绝缘材料如变压器油,受到污染或劣化后,极性物质增加,介质损耗因数也会从清洁状态下的0.05%左右上升到0.5%以上。 除了用介质损耗因数的大小及变化趋势判断设备的绝缘状况外,电容量的变化也可以发现电容型设备的绝缘的损坏。如一个或几个电容屏发生击穿短路,电容量会明显增加。 由此可见,测量绝缘介质的介质损耗因数及电容量可以有效地发现绝缘的老化、受潮、开裂、污染等不良状况。 (二)试验接线及试验设备 1、介质损耗因数的定义 绝缘介质在交流电压作用下的等值回路及相量图如图3-1所示。 图3-1绝缘介质在交流电压作用下的等值回路及相量图众所周知,在某一确定的频率下,介质可用确定的电阻与一确定的电容并联来等效,流过介质的电流由两部分组成,I CX为电容性电流的无功分量,I RX为电阻性电流的有功分量,介质的有功损耗将引起绝缘的发热,同时介质也存在着散热,而发热、散热跟表面积等有关,为此应测试与体积相对无关的量来判断绝缘状况,为此测试有功损耗除以无功损耗的值,此比值即为介质损耗因数。 Q=U·I CX P=U·I RX

则 Q P = CX RX I I =tgδ(3-1) 从公式(3-1)可以看到图3-1中介质损耗因数即为介质损失角δ的正切值tgδ。 2 几种典型介损测试仪的原理接线图 国外从20年代即开始使用西林电桥测量tgδ,目前介损测试电桥已向全自动、高精度、良好抗干扰性能方向发展,比较经典的有三种原理即西林型电桥、电流比较型电桥及M型电桥。下面分别作简要的介绍: (1)西林电桥的原理图3-2所示 图3-2西林电桥的原理图 图中当电桥平衡时,G显示为零,此时 3 R Z x= 4 Z Z x 根据实部虚部各相等可得: tgδ=ωR4C4 C≈ R R Cn 3 4 (当tgδ<<1 时) 根据R3、C4、R4的值可计算得出tgδ、 C的值。 从原理上讲,西林电桥测介质损耗没 有误差,但由于分布电容是无所不在的, 尤其是Cn必须有良好的屏蔽,当反接法 时,必须屏蔽掉B点对地的分布电容,正 接法时,必须屏蔽掉C点与B点间的分布 电容,但由于屏蔽层的采用增加了C4、 R4及R3两端的分布电容带来了新的误 差,以R3正接法为例,R3最图3-3

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念 (泛华电子) 1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义 如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下: 有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗详解

1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。 测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下:

有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般 cosΦ

介质损耗角

介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。 介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。 (2)值反映了绝缘的状况,可通过测量tanδ=f(ф)的关系曲线来判断从良状态向劣化状态转化的进程,故tanδ的测量是电气设备绝缘试验中的一个基本项目。 (3)通过研究温度对tanδ值的影响,力求在工作温度下的tanδ值为最小值而避开最大值。 (4)极化损耗随频率升高而增大,尤其电容器采用极性电介质时,其极化损耗随频率升高增加很快,当电源中出现高次(如3次、5次)谐波时,就很容易造成电容器绝缘材料因过热而击穿。 (5)用于冲击测量的连接电缆,其绝缘的tanδ必须很小,否则所测冲击电压通过电缆后将发生严重的波形畸变,影响到测量的准确性。 数字化测量介质损耗角的方法 新闻出处:谢家琪发布时间: 2007年03月12日 摘要:总结了介损模拟测量方法存在的不足。 对当前几种典型的介质损耗数字化测量方法进 行了介绍,讨论了每种方法的优缺点和实际应用中出现的一些问题,并对介损数字化测量的发展前景进行了展望。 关键词:介质损耗数字化测量 1 引言 高压电气设备中,对绝缘介质损耗的测试具有很重要的意义。在高压预防性试验中,介质损耗因素的测量属于高准确度测量,通常是在被测试品两端加以工频50Hz的高电压(10kV),使被测试品流过一个极其微小的电流,利用电压与电流之间夹角的余角δ的正切值来反映被测试品的介质损耗大小。这种高电压、微电流、小角度的精密测量要求测量系统应具有很高的灵敏度和准确性,在现场条件下还需要具有较强的抗干扰能力。 过去介质损耗角的测量采用模拟测量方法,主要有谐振法、瓦特表法和电桥法,谐振法只适用于低压高频状态下的测量。瓦特表法是由介质损失的功率和经过的电流计算求得,瓦特表法由于测量准确度低,现已基本淘汰。电桥法是采用交流电桥差值比较原理,准确度相对较高,其典型代表是西林电桥,见图1所示。由电桥平衡条件可得出被试品的电容值Cx及tanδ: CX=(R4/R3)CN tanδ=ωC4R4

