肠道微生态系统与肠黏膜免疫关系研究进展_洪南-2

肠道微生态系统与肠黏膜免疫关系研究进展_洪南-2
肠道微生态系统与肠黏膜免疫关系研究进展_洪南-2

肠道微生态系统与肠黏膜免疫关系研究进展

南综述,

湛先保审校[摘要]肠道微生态系统参与肠黏膜免疫系统的发育,促进肠黏膜分泌型免疫球蛋白A (secreted IgA ,sIgA )的合成,并

与肠黏膜免疫细胞相互调节,是维持肠道稳态的重要机制,在炎症性肠病、肠易激综合征、小儿过敏性疾病等疾患的发生发展中发挥重要的作用。文中对肠道微生态系统与肠黏膜免疫功能关系的进展作一综述。

[关键词]肠道微生态;肠黏膜;免疫;炎症性肠病[中图分类号]R333.3[文献标志码]A [文章编号]1008-

8199(2014)04-0444-03作者单位:200433上海,

第二军医大学临床二队(洪南、湛先保)

通讯作者:湛先保,

E -mail :zhanxianbao@126.com Correlation of gut microflora and intestinal mucosal immunity

HONG Nan reviewing ,ZHAN Xian-bao checking

(Clinical second team ,Second Military Medical University ,Shanghai 200433,China )

[Abstract ]Gut microflora ,an important part in maintaining the intestinal homeostasis ,can participate in the development of intestinal mucosal immune system ,promote the synthesis of secreted IgA (sIgA )and interact with intestinal immune cells.Gut micro-flora also plays a significant role in the development of inflammatory bowel diseases ,irritable bowel syndrome ,pediatric allergic disea-ses and other disorders.This paper reviews the advances about the correlation of gut microflora and intestinal mucosal immunity.

[Key words ]Gut microflora ;Intestinal mucosa ;Immunity ;Inflammatory bowel disease

0引言

微生态系统是由正常微生物群与其宿主的微环

境(组织、

细胞、代谢产物)2类成分组成。研究正常微生物群的结构、功能及其与宿主相互依赖和相互制约关系的科学称为微生态学。大量微生物群分布在口腔、皮肤、泌尿道、胃肠道等部位,构成人体的微生态系统。肠道微生态系统主要由肠道菌群构成,包括3大类:①与机体共生的生理性菌群;②潜在的条件致病菌群;③侵入性病原菌群。肠道微生态系统功能多样,其不仅起着调节肠黏膜免疫,维持肠道稳态的作用,还与炎症性肠病、肠易激综合征、小儿过敏性疾病等疾患的发生发展密切相关。1

肠道微生态系统对肠黏膜免疫的作用

肠道微生态系统与肠黏膜免疫系统相互作用,参与肠黏膜免疫细胞的发育,启动调节肠黏膜免疫

功能的信号传导通路[1]

。肠道微生态系统与肠黏

膜屏障共同组成完善的肠道防御机制,

以直接和间接2种方式共同抵御致病菌的侵袭。直接方式为肠道共生菌群与致病菌竞争消耗营养物质,抑制致病菌的增殖;间接方式为肠道共生菌群通过分解代谢糖类以获得短链脂肪酸,主要是乙酸,从而抑制毒素

在肠道内的移位[2]

。同时肠黏膜在肠道共生菌群

的刺激下增加黏液的分泌,加强肠道的屏障作用。

1.1肠黏膜淋巴组织肠道淋巴组织(gut-associ-ated lymphoid tissues ,GALTs )构成肠道免疫系统,是捕获和提呈抗原的场所,并可促进淋巴细胞发挥免疫功能,参与炎症和免疫耐受的形成。基于无菌小鼠的实验发现,肠道菌群对GALTs 的产生和成熟

有不可替代的作用[3]

。目前已知GALTs 包括派尔集合淋巴结(Peyer's patches )、隐窝细胞集合淋巴结(crypt patches )和孤立淋巴滤泡,其中以隐窝细胞集合淋巴结和孤立淋巴滤泡的发育与肠道菌群的刺激

关系最为密切[4]

。一方面,

肠道菌群可诱导肠道淋巴滤泡上皮细胞高度表达核苷酸结合寡聚化结构域

蛋白1(Nucleotide-binding oligomerization domain-containing protein 1,NOD-1),并在革兰阴性杆菌的刺激下诱导淋巴滤泡的生成[5]

