空间几何体的表面积和体积

空间几何体的表面积和体积
空间几何体的表面积和体积

空间点、直线、平面之间的位置关系

最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题

.

知 识 梳 理

1.平面的基本性质

(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在同一条直线上的三点,有且只有一个平面.

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

2.空间点、直线、平面之间的位置关系

3.平行公理:平行于同一条直线的两条直线互相平行.

等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4.异面直线所成的角

(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). (2)范围:? ?

???0,π2.

[微点提醒]

1.空间中两个角的两边分别对应平行,则这两个角相等或互补.

2.异面直线的判定:经过平面内一点的直线与平面内不经过该点的直线互为异面直线.

3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.

基 础 自 测

1.判断下列结论正误(在括号内打“√”或“×”)

(1)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( )

(2)两两相交的三条直线最多可以确定三个平面.( ) (3)如果两个平面有三个公共点,则这两个平面重合.( )

(4)若直线a 不平行于平面α,且a ?α,则α内的所有直线与a 异面.( ) 解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.

(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.

(4)由于a 不平行于平面α,且a ?α,则a 与平面α相交,故平面α内有与a 相交的直线,故错误.

答案 (1)× (2)√ (3)× (4)×

2.(必修2P52B1(2)改编)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是

AB ,AD 的中点,则异面直线B 1C 与EF 所成角的大小为( )

A.30°

B.45°

C.60°

D.90°

解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°.

答案 C

3.(必修2P45例2改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( )

A.梯形

B.矩形

C.菱形

D.正方形

解析如图所示,易证四边形EFGH为平行四边形,因为E,F分别为AB,BC的中点,所以EF∥AC,又FG∥BD,所以∠EFG或其补角为AC与BD所成的角,而AC与BD所成的角为90°,所以∠EFG=90°,故四边形EFGH为矩形.

答案 B

4.(2019·贵阳调研)α是一个平面,m,n是两条直线,A是一个点,若m?α,n?α,且A∈m,A∈α,则m,n的位置关系不可能是( )

A.垂直

B.相交

C.异面

D.平行

解析依题意,m∩α=A,n?α,∴m与n异面、相交(垂直是相交的特例),一定不平行.

答案 D

5.(一题多解)(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ

不平行的是( )

解析法一对于选项B,如图(1)所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB?平面MNQ,MQ?平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.因此A项中直线AB与平面MNQ不平行.

图(1) 图(2)

法二对于选项A,其中O为BC的中点(如图(2)所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行. 答案 A

6.(2018·西安调研)在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.

解析在EF上任意取一点M,如图,

直线A1D1与M确定一个平面,

这个平面与CD有且仅有1个交点N,

当M 取不同的位置就确定不同的平面, 从而与CD 有不同的交点N ,

而直线MN 与这3条异面直线都有交点.

故在空间中与三条直线A 1D 1,EF ,CD 都相交的直线有无数条. 答案 无数

考点一 平面的基本性质及应用

【例1】 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:

(1)E ,C ,D 1,F 四点共面; (2)CE ,D 1F ,DA 三线共点.

证明 (1)如图,连接CD 1,EF ,A 1B ,

因为E ,F 分别是AB 和AA 1的中点, 所以EF ∥A 1B 且EF =1

2A 1B .

又因为A 1D 1綉BC ,

所以四边形A 1BCD 1是平行四边形. 所以A 1B ∥CD 1, 所以EF ∥CD 1,

所以EF 与CD 1确定一个平面α.

所以E ,F ,C ,D 1∈α,即E ,C ,D 1,F 四点共面. (2)由(1)知,EF ∥CD 1,且EF =1

2

CD 1,

所以四边形CD1FE是梯形,

所以CE与D1F必相交.设交点为P,

则P∈CE?平面ABCD,

且P∈D1F?平面A1ADD1,

所以P∈平面ABCD且P∈平面A1ADD1.

又因为平面ABCD∩平面A1ADD1=AD,

所以P∈AD,所以CE,D1F,DA三线共点.

规律方法 1.证明点或线共面问题的两种方法:(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合.

2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各点都在这条直线上;(2)直接证明这些点都在同一条特定直线(如某两个平面的交线)上.