异频全自动介质损耗测试仪技术规范书

产品技术规范书 (图片仅供参考) 设备名称:异频全自动介质损耗测试仪型号: 生产厂家: 产品编码: 品牌:

一、概述 异频全自动介质损耗测试仪是发电厂、变电站等现场或实验室测试各种高压电力设备介损正切值及电容量的高精度测试仪器。仪器为一体化结构,内置介损测试电桥,可变频调压电源,升压变压器和SF6 高稳定度标准电容器。测试高压源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。频率可变为50Hz、47.5Hz\52.5Hz、45Hz\55Hz、60Hz、57.5Hz\62.5Hz、55Hz\65Hz,采用数字陷波技术,避开了工频电场对测试的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电检测的场合。该仪器配以绝缘油杯加温控装置可测试绝缘油介质损耗。 二、性能特点 1、超大液晶中文显示 操作简单,仪器配备了高端的全触摸液晶显示屏,超大全触摸操作界面,每过程都非常清晰明了,操作人员不需要额外的专业培训就能使用。轻轻点击一下就能完成整个过程的测量,是目前非常理想的智能型介损测量设备。 2、海量存储数据 仪器内部配备有日历芯片和大容量存储器,保存数据200组,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出。 3、科学先进的数据管理 仪器数据可以通过U盘导出,可在任意一台PC机上通过我公司专用软件,查看和管理数据。 4、多种测试模式 仪器能够分别使用内高压、外高压、内标准、外标准、正接法、反接法、自激法等多种方式测试;在外标准外高压情况下可以做高电压(大于10kV)介质损耗。 5、CVT测试一步到位 该仪器还可以测试全密封的CVT(电容式电压互感器)C1、C2的介损和电容量,实现了C1、C2的同时测试。该仪器还可以测试CVT变比和电压角差。 6、不拆高压引线测量CVT 仪器可在不拆除CVT高压引线的情况下正确测量CVT的介质损耗值和电容值。 7、CVT反接屏蔽法测量C0