。另一方面,

当肠黏膜上皮细胞受损后,肠道菌群通过刺激Toll 样受体(Toll-like receptors ,TLRs )诱导上皮细胞增殖,加固肠黏膜上皮细胞之间的连接,从而减少病原菌对肠

黏膜的损害,维护肠道稳态[6]

。因此,目前认为肠道微生态系统主要是通过与肠黏膜上皮细胞TLRs 和NODs 2种受体的结合,增强肠黏膜淋巴组织抵御病原体入侵的能力,减轻肠道的炎症反应,维持肠道

稳态[7]

1.2免疫球蛋白A (secreted IgA ,sIgA )sIgA 是

·444·医学研究生学报2014年4月第27卷第4期J Med Postgra ,Vol.27,No.4,April ,2014

DOI:10.16571/https://www.360docs.net/doc/9f17191347.html,ki.1008-8199.2014.04.009

由肠道黏膜固有层浆细胞分泌的一种重要的免疫球

蛋白,

是肠黏膜免疫的重要组成部分。sIgA 可以调节肠道微生态系统的组成和功能[8]

。sIgA 的缺失或功能障碍将引起活化诱导性胞苷脱氨酶的缺失或

突变,进而导致肠道菌群组成成份的变化[9]

。sIgA

覆盖在肠道内可溶性抗原的表面,

阻止其与肠黏膜上皮细胞的结合,防止其侵入肠黏膜固有层,因而可

增强肠黏膜的屏障功能[10]

肠道微生态系统通过多种复杂机制促进sIgA 的合成。近来研究发现肠道菌群可通过刺激肠道淋巴滤泡树突状细胞上的髓样分化因子88(myeloid differentiation factor 88,MYD88)促进sIgA 的合成[11]

。肠道菌群的鞭毛蛋白亦可刺激肠道固有层树突状细胞合成维甲酸,维甲酸又可以诱导肠黏膜

固有层B 细胞的分化成熟而促进sIgA 的合成[11]

。1.3肠道微生态系统与肠道辅助性T 淋巴细胞(T helper 17cell ,T H 17)肠道T H 17细胞是一类

积聚在肠道的CD4+

T H 细胞,可以产生促炎因子,如IL-17A 、IL-17F 、IL-22,是肠黏膜免疫系统的重要组成部分,对人体自身免疫疾病的发生起着重要的作用[12]

。另有研究表明相比于正常小鼠,

无菌小鼠肠道内T H 17细胞的数量明显减少,

提示T H 17细胞的增殖分化过程与肠道菌群的调控有关,肠道中的分节丝状菌(segmented filamentous bacteria ,SFB )对肠

道T H 17细胞的增殖分化起重要作用[13]

。SFB 黏附在肠道黏膜上皮细胞表面,促进血清淀粉样蛋白A (serum amyloid A protein ,SAA )的合成与分泌,SAA

又通过促进肠道固有层树突状细胞产生IL-1β和IL-23,诱导T H 17细胞的分化成熟[14]

1.4肠道微生态系统与肠道免疫调节细胞肠道

免疫调节T 细胞[

(FOXP3)+regulatory T cells ,T Reg ]与肠道稳态的维持密不可分。T Reg 的减少将导

致肠道CD4+

T H 细胞异常表达针对肠道共生菌群的T 细胞特异性受体,后者将导致肠道菌群的组成发

生改变,引起肠道炎症[15]

。近来研究发现相比于正

常小鼠,

无菌小鼠的结肠黏膜固有层T Reg 数量大幅下降,提示T Reg 的增殖分化在一定程度上依赖于肠

道菌群[16]。Round 等[17]

将脆弱拟杆菌移植入无菌

小鼠肠道内,其肠道内的T Reg 数量显著增加,

也提示T Reg 的增殖分化与肠道菌群关系密切。2

肠道微生态系统与肠道相关的免疫性疾病

目前已经发现肠道微生态系统与众多肠道相关

的免疫性疾病有关,特别是与炎症性肠病、肠易激综

合征、小儿过敏性疾病的关系有较为深入的研究[18]

。2.1炎症性肠病(inflammatory bowel disease ,IBD )IBD 包括溃疡性结肠炎(ulcerative colitis ,UC )和克罗恩病(Crohn's disease ,CD )。Swidsinski

等[19]

