第七章 离散数学课件 图论-2nd

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一 本课程的教学内容分为三个单元,其中第三单元的名称是(A ). 选择一项: A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 题目2 答案已保存 满分10.00 标记题目 题干 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ). 选择一项: A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 题目3 答案已保存 满分10.00 标记题目 题干 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲. 选择一项: A. 18 B. 20 C. 19

D. 17 题目4 答案已保存 满分10.00 标记题目 题干 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项: A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 题目5 答案已保存 满分10.00 标记题目 题干 课程学习平台左侧第1个版块名称是:(C). 选择一项: A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 题目6 答案已保存 满分10.00 标记题目 题干 课程学习平台右侧第5个版块名称是:(D). 选择一项:

A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题 题目7 答案已保存 满分10.00 标记题目 题干 ―教学活动资料‖版块是课程学习平台右侧的第(A)个版块. 选择一项: A. 6 B. 7 C. 8 D. 9 题目8 答案已保存 满分10.00 标记题目 题干 课程学习平台中―课程复习‖版块下,放有本课程历年考试试卷的栏目名称是:(D ). 选择一项: A. 复习指导 B. 视频 C. 课件 D. 自测 请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交. 解答:学习计划 学习离散数学任务目标:

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学规范标准答案屈婉玲版第二版高等教学教育出版社课后答案

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r)

离散数学第八章一些特殊的图知识点总结

图论部分 第八章、一些特殊的图 8.1 二部图 二部图:定义设无向图G=, 若能将V 划分成V1 和V2 (V1?V2=V, V1?V2=?), 使得G中的每条边的两个端 点都一个属于V1, 另一个属于V2, 则称G为二部图, 记为, 称V1和V2为互补顶点子集. 完全二部图:又若G是简单图, 且V1中每个顶点都与V2中每个顶点相邻, 则称G为完全二部图, 记为K r,s, 其中r=|V1|, s=|V2|. 注意: n 阶零图为二部图. 匹配:设G=, 匹配(边独立集): 任2条边均不相邻的边子集 极大匹配: 添加任一条边后都不再是匹配的匹配 最大匹配: 边数最多的匹配 匹配数: 最大匹配中的边数, 记为β1 例下述3个图的匹配数依次为3, 3, 4.

设M为G中一个匹配 v i与v j被M匹配: (v i,v j)∈M v为M饱和点: M中有边与v关联 v为M非饱和点: M中没有边与v关联 M为完美匹配: G的每个顶点都是M饱和点 定理(Hall定理) 设二部图G=中,|V1|≤|V2|. G中存 在从V1到V2的完备匹配当且仅当V1中任意k 个顶点至少与V2中的k个顶点相邻(k=1,2,…,|V1|). 由Hall定理不难证明, 上一页图(2)没有完备匹配. 定理设二部图G=中, 如果存在t≥1, 使得V1中每个顶点至少关联t 条边, 而V2中每个顶点至多关联t条边,则G 中存在V1到V2的完备匹配.

Hall定理中的条件称为“相异性条件”, 第二个定理中的条件称为t 条件. 满足t 条件的二部图一定满足相异性条件. 8.2 欧拉图 欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路. 欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.

离散数学王元元习题解答

第三篇图论 第八章图 图的基本知识 内容提要 8.1.1 图的定义及有关术语 定义图(graph)G由三个部分所组成: (1)非空集合V(G),称为图G的结点集,其成员称为结点或顶点(nodes or vertices)。 (2)集合 E(G),称为图G的边集,其成员称为边(edges)。 I (3)函数Ψ G :E(G)→(V(G),V(G)),称为边与顶点的关联映射(associatve mapping)。 这里(V(G),V(G))称为VG的偶对集,其成员偶对(pair)形如(u, v),u,v为结点,它们未必不同。Ψ G (e) = (u,v)时称边e关联端点u,v。当(u,v)用作序偶时(V(G),V(G)) =V(G) ?V(G),e称为有向边,e以u为起点,以v为终点, 图G称为有向图(directed graph);当(u,v)用作无序偶对时,(u,v) = (v,u),称e为无向边(或边),图G称为无向图(或图)。 图G常用三元序组< V(G),E(G),Ψ G >,或< V,E,Ψ>来表示。显然,图是一种数学结构,由两个集合及其间的一个映射所组成。 定义8. 2 设图G为< V,E,Ψ>。 (l)当V和E为有限集时,称G为有限图,否则称G为无限图。本书只讨论有限图。 (2)当Ψ G 为单射时,称G为单图;当Ψ G 为非单射时,称G为重图,