浅淡介质损耗测量的意义和方法

一.测量介质损耗角正切值tg 有何意义? 介质损耗角正切值又称介质损耗因数或简称介损。测量介质损耗因数是一项灵敏 度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。例如:某台变压器的套管,正常tg 值为0.5%,而当受潮后tg 值为3.5%,两个数据相差7倍;而用测量绝缘电阻检测,受潮前后的数值相差不大。 由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电 力设备交接和预防性试验中都得到了广泛的应用。变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。 二.当前国内抗干扰介损测试仪的现状及技术难点? 抗干扰介损测试仪的技术发展很快,以前在电力系统广泛使用的QS1西林电桥正被智能型的抗干扰介损测试仪取代,新一代的抗干扰介损测试仪均内置升压设备和标准电容,并且具有操作简单、数据准确、试验结果读取方便等特征。虽然目前抗干扰介损测试仪发展很快,但与国际水平相比,在很多方面仍有很大差距,差距主要表现在以下几个方面: (1)抗干扰能力 由于介质损耗测试是一个灵敏度很高的项目,因此测试数据也极易受到外界电场 的干扰,目前抗干扰介损测试仪采取的抗干扰方法主要有:倒相法、移相法、异频法等。虽然这些方法能在一定程度下解决干扰的问题,但当外界干扰很强的情况下,仍会产生较大的偏差。 (2)反接法的测试精度问题 现场很多电力设备均已接地,因此必须使用反接法进行检测,但反接时,影响测 试数据的因素较多,往往数据会有很大偏差,特别是当被试品容量较小(如套管),高压导线拖地测试时(有些介损测试仪所配高压导线虽能拖地使用,但对地泄漏电流较大),会严重影响测试的准确度。 三.什么是“全自动反干扰源”,与其它几种抗干扰方法相比有何特点? 所谓“全自动反干扰源”,即抗干扰介损测试仪内部有一套检测装置,能检测到外 界干扰信号的幅值和相位,将相关信息传送给CPU,CPU输出指令给“反干扰源控制装置”,该装置会在抗干扰介损测试仪内部产生一个和干扰信号幅值相同但相位相反的“反干扰信号”,与“干扰信号”叠加抵消,以达到抗干扰的目的。由于在整个测试过程,“反 干扰源”自动产生,用户无需干预,我们称之为“全自动反干扰源”。 四.传统的抗干扰方法主要有倒相法、移相法、异频法等,其工作原理如何? 1、倒相法 将抗干扰介损测试仪工作电源正、反两次倒相测试,将两次测试结果进行分析处理,达到抗干扰目的,该方法在外界干扰很弱的情况下有一定的效果。 2、移相法 思路缘于“倒相法”,只是将工作电源倒相改为移相至干扰信号相位相同而达到减 弱干扰影响的目的,实践表明,在干扰强烈的情况下,数据仍然偏差较大。 3、异频法

NDJS抗干扰介质损耗测试仪.

目录 一、概述 . (2) 二、工作原理 (2) 三、主要技术参数 (3) 四、仪器面板介绍 (4) 五、操作方法说明: (5) 六、接线 . (6) 七、注意事项 (7) 八、仪器成套性 (8) 九、参考接线方法 (8) 一、概述 NDJS 型抗干扰介质损耗测试仪,是发电厂、变电站等现场全自动测量各种高压电力设备介损正切值及电容量的高精度仪器。由于采用了变频技术能保证在强电场干扰下准确测量。仪器在 GWS-4基础上增加了中文菜单操作功能, 一次操作,微机自动完成全过程的测量。是目前最理想的介损测量设备。 该仪器同样适用于车间、试验室、科研单位测量高压电器设备的tg δ及电容量;对绝缘油的损耗测试、更具有方便、简单、准确等优点。 该仪器可用正、反接线方法测量不接地或直接地的高压电器设备。 仪器内部装备了高压升压变压器, 并采取了过零合闸、防雷击等安全保护措施。试验过程中输出 0.5KV ~10kV 不同等级的高压,操作简单、安全。

二、工作原理 在交流电压作用下, 电介质要消耗部分电能, 这部分电能将转变为热能产生损耗。这种能量损耗叫做电介质的损耗。当电介质上施加交流电压时, 电介质中的电压和电流间存在相角差Ψ, Ψ的余角δ称为介质损耗角, δ的正切tg δ称为介质损耗角正切。tg δ值是用来衡量电介质损耗的参数。仪器测量线路包括一标准回路(Cn 和一被试回路(Cx ,如图 1所示。标准回路由内置高稳定度标准电容器与测量线路组成, 被试回路由被试品和测量线路组成。测量线路由取样电阻与前置放大器和A /D 转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位等, 再由单片机运用数字化实时采集方法, 通过矢量运算便可得出试品的电容值和介质损耗正切值。 仪器内部已经采用了抗干扰措施,保证在外电场干扰下准确测量。 图 1 测量原理图 1. 仪器结构 测量电路:傅立叶变换、复数运算等全部计算和量程切换、变频电源控制等。控制面板:打印机、键盘、显示和通讯中转。 变频电源:采用 SPWM 开关电路产生大功率正弦波稳压输出。