3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.

【训练1】如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.

(1)求证:E,F,G,H四点共面;

(2)设EG与FH交于点P,求证:P,A,C三点共线.

证明(1)∵E,F分别为AB,AD的中点,

∴EF∥BD.

∵在△BCD中,BG

GC

DH

HC

1

2

∴GH∥BD,∴EF∥GH.

∴E,F,G,H四点共面.

(2)∵EG∩FH=P,P∈EG,EG?平面ABC,

∴P∈平面ABC.同理P∈平面ADC.

∴P为平面ABC与平面ADC的公共点.

又平面ABC∩平面ADC=AC,

∴P∈AC,∴P,A,C三点共线.

考点二判断空间直线的位置关系

【例2】 (1)(一题多解)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )

A.l与l1,l2都不相交

B.l与l1,l2都相交

C.l至多与l1,l2中的一条相交

D.l至少与l1,l2中的一条相交

(2)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是( )

A.相交且垂直

B.相交但不垂直

C.异面且垂直

D.异面但不垂直

解析(1)法一由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.故l至少与l1,l2中的一条相交.

法二如图(1),l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图(2),l1与l2是异面直线,l1,l2都与l相交,故C不正确.

(2)折起前AD⊥BC,折起后有AD⊥BD,AD⊥DC,所以AD⊥平面BCD,所以AD⊥BC.又AD与BC不相交,故AD与BC异面且垂直.

答案(1)D (2)C

规律方法 1.异面直线的判定方法:

(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.

(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.

2.点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.

【训练2】(1)(2019·湘潭调研)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有( )

A.①③

B.②③

C.②④

D.②③④

(2)已知空间三条直线l,m,n,若l与m异面,且l与n异面,则( )

A.m与n异面

B.m与n相交

C.m与n平行

D.m与n异面、相交、平行均有可能

解析(1)由题意,可知题图①中,GH∥MN,因此直线GH与MN共面;题图②中,G,H,N三点共面,但M?平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;题图④中,连接GN,G,M,N三点共面,但H?平面GMN,所以直线GH与MN异面.故选C.

(2)在如图所示的长方体中,m,n1与l都异面,但是m∥n1,所以A,B错误;m,n

与l都异面,且m,n2也异面,所以C错误.故选D.

2

答案(1)C (2)D

考点三 异面直线所成的角 多维探究

角度1 求异面直线所成的角或其三角函数值

【例3-1】 (2018·全国Ⅱ卷)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A.22 B.32 C.52

D.

72

解析 如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan∠EAB =BE AB

=52

.

答案 C

角度2 由异面直线所成角求其他量

【例3-2】 在四面体ABCD 中,E ,F 分别是AB ,CD 的中点.若BD ,AC 所成的角为60°,且BD =AC =1,则EF 的长为________. 解析 如图,取BC 的中点O ,连接OE ,OF .

因为OE ∥AC ,OF ∥BD ,

所以OE 与OF 所成的锐角(或直角)即为AC 与BD 所成的角,而AC ,BD 所成角为60°,所以∠EOF =60°或∠EOF =120°.当∠EOF =60°时,EF =OE =OF =1

2

.当

∠EOF =120°时,取EF 的中点M ,则OM ⊥EF ,EF =2EM =2×34=32

. 答案 12或3

2

规律方法 用平移法求异面直线所成角的一般步骤: (1)作角——用平移法找(或作)出符合题意的角;

(2)求角——转化为求一个三角形的内角,通过解三角形,求出角的大小. 【训练3】 (2019·永州模拟)三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱

AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( ) A.1

3

B.24

C.33

D.23

解析 连接DN ,取DN 的中点O ,连接MO ,

BO ,

∵M 是AD 的中点, ∴MO ∥AN ,

∴∠BMO (或其补角)是异面直线BM 与AN 所成的角. 设三棱锥A -BCD 的所有棱长为2, 则AN =BM =DN =22-12=3, 则MO =12AN =32=NO =1

2DN ,

则BO =BN 2

+NO 2

1+34=7

2

. 在△BMO 中,由余弦定理得

cos∠BMO =BM 2+MO 2-BO 2

2·BM ·MO

3+34-

74

2×3×

32

=23

∴异面直线BM与AN所成角的余弦值为2

3

.