通过16SrRNA 探针技术分析比较UC 和CD 患者与其各自对照组肠道菌群的组成,发现UC 和CD 患者肠道益生菌群下降而致病菌群上升。其中急性期UC 患者双歧杆菌和乳酸杆菌数量下降而小梭菌、肠球菌数量上升;急性期CD 患者亦有双歧杆菌和乳酸杆菌数量减少,同时酵母菌、肠杆菌数量上升。多项研究表明IBD 的发生发展与肠道微生态系统的改变关系密切。正常情况下,肠道益生菌群会通过诱导免疫调节来抑制有致炎作用的肠道致病

菌,包括激发T Reg ,促进IL-10和REG Ⅲγ(regenera-ting islet-derived protein 3γ)的释放[20]。当肠道稳态被破坏时,即肠道菌群失调或机体对肠道菌群不耐

受,将引起慢性炎症反应,包括巨噬细胞、

T 淋巴细胞的活化和肿瘤坏死因子-α等炎症因子的释放,最

终导致IBD 的发生[21]

。肠道菌群失调与多种因素有关。基因因素如调节细胞自噬的基因ATG 16L 1的突变,环境因素如饮食习惯改变,精神压力增大,

罹患疾病等都会导致肠道菌群失调[22]

2.2肠易激综合征(Irritable bowel syndrome ,IBS )研究表明IBS 患者肠道微生态系统的组成与正常人相比差异显著,主要表现为:①肠道菌群种类减少;②肠道优势菌群数量下降;③肠道益生菌群

含量降低[23]

。食物经肠道菌群代谢的产物如丙酸,醋酸等有机酸以及甲烷(CH 4)等气体产物也可影响肠道动力及肠道敏感性。分析IBS 患者肠道菌群组成,发现产短链脂肪酸的乳酸杆菌和韦荣球菌数量增多且肠内丙酸、醋酸的含量与IBS 症状严重程度

呈正相关[24]。Makhani 等[25]

发现CH 4可减弱肠道的传输功能且便秘严重的IBS 患者肠道内CH 4含量较高。另有研究证明抗菌药利福昔明的应用可明显改善IBS 患者的总体症状,这间接证明肠道微生态

系统改变在IBS 发生发展中的重要作用[26]

2.3小儿过敏性疾病小儿过敏性疾病与肠道微生态系统关系紧密。肠道微生态系统通过影响肠道黏膜免疫系统而影响小儿过敏性疾病的发生发展。近期研究表明,新生儿时期肠道菌群的定植可以有效的降低肠道中的恒定性自然杀伤性T 细胞(invar-iant natural killer T cells ,iNKT )的数量,而iNKT 细胞已经被证明是导致肺部过敏性炎症的重要因素,由此表明肠道共生菌群可以抑制小儿过敏性疾病的

发生[27]

。另有研究发现相比于正常小鼠,

无菌小鼠外周血内嗜酸性粒细胞和血清IgE 的水平都显著升高[28]

。此外,

肠道菌群还可直接作用于肠黏膜内B 细胞,并通过激活其上的MYD88来限制B 细胞内

IgE 的类别转换,达到抑制过敏反应的作用[28]

。3

肠道微生态系统与肠道黏膜免疫之间的相互

作用机制十分复杂,至今仍未完全阐明,深入了解两者之间的关系将有助于我们认识许多免疫性疾病的发生发展过程,对探究病因和研究治疗方法具有重要意义。近年来,相关研究已取得一定成果,肠道微生态系统与肠道黏膜免疫之间的相互作用机制已被部分揭示,但还有很多重要问题没有解决,如肠道微生态系统失衡的免疫机制到底是什么?肠黏膜免疫系统对肠道正常菌群产生免疫耐受的机制是什么?通过移植菌群来纠正肠道微生态系统失衡的方式是否能起到治疗IBD等肠道相关免疫性疾病的作用?随着人类对肠道微生态系统的重视,以及检测技术的不断更新,对于肠道微生态系统的研究也将快速发展。阐明肠道微生态系统与肠黏膜免疫之间的关系将对肠道疾病的预防和治疗提供可靠的理论基础。

【参考文献】

[1]Clemente JC,Ursell LK,Parfrey LW,et al.The impact of the gut microbiota on human health:an integrative view[J].Cell,

2012,148(6):1258-1270.