又称满足Ψ(e1) = Ψ(e2)的不同边e1,e2,为重边,或平行边。 (3)当Ψ(e)=(v,v)(或)时,称e为环(loops)。无环和重边的无向单图称为简单图。当G为有限简单图时,也常用(n,m)表示图G,其中n = ?V ?,m = ?E ? 。 (4)Ψ为双射的有向图称为有向完全图;对每一(u,v),u ? v,均有e使Ψ(e)=(u,v)的简单图称为无向完全图,简称完全图,n个顶点的 完全图常记作K n 。 (5)在单图G中,Ψ(e)=(u,v)(或)时,也用(u,v)(或)表示边e,这时称u,v邻接e, u,v是e的端点(或称u为e的起点,v为e的终点);也称e关联结点u , v 。不是任何边的端点的结点都称为孤立结点,仅由孤立结点构成的图(E = ?)称为零图。 (6)当给G赋予映射f:V→W,或g:E→W,W为任意集合,常用实数集及其子集, 此时称G为赋权图,常用< V,E,Ψ,f >或< V,E,Ψ,g >或< V,E,Ψ,f,g >表示之。f(v)称为结点v的 权,g(e)称为边e的权。 8.1.2 结点的度 定义在无向图中,结点v的度(degree)d(v)是v作为边的端点的数目。在有向图中,结点的度d(v)是v的出度d+(v)(out-degree)与入度d-(v)(in-degree)的和;v的出度是v作为有向边起点的数目,v的入度是v作为有向边终点的数目。 定理对任意图G,设其边数为m, 顶点集为{v 1,v 2 ,…,v n },那么

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学图论复习

离散数学11春图论部分综合练习辅导 大家好!本学期的第二次教学辅导活动现在开始,本次活动主要是针对第二单元图论的重点学习内容进行辅导,方式同样是通过讲解一些典型的综合练习作业题目,帮助大家进一步理解和掌握图论的基本概念和方法. 图论作为离散数学的一部分,主要介绍图论的基本概念、理论与方法.教学内容主要有图的基本概念与结论、图的连通性与连通度、图的矩阵表示、最短路问题、欧拉图与汉密尔顿图、平面图、对偶图与着色、树与生成树、根树及其应用等. 本次综合练习主要是复习这一单元的主要概念与计算方法,与集合论一样,也安排了五种类型,有单项选择题、填空题,判断说明题、计算题、证明题.这样的安排也是为了让同学们熟悉期末考试的题型,能够较好地完成这一部分主要内容的学习. 下面是本学期第4,5次形考作业中的部分题目. 一、单项选择题 单项选择题主要是第4次形考作业的部分题目. 第4次作业同样也是由10个单项选择题组成,每小题10分,满分100分.在每次作业在关闭之前,允许大家反复多次练习,系统将保留您的最好成绩,希望大家要多练几次,争取好成绩.需要提醒大家的是每次练习的作业题目可能不一样,请大家一定要认真阅读题目. 1.设图G =,v ∈V ,则下列结论成立的是 ( ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v V v 2)deg(=∑∈ D . E v V v =∑∈)deg( 该题主要是检查大家对握手定理掌握的情况.复习握手定理: 定理3.1.1 设G 是一个图,其结点集合为V ,边集合为E ,则 ∑∈=V v E v ||2)deg( 也就是说,无向图G 的结点的度数之和等于边数的两倍. 正确答案:C 2.设无向图G 的邻接矩阵为 ????????????????010******* 000011100100110, 则G 的边数为( ). A .6 B .5 C .4 D .3 主要是检查对邻接矩阵的概念理解是否到位.大家要复习邻接矩阵的定义,