答案 D

[思维升华]

1.主要题型的解题方法

(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).

(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.

2.判定空间两条直线是异面直线的方法

(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.

(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.

3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.

[易错防范]

1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.

2.直线与平面的位置关系在判断时最易忽视“线在面内”.

基础巩固题组

(建议用时:40分钟)

一、选择题

1.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是( )

A.①

B.①④

C.②③

D.③④

解析显然命题①正确.

由于三棱柱的三条平行棱不共面,②错.

命题③中,两个平面重合或相交,③错.

三条直线两两相交,可确定1个或3个平面,则命题④正确.

答案 B

2.已知a,b是异面直线,直线c平行于直线a,那么c与b( )

A.一定是异面直线

B.一定是相交直线

C.不可能是平行直线

D.不可能是相交直线

解析由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.

答案 C

3.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )

A.12对

B.24对

C.36对

D.48对

解析如图所示,与AB异面的直线有B1C1;CC1,A1D1,DD1四条,因为各棱具有

相同的位置且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×4

2

24(对).

答案 B

4.下列命题中正确的个数为( )

①若△ABC在平面α外,它的三条边所在的直线分别交α于P,Q,R,则P,Q,R三点共线.

②若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;

③空间中不共面五个点一定能确定10个平面.

A.0

B.1

C.2

D.3

解析 在①中,因为P ,Q ,R 三点既在平面ABC 上,又在平面α上,所以这三点必在平面ABC 与α的交线上,即P ,Q ,R 三点共线,故①正确;在②中,因为a ∥b ,所以a 与b 确定一个平面α,而l 上有A ,B 两点在该平面上,所以l ?

α,即a ,b ,l 三线共面于α;同理a ,c ,l 三线也共面,不妨设为β,而α,β有两条公共的直线a ,l ,所以α与β重合,故这些直线共面,故②正确;在③中,不妨设其中四点共面,则它们最多只能确定7个平面,故③错. 答案 C

5.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )

A.15

B.25

C.35

D.45

解析 连接BC 1,

易证BC 1∥AD 1,

则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角. 连接A 1C 1,由AB =1,AA 1=2, 则A 1C 1=2,A 1B =BC 1=5, 在△A 1BC 1中,由余弦定理得 cos∠A 1BC 1=5+5-22×5×5=4

5

.

答案 D 二、填空题

6.给出下列四个命题:

①平面外的一条直线与这个平面最多有一个公共点;

②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;

③若一条直线和两条平行线都相交,则这三条直线共面;

④若三条直线两两相交,则这三条直线共面.

其中真命题的序号是________.

解析①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.

答案①②③

7.(2019·西安模拟)如图,四边形ABCD和四边形ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.

解析如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,所以∠APG 为异面直线AP与BD所成的角,

在△AGP中,AG=GP=AP,

所以∠APG=π

3

.

答案π3

8.如图,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:

①直线AM与CC1是相交直线;

②直线AM与BN是平行直线;

③直线BN与MB1是异面直线;

④直线AM与DD1是异面直线.

其中正确的结论为________(填序号).

解析直线AM与CC1是异面直线,直线AM与BN也是异面直线,故①②错误. 答案③④

三、解答题

9.在正方体ABCD-A1B1C1D1中,

(1)求直线AC与A1D所成角的大小;

(2)若E,F分别为AB,AD的中点,求直线A1C1与EF所成角的大小.

解(1)如图,连接B1C,AB1,由ABCD-A1B1C1D1是正方体,易知A1D∥B1C,从而

B

1C与AC所成的角就是AC与A

1

D所成的角.

因为AB1=AC=B1C,

所以∠B1CA=60°.

即直线A1D与AC所成的角为60°.

(2)连接BD,在正方体ABCD-A1B1C1D1中,AC⊥BD,AC∥A1C1,

因为E,F分别为AB,AD的中点,

所以EF∥BD,所以EF⊥AC.

所以EF⊥A1C1.

即直线A1C1与EF所成的角为90°.

10.如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与

平面ACD1的交点.求证:D1,H,O三点共线.