[2]Fukuda S,Toh H,Hase K,et al.Bifidobacteria can protect from enteropathogenic infection through production of acetate[J].Na-

ture,2011,469(7331):543-547.

[3]Littman DR,Pamer EG.Role of the commensal microbiota in normal and pathogenic host immune responses[J].Cell Host Mi-

crobe,2011,10(4):311-323.

[4]Pabst O,Herbrand H,Friedrichsen M,et al.Adaptation of soli-tary intestinal lymphoid tissue in response to microbiota and che-

mokine receptor CCR7signaling[J].Immunology,2006,177

(10):6824-6832.

[5]Bouskra D,Brézillon C,Bérard M,et al.Lymphoid tissue gene-sis induced by commensals through NOD1regulates intestinal ho-

meostasis[J].Nature,2008,456(7221):507-510.

[6]周济宏,李幼生,洪志坚,等.肠黏膜上皮细胞的载体分布及功能[J].医学研究生学报,2009,22(7):677-681.

[7]Chung H,Kasper DL.Microbiota-stimulated immune mechanisms to maintain gut hemeostasis[J].Curr Opin Immunol,2010,22

(4):455-460.

[8]Macpherson AJ,Geuking MB,McCoy KD.Homeland security:IgA immunity at the frontiers of the body[J].Trends Immunol,

2012,33(4):160-167.

[9]Fagarasan S,Muramatsu M,Suzuki K,et al.Critical roles of ac-tivation-induced cytidine deaminase in the homeostasis of gut flora

[J].Science,2002,298(5597):1424-1427.

[10]Fagarasan S,Kawamoto S,Kanagawa O.Adaptive immune regula-tion in the gut:T cell-dependent and T cell-independent IgA syn-

thesis[J].AnnuRev Immunol,2010,28:243-273.

[11]Suzuki K,Maruya M,Kawamoto S,et al.The sensing of envi-ronmental stimuli by follicular dendritic cells promotes immuno-

globulin A generation in the gut[J].Immunity,2010,33(1):

71-83.

[12]Littman DR,Rudensky AY.Th17and regulatory T cells in medi-

ating and restraining inflammation[J].Cell,2010,140(6):

845-858.

[13]Ivanov II,FrutosRde L,Manel N,et al.Specific microbiota di-rect the differentiation of IL-17-producing T-helper cells in the

mucosa of the small intestine[J].Cell Host Microbe,2008,4

(4):337-349.

[14]Shaw MH,Kamada N,Kim YG,et al.Microbiota-induced IL-1β,but not IL-6,is critical for the development of steady-state

TH17cells in the intestine[J].J Exp Med,2012,209(2):

251-258.

[15]Atarashi K,Tanoue T,Shima T,et al.Induction of colonic reg-ulatory T cells by indigenous Clostridium species[J].Science,

2011,331(6015):337-341.

[16]Geuking MB,Cahenzli J,Lawson MA,et al.Intestinal bacterial colonization induces mutualistic regulatory T cell responses[J].

Immunity,2011,34(5):794-806.

[17]Round JL,Lee SM,Li J,et al.The Toll-like receptor2pathway establishes colonization by a commensal of the human microbiota

[J].Science,2011,332(6032):974-977.

[18]Kamada N,Seo SU,Chen GY,et al.Role of the gut microbiota in immunity and inflammatory disease[J].NatRev Immunol,

2013,13(5):321-335.

[19]Swidsinski A,Loening-Baucke V,Herber A.Mucosal flora in Crohn's disease and ulcerative colitis-an overview[J].J physiol

Pharmacol,2009,60(Suppl6):61-71.

[20]Judy HC.The genetics and immunopathogenesis of inflammatory bowel disease[J].NatRev Immunol,2008,8(6):458-466.[21]谢睿,李全朋,缪林.炎症性肠病免疫发病机制研究进展[J].医学研究生学报,2013,26(2):206-210.

[22]Cadwell K,Patel KK,Maloney NS,et al.Virus-plus-suscepti-bility gene interaction determines Crohn's disease gene Atg16L1

phenotypes in intestine[J].Cell,2010,141(7):1135-1145.[23]Jeffery IB,O'Toole PW, hman L,et al.An irritable bowel syndrome subtype defined by species-specific alterations in faecal

microbiota[J].Gut,2012,61(7):997-1006.

[24]Tana C,Umesaki Y,Imaoka A,et al.Altered profiles of intesti-nal microbiota and organic acids may be the origin of symptoms in

irritable bowel syndrome[J].Neurogastroenterol Motil,2010,22

(5):512-519,e114-115.