离散数学第七章二元关系课后练习习题及答案

第七章作业 评分要求: 1、合计100分 2、给出每小题得分(注意: 写出扣分理由)、 3、总得分在采分点1处正确设置、 1 设R={|x,y∈N且x+3y=12}、【本题合计10分】 (1) 求R的集合表达式(列元素法); (2) 求domR, ranR; (3) 求R?R; (4) 求R?{2,3,4,6}; (5) 求R[{3}]; 解 (1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】 (2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】 (3) R?R={<3,3>, <0,4>}【2分】 (4) R?{2,3,4,6}={<3,3>, <6,2>}【2分】 (5) R[{3}]={3}【2分】 2 设R,F,G为A上的二元关系、证明: (1)R?(F∪G)=R?F∪R?G (2)R?(F∩G)?R?F∩R?G (3)R?(F?G)=(R?F)?G、 【本题合计18分:每小题6分,证明格式正确得3分,错一步扣1分】证明 (1)?, ∈R?(F∪G) ??t (xRt∧t(F∪G)y) 复合定义 ??t(xRt∧(tFy∨tGy) ∪定义 ??t((xRt∧tFy)∨(xRt∧tGy)) ∧对∨分配律 ??t(xRt∧tFy)∨?t(xRt∧tGy) ?对∨分配律 ?x(R?F)y∨x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义 得证 (2)?, x(R?(F∩G))y ??t(xRt∧t(F∩G)y) 复合定义 ??t(xRt∧(tFy∧tGy)) ∩定义 ??t((xRt∧tFy)∧(xRt∧tGy)) ∧幂等律, ∧交换律, ∧结合律 ??t(xRt∧tFy)∧?t(xRt∧tGy) 补充的量词推理定律 ?x(R?F)y∧x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义 得证 (3)?,

离散数学答案

2015春课件作业 第一部分集合论 第一章集合的基本概念和运算 1-1 设集合 A ={{2,3,4},5,1},下面命题为真是 A (选择题) [ A ] A.1 ∈A; B.2 ∈ A; C.3 ∈A; D.{3,2,1} ? A。 1-2 A,B,C 为任意集合,则他们的共同子集是 D (选择题) [ D ] A.C; B.A; C.B; D.?。 1-3 设 S = {N,Z,Q,R},判断下列命题是否正确(是非题) (1) N ? Q,Q ∈S,则 N ? S,否[错](2)-1 ∈Z,Z ∈S,则 -1 ∈S 。否[错] 1-4 设集合 B = {4,3} ∩?, C = {4,3} ∩{ ? },D ={ 3,4,? }, E = {x│x ∈R 并且 x2 - 7x + 12 = 0}, F = { 4,?,3,3}, 试问:集合 B 与那个集合之间可用等号表示 A (选择题) [A ] A. C; B. D; C. E; D. F. 1-5 用列元法表示下列集合:A = { x│x ∈N 且 3-x 〈 3 }(选择题) [D ] A. N; B. Z; C. Q; D. Z+ 1-6 为何说集合的确定具有任意性 ? (简答题) 按照所研究的问题来确定集合的元素。而我们所要研究的问题当然是随意的。所以,集合的定义(就是集合成分的确定)就带有任意性。 第二章二元关系 2-1 给定 X =(3, 2,1),R 是 X 上的二元关系,其表达式如下: R = {〈x,y〉x,y ∈X 且 x > y } (综合题) 求:(1)domR =?; (2)ranR =?; (3)R 的性质。 所谓谓词表达法,即是将集合中所有元素的共同性质用一个谓词概括起来,如本题几例所示。有的书上称其为抽象原则。反过来,列元法则是遵照元素的性质和要求,逐一将他们列出来,以备下用,结果如下: R = {<1,1>,<2,2>,<3,3>}; (1)DomR={R中所有有序对的x}={3,2,1}; (2)RanR={R中所有有序对的y}={3,2,1}; (3)R 的性质:自反,对称,传递性质. 2-2 设 R 是正整数集合上的关系,由方程 x + 3y = 12 决定,即 R = {〈x,y〉│x,y ∈Z+ 且 x + 3y = 12}, 试给出 dom(R 。R)。(选择题) [ B ] A. 3; B. {3}; C. 〈3,3〉; D.{〈3,3〉}。 2-3 判断下列映射 f 是否是 A 到 B 的函数;以及函数的性质。最后指出 f:A→B 中的双射函数。(选择题) [ B ] (1)A = {1,2,3},B = {4,5}, f = {〈1,4〉〈2,4〉〈3,5〉}。 (2)A = {1,2,3} = B, f = {〈1,1〉〈2,2〉〈3,3〉}。 (3)A = B = R, f = x 。