证明如图,连接BD,B1D1,则BD∩AC=O,

∵BB1綉DD1,

∴四边形BB1D1D为平行四边形.

又H∈B1D,B1D?平面BB1D1D,

则H∈平面BB1D1D,

∵平面ACD1∩平面BB1D1D=OD1,∴H∈OD1.

故D1,H,O三点共线.

能力提升题组

(建议用时:20分钟)

11.(2018·长春质检)若空间中四条两两不同的直线l1,l2,l3,l4,满足l

⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )

1

A.l1⊥l4

B.l1∥l4

C.l1与l4既不垂直也不平行

D.l1与l4的位置关系不确定

解析如图,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA.若l4=AA

,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.

1

若取C1D为l4,则l1与l4相交;若取BA为l4,则l1与l4异面;取C1D1为l4,则

l 1与l 4相交且垂直.

因此l 1与l 4的位置关系不能确定. 答案 D

12.(2019·珠海模拟)如图,在矩形ABCD 中,AB =4,AD =2,P 为边AB 的中点,现将△DAP 绕直线DP 翻转至△DA ′P 处,若M 为线段A ′C 的中点,则异面直线

BM 与PA ′所成角的正切值为( )

A.12

B.2

C.14

D.4

解析 取A ′D 的中点N ,连接PN ,MN .

∵M 是A ′C 的中点, ∴MN ∥CD ,且MN =1

2

CD ,

∵四边形ABCD 是矩形,P 是AB 的中点, ∴PB ∥CD ,且PB =1

2CD ,

∴MN ∥PB ,且MN =PB , ∴四边形PBMN 为平行四边形, ∴MB ∥PN ,

∴∠A ′PN (或其补角)是异面直线BM 与PA ′所成的角.

在Rt△A ′PN 中,tan∠A ′PN =A ′N A ′P =1

2,

∴异面直线BM 与PA ′所成角的正切值为1

2.

答案 A

13.正方体ABCD -A 1B 1C 1D 1中,E 为线段B 1D 1上的一个动点,则下列结论中正确的

是________(填序号).

①AC⊥BE;

②B1E∥平面ABCD;

③三棱锥E-ABC的体积为定值;

④B1E⊥BC1.

解析因AC⊥平面BDD1B1,故①正确;因B1D1∥平面ABCD,故②正确;记正方体

的体积为V,则V E-ABC=1

6

V,为定值,故③正确;B

1

E与BC

1

不垂直,故④错误.

答案①②③

14.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.

(1)求四棱锥O-ABCD的体积;

(2)求异面直线OC与MD所成角的正切值.

解(1)由已知可求得正方形ABCD的面积S=4,

所以四棱锥O-ABCD的体积V=1

3

×4×2=

8

3

.

(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,

又M为OA中点,∴ME∥OC,

则∠EMD(或其补角)为异面直线OC与MD所成的角,由已知可得DE=2,EM=3,MD=5,

∵(2)2+(3)2=(5)2,即DE2+EM2=MD2,

∴△DEM为直角三角形,且∠DEM=90°,

∴tan∠EMD=DE

EM

2

3

6

3

.

∴异面直线OC与MD所成角的正切值为

6

3

.

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

空间几何体的表面积与体积

§8.1 空间几何体的表面积与体积 基础自测 1.如图所示,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=4 1A 1B 1,则多面体P- BCC 1B 1的体积为 2.已知正方体外接球的体积为 3 32π,那么正方体的棱长等于 3.若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 4.三棱锥S-ABC 中,面SAB ,SBC ,SAC 都是以S 为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC 的表面积是 . 例1 如图所示,长方体ABCD-A 1B 1C 1D 1中,AB=a ,BC=b ,BB 1=c ,并且a >b >c >0.求沿着长方体的表面自A 到C 1 的最短线路的长. 例2 如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC =30°)及其体积. 例3 如图所示,长方体ABCD —''''D C B A 中,用截面截下一个棱锥C — ''DD A ,求棱锥C —''DD A 的体积与剩余部分的体积之比.