[25]Makhani M,Yang J,Mirocha J,et al.Factor analysis demon-strates a symptom cluster related to methane and non-methane

production in irritable bowel syndrome[J].J Clin Gastroenterol,

2011,45(1):40-44.

[26]Pimentel M.Review of rifaximin as treatment for SIBO and IBS [J].Expert Opin Investig Drugs,2009,18(3):349-358.[27]Olszak T,An D,Zeissig S,et al.Microbial exposure during ear-ly life has persistent effects on natural killer T cell function[J].

Science,2012,336(6080):489-493.

[28]Hill DA,Siracusa MC,Abt MC,et al.Commensal bacteria-de-rived signals regulate basophil hematopoiesis and allergic inflam-

mation[J].Nat Med,2012,18(4):538-546.

(收稿日期:2014-01-16;修回日期:2014-02-28)

(责任编辑:左琦;英文编辑:张龙江)

鱼类粘膜免疫机制

水产动物免疫学—鱼类粘膜免疫 1 粘膜免疫系统的非特异性免疫 鱼类的非特异性免疫,如通过一些非特异性的溶菌酶、蛋白酶及呼吸暴发产生的活性氧自由基等来杀灭入侵微生物,是鱼类相当重要的防御机制之一.研究表明,粘膜免疫系统也存在这些非特异性的免疫机制.通过对鱼的皮肤和粘液抽提物进行研究,发现其中具有一些非特异性的抗细菌、真菌的物质[15] ,这些物质对病原的作用具有广谱性.对皮肤粘液与寄生虫感染的关系研究发现,虹鳟鳍条和皮肤 粘液细胞密度与三代虫感染强度呈负相关,并认为粘液中的溶菌酶、蛋白酶、免疫球蛋白及C3补体对寄生虫的感染都有影响.鱼类鳃和肠道的吞噬细胞都存在活性氧自由基(O·-2 )鳃上的吞噬细胞具有吞噬活性,但是从其O·-2活性看,其呼吸暴发( respiratory burst ) 强度不如头肾白细胞.而对肠道巨嗜细胞的呼吸暴发进行研究, 结果表明虹鳟后肠巨嗜细胞对PMA 刺激后的化学发光反应(chemiluminescence response) 强度明显比前肠细胞强,这种差别并不是因为 巨嗜细胞在前、后肠中数量上的明显差别,而是两个部位的巨嗜细胞细胞反应强度不相同.此外,大剂量的维生素E 可以增强鱼类肠道白细胞的吞噬活性,这可能与维生素E 能增强吞噬细胞膜的流动性有关.鱼类的嗜曙红粒细胞 (eosinophilic granule cells ,EGCs)在非特异性免疫中也有相当重要的作用。Flano等发现虹鳟鱼体外培养的鳃在受到细菌刺激时,EGCs数量增加,并推测EGCs 是由局部的前体细胞分化而来.Holland等[16]的结果也证实了这一点,在体外培养的鳃受到LPS 和人重组TNFα刺激时,EGCs的数量有显著的增加,并且还发现鱼体受急性应激(acute stress )和慢性应激(chronicstress)时,EGCs 的数量也会 增加,这些现象类似于哺乳动物肥大细胞应激时的反应机制.另外鱼类皮肤、鳃 及肠道的EGCs与哺乳动物肥大细胞有类似的细胞酶活性(如磷酸酶,非特异性脂 酶等) ,并在P物质(substance P,SP)、辣椒素等物质的刺激下发生去颗粒化,因而一般认为鱼类的EGCs 细胞与哺乳动物肥大细胞是同源的. 2 粘膜免疫系统的特异性免疫 在哺乳动物中,当抗原接触粘膜时, 可以引起局部的免疫应答,并分泌特异性的IgA 抗体.成特异性免疫应答.最初, 研究表明口服和肠道灌注的方法进行免疫 都可以引起体液和细胞免疫应答,而且口服疫苗可以使鱼体产生不依赖于血清抗体的粘膜抗体.近十年来,围绕这一问题的研究取得了很大的进展,越来越多的学