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2?E ? B .deg(V )=?E ? C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ? ? ? ? ? c a b e d ? f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ? ? ? ? ? c a b e d ? f 图四

离散数学(屈婉玲版)第四章部分答案

4.1 (1)设S={1,2},R 是S 上的二元关系,且xRy 。如果R=Is ,则(A );如 果R 是数的小于等于关系,则(B ),如果R=Es ,则(C )。 (2)设有序对与有序对<5,2x+y>相等,则 x=(D),y=(E). 供选择的答案 A 、 B 、 C :① x,y 可任意选择1或2;② x=1,y=1;③ x=1,y=1 或 2;x=y=2; ④ x=2,y=2;⑤ x=y=1或 x=y=2;⑥ x=1,y=2;⑦x=2,y=1。 D 、 E :⑧ 3;⑨ 2;⑩-2。 答案: A: ⑤ B: ③ C: ① D: ⑧ E: ⑩ 4.2设S=<1,2,3,4>,R 为S 上的关系,其关系矩阵是 ????? ???????0001100000011001 则(1)R 的关系表达式是(A )。 (2)domR=(B),ranR=(C). (3)R ?R 中有(D )个有序对。 (4)R ˉ1的关系图中有(E )个环。 供选择的答案 A :①{<1,1>,<1,2>,<1,4>,<4,1>,<4,3>}; ②{<1,1>,<1,4>,<2,1>,<4,1>,<3,4>}; B 、 C :③{1,2,3,4};④{1,2,4};⑤{1,4}⑥{1,3,4}。 D 、 E ⑦1;⑧3;⑨6;⑩7。 答案: A:② B:③ C:⑤ D:⑩ E:⑦ 4.3设R 是由方程x+3y=12定义的正整数集Z+上的关系,即 {<x,y >︳x,y ∈Z+∧x+3y=12}, 则 (1)R 中有A 个有序对。 (2)dom=B 。 (3)R ↑{2,3,4,6}=D 。 (4){3}在R 下的像是D 。 (5)R 。R 的集合表达式是E 。 供选择的答案 A:①2;②3;③4. B 、 C 、 D 、E:④{<3,3>};⑤{<3,3>,<6,2>};⑥{0,3,6,9,12};

离散数学图论与关系中有图题目

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8 个结点的三次正则图 (2) (1) (3) (2) (1)

离散数学-第七章二元关系课后练习习题及答案

第七章作业 评分要求: 1. 合计100分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 1 设R={|x,y∈N且x+3y=12}.【本题合计10分】 (1) 求R的集合表达式(列元素法); (2) 求domR, ranR; (3) 求R?R; (4) 求R?{2,3,4,6}; (5) 求R[{3}]; 解 (1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】 (2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】 (3) R?R={<3,3>, <0,4>}【2分】 (4) R?{2,3,4,6}={<3,3>, <6,2>}【2分】 (5) R[{3}]={3}【2分】 2 设R,F,G为A上的二元关系. 证明: (1)R?(F∪G)=R?F∪R?G (2)R?(F∩G)?R?F∩R?G (3)R?(F?G)=(R?F)?G. 【本题合计18分:每小题6分,证明格式正确得3分,错一步扣1分】证明 (1)?, ∈R?(F∪G) ??t (xRt∧t(F∪G)y) 复合定义 ??t(xRt∧(tFy∨tGy) ∪定义 ??t((xRt∧tFy)∨(xRt∧tGy)) ∧对∨分配律 ??t(xRt∧tFy)∨?t(xRt∧tGy) ?对∨分配律 ?x(R?F)y∨x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义 得证 (2)?, x(R?(F∩G))y ??t(xRt∧t(F∩G)y) 复合定义 ??t(xRt∧(tFy∧tGy)) ∩定义 ??t((xRt∧tFy)∧(xRt∧tGy)) ∧幂等律, ∧交换律, ∧结合律 ??t(xRt∧tFy)∧?t(xRt∧tGy) 补充的量词推理定律 ?x(R?F)y∧x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义