例4 如图所示,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC 分别沿ED、EC向上折起,使A、B重合,求形成的三棱锥的外接球的体积. 1.如图所示,在直三棱柱ABC- A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2.P是BC1上一动点,则CP+P A1的最小值是 . 2.如图所示,扇形的圆心角为90°,其所在圆的半径为R,弦AB将扇形分成两个部分,这两部分各以AO为轴旋转一周,所得旋转体的体积V1和V2之比为 3.如图,三棱锥A-BCD一条侧棱AD=8 cm,底面一边BC=18 cm,其余四条棱的棱长都是17 cm,求三棱锥A-BCD的体积. 4.如图所示,已知正四棱锥S—ABCD中,底面边长为a, 侧棱长为2a. (1)求它的外接球的体积; (2)求它的内切球的表面积.

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

空间几何体的表面积和体积

空间几何体的表面积和体积 [基础要点] 1.圆柱的表面积公式: 2.圆锥的表面积公式: 3.圆台的表面积公式: 4.圆锥的体积公式: 5.棱锥的体积公式: 6.圆台的体积公式: 7.球的表面积公式: 8.球的体积公式: 题型一、柱体的体积、表面积公式 例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积 变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==, 12C G =,求几何体的体积 题型二、锥体、球体的体积和表面积公式 例2、正四面体棱长为a ,求其外接球和内切球的表面积 变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积 题型三、台体的表面积与体积公式 例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积V D1 O1C1 D C B1 B A1 A O H

变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少? 题型四、实际问题与几何体面积、体积的结合 例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R , (1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计) (2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。(精确到0.1kg ) 变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少? [自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则T S 等于( ) A 、 19 B 、49 C 、 14 D 、 13 2、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝ B 、 2 542 π+㎝ C 、52㎝ D 、2 51π+㎝ 3、棱锥的高为16㎝,底面积为2 512cm ,平行于底面的截面积为2 50cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝ C 、11㎝ D 、25㎝

空间几何体的表面积与体积教学设计教案

空间几何体的表面积与体积教学设计教案 1、教学目标 1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。 2、教学重点/难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导 3、教学用具投影仪等、 4、标签数学,立体几何教学过程 1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图: (4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。(s’,s分别我上下底面面积,h为台柱高) 4、例题分析讲解(课本)例 1、例 2、例 35、巩固深化、反馈矫正教师投影练习 1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。 (答案:) 2、棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。 (答案:2352cm3)

简单几何体的表面积与体积

第2节简单几何体的表面积与体积 最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式. 知识梳理 1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 3.简单几何体的表面积与体积公式 [常用结论与微点提醒] 1.正方体与球的切、接常用结论 正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a.

2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. 3.正四面体的外接球与内切球的半径之比为3∶1. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高之积.() (2)球的体积之比等于半径比的平方.() (3)台体的体积可转化为两个锥体的体积之差.() (4)已知球O的半径为R,其内接正方体的边长为a,则R= 3 2a.() 解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案(1)×(2)×(3)√(4)√ 2.(教材练习改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为() A.1 cm B.2 cm C.3 cm D.3 2cm 解析由题意,得S 表 =πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm). 答案 B 3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() A.12π B.32 3π C.8π D.4π 解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π. 答案 A 4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.π B.3π 4 C. π 2 D. π 4

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

常见几何体的体积和表面积公式及三视图

常见几何体的体积和表面积公式及三视图

谨记常见几何体的三视图特点:一般情况下,(1)视图中有两个是矩形的几何体是柱体;(2)视图中有两个是三角形的几何体是锥体;(3)视图有两个是梯形的几何体是台体;(4)视图中有两个是圆的几何体是球.

积为(

】如图,网格纸上小正方形的 2016年全国III高考)如图,网格纸上小正方 形的边长为1,粗实现画出的是某多面体的三视 图,则该多面体的表面积为 三视图还原几何体方法:(1)理解“正俯一样长,正侧一样高,侧俯一样宽”;(2)画一个长方体,找准三视图中的点和边在长方体中的对应位置,在长方体中排除掉没有对应的顶点;(3)把剩下的顶点用线连起来,注意线的虚实;(4)结合三视图进行检验.(此法适用于棱锥、棱柱的三视图还原,可看作是由长方体拼接或切割而成).若三视图中有半圆和圆的,要联想到圆柱、圆锥、圆台和球.