猪肠道的免疫功能及其调整

猪肠道的免疫功能及其调整 1、肠道的免疫功能 肠道黏膜是动物体内最大的黏膜免疫器官。机体有70%的感染发生在黏膜上。黏膜接触抗原后局部可产生各类抗体并分泌于分泌液中,其中起防御作用的是免疫球蛋白A(SIgA)。SIgA存在于肠道、呼吸道、鼻腔等表面黏膜,是分泌型免疫球蛋白,对机体局部免疫及保护呼吸道黏膜有重要作用。可阻止或抑制病原微生物粘附,可与溶菌酶共同作用溶解细菌、中和病毒以及免疫排除作用。支原体主要寄生于呼吸道上皮细胞但不进入血液,引起呼吸道纤毛脱落,肺部粘液无法排除,继而加重呼吸道病情。肠道黏膜和呼吸道黏膜产生的SIgA抗体具有阻止支原体吸附的作用。 肠道功能与局部(滴鼻)免疫也有着重要联系。滴鼻免疫可封锁感染路径且不受母源抗体干扰,是近年来免疫猪伪狂犬疫苗(gE基因缺失株)、蓝耳病疫苗(R98株)等免疫的重要手段。SIgA和微褶皱细胞(M细胞)在局部免疫中发挥重要作用。M细胞是散布肠道黏膜上皮细胞间的特化的抗原运转细胞,其作用是通过运输抗原和微生物至基底淋巴细胞组织而激发免疫反应。M细胞将抗原传给巨噬细胞,然后提呈给T细胞和SIgA—B细胞,引起免疫反应。肠道细菌能通过黏膜屏障易位固有层与免疫细胞相互接触,激活穿越上皮细胞的运输通路和持续刺激黏膜免疫系统。M细胞和SIgA的产生依赖自身、本原健康的肠道菌群和黏膜组织。 肠道具有免疫作用和吸收作用。母猪的肠道免疫功能与下代有遗传联系和供长特性。即使胎儿阶段肠道是无菌的,但后天建立的肠道菌群取决于胚胎时期肠道的健康形成。现代化养猪生产中较大的障碍是便秘,便秘可直接造成母猪情绪低落、采食量低、泌乳量少、产程长、不发情等繁殖问题。便秘过程中,肠道在吸收营养的同时吸收宿便中的的毒素,导致肝脏中毒和肾脏的排毒障碍,毒素随之进入血影响母乳的乳质,哺乳仔猪腹泻的治疗难度增大,畜主在患有便秘的病猪的馈料中添加钠、钾等盐类轻泻剂防治,虽然有效但损害猪的肠道免疫功能,导致猪的消化功能紊乱。 2、肠道菌群的调整 肠道菌群失衡可导致便秘、腹泻甚至腹泻和便秘交替的肠应激综合征。有益菌分为原籍菌和外来菌,原籍菌就定制力能够长期粘附在肠道黏膜上,而外来菌在肠道内不具有定制力,在肠道内存活时间一般不超过7天。有益菌是按照属、种、株3个层次划分的,每种动物肠道内的有益菌群结构都不尽相同,找到适合猪肠道菌群生长的有益菌来补充可用于暂时辅助性调节肠道菌群失衡。市场上虽然有很多含有益菌类的饲料添加剂,但并非都具有调节肠道菌群的功效。因为胃酸具有很强的杀菌功能,90%益生菌在经过食道、胃部时会被杀死,剩余的益生菌能到达肠道。无论是便秘或腹泻所引起的肠道菌群失衡对肠道健康都有着不可逆转的伤害。 3、肠道内环境的调整 健康肠道的调节需从猪的饮食入手,提供全价饲料、适量的粗纤维和优质的维生素,同时可采取一些辅助性的调整肠道功能的方法,如饲料中添加酶制剂、酸化剂及中草药。酶制剂可有效的降低食糜粘度,预防母猪便秘,促进消化吸收,提高商品猪生长速度。酶制剂的缺点是见效较慢,常常影响整体应用效果。酸化剂(如柠檬酸)是添加于饲料中物质,用于调整胃微生态系统,补充仔猪胃液分泌不足或胃酸分泌力下降,保持胃内pH值稳定,可有效激活消化酶,提高饲料利用率。日粮中添加1.5%的柠檬酸时,胃肠道大肠杆菌的生长受到抑制,乳酸杆菌的繁殖显著增加。仔猪从出生后开始其胃酸分泌能力是需要一段时间逐渐达到正常水平的,胃酸分泌不足或分泌紊乱可以导致消化道其它部位的异源菌,如葡萄球菌、克雷伯氏菌等在胃内的定植,造成胃微生态平衡失调。酸化剂通过补充胃酸分泌不足,使胃提早酸化的作用,降低胃内pH值,促进有益菌大量繁殖并形成优势菌群,抑制或杀灭有害