电介质的损耗复习课程

电介质的损耗

第二节电介质的损耗 作用下的能量损耗,由电能转变为其它形式的能,如热能、光能等,统称为介质损耗。它是导致电介质发生热击穿的根源。电介质在单位时间内消耗的能量称为电介质损耗功率,简称电介质损耗。 1 损耗的形式 ①电导损耗: 在电场作用下,介质中会有泄漏电流流过,引起电导损耗。气体的电导损耗很小,而液体、固体中的电导损耗则与它们的结构有关。非极性的液体电介质、无机晶体和非极性有机电介质的介质损耗主要是电导损耗。而在极性电介质及结构不紧密的离子固体电介质中,则主要由极化损耗和电导损耗组成。它们的介质损耗较大,并在一定温度和频率上出现峰值。 电导损耗,实质是相当于交流、直流电流流过电阻做功,故在这两种条件下都有电导损耗。绝缘好时,液、固电介质在工作电压下的电导损耗是很小的,与电导一样,是随温度的增加而急剧增加的。 ②极化损耗: 只有缓慢极化过程才会引起能量损耗,如偶极子的极化损耗。它与温度有关,也与电场的频率有关。极化损耗与温度、电场频率有关。在某种温度或某种频率下,损耗都有最大值。用tg δ来表征电介质在交流电场下的损耗特征。 ` ③游离损耗: 气体间隙中的电晕损耗和液、固绝缘体中局部放电引起的功率损耗称为游离损耗。电晕是在空气间隙中或固体绝缘体表面气体的局部放电现象。但这种放电现象不同于液、固体介质内部发生的局部放电。即局部放电是指液、固体绝缘间隙中,导体间的绝缘材料局部形成“桥路”的一种电气放电,这种局部放电可能与导体接触或不接触。这种损耗称为电晕损耗。 2 介质损耗的表示方法 在理想电容器中,电压与电流强度成 90o ,在真实电介质中,由于 GU 分量,而不是 90o 。此时,合成电流为: ; 故定义:——为复电导率

数字化测量介质损耗角的方法

1 引言 高压电气设备中,对绝缘介质损耗的测试具有很重要的意义。在高压预防性试验中,介质损耗因素的测量属于高准确度测量,通常是在被测试品两端加以工频50Hz 的高电压(10kV),使被测试品流过一个极其微小的电流,利用电压与电流之间夹角的余角δ的正切值来反映被测试品的介质损耗大小。这种高电压、微电流、小角度的精密测量要求测量系统应具有很高的灵敏度和准确性,在现场条件下还需要具有较强的抗干扰能力。 过去介质损耗角的测量采用模拟测量方法,主要有谐振法、瓦特表法和电桥法,谐振法只适用于低压高频状态下的测量。瓦特表法是由介质损失的功率和经过的电流计算求得,瓦特表法由于测量准确度低,现已基本淘汰。电桥法是采用交流电桥差值比较原理,准确度相对较高,其典型代表是西林电桥,见图1所示。由电桥平衡条件可得出被试品的电容值Cx及tanδ:CX=(R4/R3)CN tanδ=ωC4R4 目前数字化自动电桥其实只是采用数字化技术来调节电桥的平衡,而实际的测量原理仍然是用标准电容和电阻与被试品进行比较的模拟方法。其缺点是:(1)测量程序复杂,操作工作量大,自动化水平低,易受人为因素的影响。 (2)随着输变电工程电压等级的提高,强电场干扰严重,使变电站高压电器设备的tanδ测量误差过大。 (3)当试验电源有较大谐波干扰时,即使基波电压已获平衡,检流计仍不能为零,不能排除与基波相近的谐波干扰。 2 几种介损的数字化测量方法 数字化测量方法的原理是利用传感器从试品上取得所需的信号U和I,经前置预处理电路数字化后送至数据处理计算机或单片机,算出电流电压之间的相位差△ψ,最后得到tanδ的测量值,见图2. 2.1过零电压比较法 过零电压比较法是测量两个频率相同,幅值相等,相角差小的正弦电压波之间的相角差的方法。满足上述条 这种方法的特点是电路简单,对启动采样电路、A/D转换电路要求不高,且以过零点附近两个正弦波的平均电压差来评价两正弦波的相位差,所以抗干扰扰能力强。但要求满足的测量条件十分苛刻,如要求两个被测的正弦波谐波分量和谐波相位相等,增大了测量难度[1]. 2.2过零时差比较法 这是一种将相位测量变为时间测量的方法其原理见图3.系统先通过采样电路 捕捉电流和电压信号的过零点(图3(b),(c)),然后通过一系列的逻辑转换电路形成宽度为△t的方波信号(图3(d))。由于方波的宽度反映了电流电压信号的相位差,所以通过测量△t即可求出试品的介损值。 该方法具有测量分辨率高、线性好、易数学化的优点。但误差因素有时对测量结果影响很大,从而限制了应用。其中最重要的误差原因是由于零线漂移和波形畸变而导致信号过零点偏移。