【2017课标3,理8】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为__________. 【2015高考山东,理7】在梯形ABCD 中,2 ABC π ∠= ,//,222AD BC BC AD AB === .将 梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为__________. 【2014高考陕西版理第5题】已知底面边长为1的正四棱柱的各顶点均在同一个球面上,则该球的体积为___________. 【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥, 6AB =,8BC =,13AA =,则V 的最大值是____________.

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

空间几何体的表面积与体积

§1.3 空间几何体的表面积与体积 §1.3.1 柱体、锥体、台体的表面积与体积 一、教材分析 本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目 的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方 法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的 表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行 四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面 图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题. 教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可 引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形, 圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路 进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚 它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在 分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系. 由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看 成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下. 关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较 大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等; ②一 个几何体的体积等于它的各部分体积 的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积 公式的推导是建立在等体积概念之上的. 柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公 式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与 等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论. 与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系, 是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式. 值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引 导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在 公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信 息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来 增强空间想象能力. 二、教学目标 1.知识与技能 (1)了解柱体、锥体与台体的表面积(不要求记忆公式). (2)能运用公式求解柱体、锥体和台体的全面积. (3)培养学生空间想象能力和思维能力. 2.过程与方法 让学生经历几何体的侧面展开过程,感知几何体的形状,培养转化化归能力. 3.情感、态度与价值观 通过学习,使学生感受到几面体表面积的求解过程,激发学生探索创新的意识,增强学习的积极性.

空间几何体表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( ) A.49 B.94 C.427 D.274 题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________. 题3 一空间几何体的三视图如图所示,则该几何体的体积为( ) A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+233 题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( ) A .与x ,y 都有关 B .与x ,y 都无关 C .与x 有关,与y 无关 D .与y 有关,与x 无关 题5 直角梯形的一个底角为45°,下底长为上底长的32 ,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积. 题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( ) A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积. 题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积. 题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积. 题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比. 题11 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所

空间几何体的表面积与体积 示范教案

1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积 整体设计 教学分析 本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题. 教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形,圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系.由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下. 关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等;②一个几何体的体积等于它的各部分体积的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积公式的推导是建立在等体积概念之上的. 柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论. 与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系,是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式. 值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来增强空间想象能力. 三维目标 1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.

空间几何体的表面积和体积(一)

空间几何体的表面积与体积 柱体、锥体、台体的表面积与体积 [新知初探] 1.柱体、锥体、台体的表面积公式 2.柱体、锥体、台体的体积公式 柱体的体积公式V=Sh(S为底面面积,h为高); 锥体的体积公式V= 1 3Sh(S为底面面积,h为高); 台体的体积公式V= 1 3(S′+S′S+S)h. [点睛](1)圆柱、圆锥、圆台的侧面积公式之间的关系:

[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)锥体的体积等于底面面积与高之积( ) (2)台体的体积可转化为两个锥体的体积之差( ) 答案:(1)× (2)√ 2.侧面都是等腰直角三角形的正三棱锥,底面边长为a 时,该三棱锥的表面积是( ) A.3+34a 2 B.34a 2 C.3+32 a 2 D.6+34 a 2 解析:选A ∵侧面都是等腰直角三角形,故侧棱长等于2 2 a ,∴S 表 = 34a 2+3×12 × ??? ?22a 2=3+34a 2. 3.若圆锥的底面半径为3,母线长为5,则圆锥的体积是________. 解析:由已知圆锥的高h =4, 所以V 圆锥=1 3π×32×4=12π. 答案:12π 柱、锥、台的表面积 [典例] 现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该 直四棱柱的侧面积. [解] 如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9, ∴a 2+52=152,b 2+52=92, ∴a 2=200,b 2=56. ∵该直四棱柱的底面是菱形, ∴AB 2= ????AC 22+????BD 22=a 2+b 2 4=200+564 =64,∴AB =8. ∴直四棱柱的侧面积S =4×8×5=160. (1)求几何体的表面积问题,通常将所给几何体分成基本几何体,再通过这些基本几何体的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

相关文档
最新文档