黏膜免疫系统研究进展

黏膜免疫系统研究进展 摘要黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌尿生殖道粘膜下及一些外分泌腺体(唾液腺、泪腺、乳腺)处的淋巴组织,是执行局部特异性免疫功能的主要场所。该系统在体内覆盖范围很广.是机体整个免疫网络的重要组成部分,并且又是具有独特结构和功能的独立免疫体系,它在抵抗感染方面起着极其重要的作用,黏膜表面与外界抗原(比如食物、共生菌、有害病原体等)直接接触,是机体抵抗感染的第一道防线[1]。本文简述了黏膜免疫系统的结构及功能,就黏膜免疫的体液、细胞调节的研究进展做一综述。 关键字黏膜免疫系统黏膜免疫调节体液调节细胞调节 前言 自20世纪60年代黏膜免疫概念产生以来,黏膜免疫系统作为机体相对独立的免疫系统,就一直被国内外学者所关注。动物机体黏膜组织是机体与外部环境进行交流的场所。肠黏膜与肠腔内大量细菌及毒素广泛接触,是机体最重要的屏障,也是机体受威胁最大的部位,机体95%以上的感染发生于黏膜或从黏膜入侵。为了预防局部黏膜疾病的发生,黏膜组织形成了严密的防御体系——黏膜免疫系统,构成动物有机体抵抗病原微生物入侵的第一道免疫屏障。通过黏膜免疫后,黏膜局部的抗体比血清抗体出现的早,效价高,且维持的时间长。黏膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌尿生殖道粘膜下及一些外分泌腺体处的淋巴组织,是执行局部特异性免疫功能的主要场所。黏膜免疫系统由肠粘膜相关淋巴组织(GALT)、支气管粘膜相关淋巴组织(BALT)、眼结膜相关淋巴组织(CALT)和泌尿生殖道黏膜相关淋巴组织(UALT)四部分构成,它们在抗病毒免疫反应中起着非常重要的作用。是形成生物体防御外界病原物入侵的首道屏障。 1.黏膜免疫的重要性 黏膜广泛分布于机体的呼吸道、消化道及泌尿生殖道表面。黏膜表面的上皮细胞彼此之间紧密排列,形成一道天然屏障,与皮肤一起将机体内环境与外界环境隔离开来,使机体免受外界多种病原微生物的侵扰。例如,肠道黏膜免疫系统主要是指肠道相关的淋巴样组织(gut—associated lymphoidtissue,GALT)。根据形态、结构、分布和功能,可将GALT分类为两大部分.即有结构的组织黏膜滤泡和广泛地分布于黏膜固有层中的弥漫淋巴组织。黏膜滤泡是免疫应答的传人淋巴区.又称诱导区,抗原由此进入GALT,被抗原呈递细胞捕获、处理和呈递给免疫活性细胞,诱发免疫应答;而弥漫淋巴组织是免疫应答的传出淋巴区,又称效应区。浆细胞和致敏淋巴细胞通过归巢机制迁移至弥漫