电介质的损耗

第二节电介质的损耗 作用下的能量损耗,由电能转变为其它形式的能,如热能、光能等,统称为介质损耗。它是导致电介质发生热击穿的根源。电介质在单位时间内消耗的能量称为电介质损耗功率,简称电介质损耗。 1 损耗的形式 ①电导损耗: 在电场作用下,介质中会有泄漏电流流过,引起电导损耗。气体的电导损耗很小,而液体、固体中的电导损耗则与它们的结构有关。非极性的液体电介质、无机晶体和非极性有机电介质的介质损耗主要是电导损耗。而在极性电介质及结构不紧密的离子固体电介质中,则主要由极化损耗和电导损耗组成。它们的介质损耗较大,并在一定温度和频率上出现峰值。 电导损耗,实质是相当于交流、直流电流流过电阻做功,故在这两种条件下都有电导损耗。绝缘好时,液、固电介质在工作电压下的电导损耗是很小的,与电导一样,是随温度的增加而急剧增加的。 ②极化损耗: 只有缓慢极化过程才会引起能量损耗,如偶极子的极化损耗。它与温度有关,也与电场的频率有关。极化损耗与温度、电场频率有关。在某种温度或某种频率下,损耗都有最大值。用tg δ来表征电介质在交流电场下的损耗特征。` ③游离损耗: 气体间隙中的电晕损耗和液、固绝缘体中局部放电引起的功率损耗称为游离损耗。电晕是在空气间隙中或固体绝缘体表面气体的局部放电现象。但这种放电现象不同于液、固体介质内部发生的局部放电。即局部放电是指液、固体绝缘间隙中,导体间的绝缘材料局部形成“桥路”的一种电气放电,这种局部放电可能与导体接触或不接触。这种损耗称为电晕损耗。 2 介质损耗的表示方法 在理想电容器中,电压与电流强度成90o ,在真实电介质中,由于GU 分量,而不是90o 。此时,合成 电流为: ; 故定义:——为复电导率

油介损测试仪说明书

油介损测试仪说明书 由于输入输出端子、测试柱等均有可能带电压,在插拔测试线、电源插座时,会产生电火花,小心电击, 避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 —防止火灾或人身伤害 正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。

目录 一、概述 (5) 二、控制面板 (6) 三、油杯简介 (7) 四、工作原理 (9) 五、主要技术指标 (11) 六、操作 (12) 一、概述 HTYJS-H绝缘油介质损耗测试仪是用于绝缘油等液体绝缘介质的介质损耗角及体积电阻率的高精密仪器。一体化结构。内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交流试验电源、标准电容器、高阻计、直流高压源等主要部件。其中加热部分采用了当前最为先进的高频感应加热方式,该加热方式具备油杯与加热体非

接触、加热均匀、速度快、控制方便等优点。交流试验电源采用AC-DC-AC转换方式,有效避免市电电压及频率波动对介损测试准确性影响,即便是发电机发电,该仪器也能正确运行。内部标准电容器为SF6充气三极式电容,该电容的介损及电容量不受环境温度、湿度等影响,保证仪器长时间使用后仍然精度一致。 仪器内部采用全数字技术,全部智能自动化测量,配备了大屏幕(240×180)液晶显示器,全中文菜单,每一步骤都有中文提示,测试结果可以打印输出,操作人员不需专业培训就能熟练使用。 在使用本仪器之前,务必先仔细阅读本使用说明书!二、控制面板 图一控制面板图 1.键盘区 a)背光:控制液晶屏背光灯的开关;

相关文档
最新文档