离散数学(图论)课后总结

第八章图论 例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5) 解:a)不是, 因为有三个数字是奇数. b) c) d)是. e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边. 例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么? 解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点. 强连通、单侧连通和弱连通 在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通. 在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图. 注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了 利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!! 令图G=, 集合Si V Si’=V-Si , 令|V|=n Si={u|从u0到u的最短路已求出} Si’={u’|从u0到u’的最短路未求出} Dijkstra算法:(求从u0到各点u的最短路长) 第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0) i=0 S0={u0} S0’=V-S0 , 第二步.若i=n-1 则停. 否则转第三步 第三步. 对每个u’∈Si’ 计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’ 置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步. 例3、求最短路 解:例.求右图中从v1到v6的 最短路 1.置初值: u0=v1 d(u0,u0)=0 d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞ 2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6} d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3 d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞ d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5

离散数学(第五版)清华大学出版社第7章习题解答

离散数学(第五版)清华大学出版社第7章习题解答 7.1 (1),(2),(3),(5)都能构成无向图的度数列,其中除(5)外又都能构成无向简单图的度数列. 分析1°非负整数列d,d ,L,d 能构成无向图的度数列当且仅当n di为 1 2n∑ i=1偶数,即d1,d2,L,dn中的奇数为偶数个.(1),(2),(3),(5)中分别有4个,0个,4个,4 个奇数,所以,它们都能构成无向图的度数列,当然,所对应的无向图很可能是非简 单图.而(4)中有 3 个奇数,因而它不能构成无向图度数列.否则就违背了握手定理的推论. 2°(5) 虽然能构成无向图的度数列,但不能构成无向简单度数列.否则,若存在无向简单图G,以1,3,3,3 为度数列,不妨设G 中顶点为v1,v2,v3,v4,且d(vi)=1,于是d(v2)=d(v3)=d(v4)=3.而v1只能与v2,v3,v4之一相邻,设v1与v2相邻,这样一来,除v2能达到3度外, v3,v4都达不到3度,这是矛盾的. 在图7.5所示的4个图中,(1) 以1为度数列,(2)以2为度数列,(3)以3为度数列,(4)以4为度数列(非简单图). 7.2 设有几简单图D以2,2,3,3为度数列,对应的顶点分别为v1,v2,v3,v4,由于d(v)=d+(v)+d_(v),所示,d+(v)-d-(v)=2-0=2,d+(v )=d(v )-d-(v ) 11222=2-0=2,d+(v)=d(v)-d-(v)=3-2=1,d+(v)=d(v)-d-(v)=3-3=0 333444 81 由此可知,D 的出度列为2,2,1,0,且满足d+(v)= d-(v).请读者画出 ∑i∑i 一个有向图.以2,2,3,3为度数列,且以0,0,2,3为入度列,以2,2,1,0为出度列. 7.3 D 的入度列不可能为1,1,1,1.否则,必有出度列为2,2,2,2(因为d(v)=d+(v)+d-(v)),)此时,入度列元素之和为4,不等于出度列元素之和8,这违背握手定理.类似地讨论可知,1,1,1,1也不能为D的出席列. 7.4 不能. N阶无向简单图的最大度Δ≤n-1.而这里的n个正整数彼此不同,因而这n个数不能构成无向简单图的度数列,否则所得图的最大度大于n,这与最大度应该小于等于n-1矛盾.

离散数学形考任务试题及答案完整

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ). 选择一项: A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 题目2 答案已保存 满分10.00 标记题目 题干 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ). 选择一项: A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 题目3 答案已保存 满分10.00 标记题目 题干 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲. 选择一项: A. 18 B. 20

C. 19 D. 17 题目4 答案已保存 满分10.00 标记题目 题干 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项: A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 题目5 答案已保存 满分10.00 标记题目 题干 课程学习平台左侧第1个版块名称是:(C). 选择一项: A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 题目6 答案已保存 满分10.00 标记题目 题干

课程学习平台右侧第5个版块名称是:(D). 选择一项: A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题 题目7 答案已保存 满分10.00 标记题目 题干 “教学活动资料”版块是课程学习平台右侧的第( A )个版块. 选择一项: A. 6 B. 7 C. 8 D. 9 题目8 答案已保存 满分10.00 标记题目 题干 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项: A. 复习指导 B. 视频 C. 课件 D. 自测 请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交. 解答:学习计划

离散数学期末复习试题及答案(七)

第七章 谓词逻辑 1.用谓词表达下列命题 1) 小张不是工人。 设 c:小张 W(x): x 是工人 )c (W ? 2) 所有教练员都是运动员。 设 J(x):x 是教练, W(x):x 是运动员 ))x (W )x (J )(x (→? 3) 没有一个国家选手不健壮。 设 C(x):x 是国家选手,J(x):x 健壮 ))x (J )x (C )(x (?∧?? 4) 有些大学生不钦佩老师。 设 D(x):x 是大学生, L(x):x 是老师, P(x,y):x 钦佩y )))y ,x (P )y (L )(y ()x (D )(x (∧?∧? 5) 小莉既聪明又美丽。 设 l:小李 C(x):x 聪明 M(x):x 美丽 )l (M )l (C ∧ 6) 不是所有的高中生都能上大学。 设 G(x):x 是高中生, D(x):x 上大学 ))x (D )x (G )(x (→?? 7) 每个有理数都是实数。 设Q(x):x 是有理数, R(x):x 是实数 ))x (R )x (Q )(x (→? 8) 某些实数是有理数。 设R(x):x 是实数, Q(x):x 是有理数 ))x (Q )x (R )(x (∧? 9) 并非每个实数都是有理数。 设R(x):x 是实数, Q(x):x 是有理数 ))x (Q )x (R )(x (→?? 10) 若m 是奇数,则2m 不是奇数。 设Q(x):x 是奇数, )m 2(Q )m (Q ?→

11) 直线A 与直线B 平行,当且仅当直线 A 与 B 不相交。 设L(x):x 是直线,P(x,y):x 平行于y, X(x,y):x 与y 相交 →←))B ,A (X )B (L )A (L ())B ,A (P )B (L )A (L (?∧∧∧∧ 12) 对于每个实数x,存在一个更大的实数y。 设R(x):x 是实数, D(x,y):x 大于y, )))x ,y (D )y (R )(y ()x (R )(x (∧?→? 2. 设P(x)为“x 是质数”,E(x)为“x是偶数”, Q(x)为“x 是奇数”,D(x,y)为“x 除尽y ”,把下 列各式译成汉语: 1)P(5); 2)E(2)∧P(2); 3)(?x)(E (x)∧D(x,6)); 4)(?x)(D(2,x)→E(x)); 5) (?x)(E(x)→D(2,x)); 6)(?x)(E(x)→(?y)(D(x,y)→E(y))); 7) (?x)(P(x)→(?y)(E(y)∧D(x,y))); 8) (?x)(Q(x)→(?y)(P(y)→D(x,y)) 1) P(5);5是偶数。 2) E(2)∧P(2);2是偶数也是质数。 3) D(x,6))(E (x))x (∧?;存在偶数可以除尽6。 4) E (x))x)(D(2,)x (→?;被2除尽的数都是偶数。 5) x))D(2,E (x)()x (?→??; 非偶数都不能被2除尽。 6) )))y (E )y ,x (D )(y ()x (E )(x (→?→?; 所有能被偶数除尽的数都是偶数。 7) )))y ,x (D )y (E )(y ()x (P )(x (∧?→?; 对任给的质数,存在偶数可被质数除尽。 8) )))y ,x (D )y (P )(y ()x (Q )(x (→?→?; 所有质数都不能被任意奇数整除。

相关文档
最新文档