肠道菌群与粘膜免疫系统

肠道菌群与粘膜免疫系统 Michael H.Chapman , Ian R.Sanderson 英国伦敦大学Barts & The London,圣玛丽医院成人及儿童胃肠病科, Turner Street, 伦敦 E1 2AD ,英国 前言 出生时胃肠道是无菌的,但很快有种类繁多的细菌定植,因此成为人体接触病原微生物的首要部位,甚至90%的微生物是通过胃肠道进入人体的。胃肠道最主要的功能在于摄取营养和维持体液的平衡以驱除有害的微生物和其它一些毒素物质。我们就胃肠道粘膜免疫系统的基本组成及病原微生物如何与其和肠道功能的其它方面相互作用进行综述。 肠道的正常菌丛 出生时胃肠道的粘膜免疫系统的活性较低,与成年人比较淋巴细胞和Payer斑都较少。出生后经口菌群定植很快发生。肠道菌群在不断地发生变化直到成年才变得稳定,且会随着饮食结构的改变而发生变化。例如,母乳中IgA水平在婴儿期就起着非常重要的作用。 胃肠道的菌群总量是非常大的,近50%的粪便是细菌,约为1012/克。随着胃肠道的长度发生变化,其细菌数目和种类也不同。除口腔外,菌落随着胃肠道的延伸而逐渐增多,而胃和近端小肠却只有少量的以革兰氏阳性为主的细菌。菌群在小肠远端和结肠变成一个非常复杂的微生物环境。这些区域也正是炎性肠疾病(IBD)最容易受累的部位,这使我们推测粘膜免疫系统对胃肠道菌群的无效或不正常的反应在这些疾病的发病机制中扮演了非常重要的角色。 胃肠道的菌群总量是非常大的,粪便中近50%是细菌,约为1012/克粪便 由于许多方面的原因定义正常的肠道菌群是非常困难的。已知有超过500种不同种类的微生菌群在肠道定植,在回肠末端及结肠部的主要定植菌群包括乳酸杆菌、双歧杆菌、肠球菌和拟杆菌[1-2]。由于许多菌群无法在体外进行培养因而对其研究也一度受到阻碍,近来,借助于新的研究方法如变性梯度凝胶电泳(DGGE)和荧光原位杂交(FISH,利用菌群特异性探针对其进行组织定位)使对这些菌群研究取得重大进展。肠腔和其相关联的粘膜上微生物菌群的数量和类型也是有差别的[3]。粘膜相关菌

鱼类粘膜免疫系统

鱼类粘膜免疫系统 真骨鱼类粘膜相关淋巴组织( mucosa2associatedlymphoid tissues) 主要包括肠道、皮肤和鳃, 这些暴露于外环境的组织及其表面的粘液构成了抵御病原入侵的第一道屏障[6].这些组织中分布有各种免疫细胞,使其具有独立完成局部免疫应答的功能[7]. 1. 1 肠道 鱼类的肠道粘膜层可分为两层: 肠上皮层( laminaepithelialis) 和肠固有层(lamina propria) [7,8].粘膜层中分布有粒细胞、巨嗜细胞等白细胞,主要存在于肠道皱褶的固有层,而上皮层中较少[9].鱼类肠道虽然没有类似哺乳动物Peyer 氏淋巴集结,但是还有着相当数量的淋巴细胞,主要分布在肠道的中后部.根据它们的位置, 可以分为肠道固有层淋巴细胞(lamina propria lymphocytes ,LPLs )和上皮内淋巴细胞(intraepithelial lymphocytes ,IELs).通过免疫组化检测发现,后肠中的Ig+淋巴细胞主要分布在固有层,上皮层中的淋巴细胞则大多是Ig-细胞[10]也有报道在中肠上皮层有Ig+细胞的分布.Ig-的细胞一般被认为是T细胞,Abelli等[11]应用胸腺细胞的单抗检测肠道淋巴细胞,也证实T细胞主要分布于肠道上皮层.McMillan 和Secombes[9]发现,肠上皮层细胞淋巴细胞对肿瘤靶细胞具有类似T细胞的细胞毒性,这个结果与T、B淋巴细胞在肠道中的分布情况相吻合. 1. 2 皮肤 鱼类的皮肤表皮主要由上皮细胞组成,其间分布有粘液细胞和囊状细胞,另外还证实,皮肤表皮还存在抗体分泌细胞. 1. 3 鳃 鳃组织的细胞主要由大淋巴细胞、小淋巴细胞巨嗜细胞、中性粒细胞、嗜酸性粒细胞、杯状细胞、泌氯细胞(chloride cells) 、上皮细胞等构成.鳃上淋巴细胞和巨嗜细胞基础[13].通过检测这些细胞内酶的活性, 结果表明部分粒细胞及巨嗜细胞具有酸性磷酸酶、碱性磷酸酶及非特异性脂酶的活性,类似于外周血免疫细胞的酶活性特点[12].进一步研究表明鱼类鳃上的细胞能产生和分泌一种化学趋化物质(chemoattractants ) ,能引起白细胞向鳃的局部迁移;而鳃上的白细胞迁移活性远远低于头肾白细胞,这种现象与肠道白细胞类似,意味着白细胞迁移到粘膜组织后,就对趋化物质不敏感了,因而驻留在粘膜组织.从鳃淋巴细胞对

肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制

4.肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制 武庆斌(苏州大学附属儿童医院消化科苏州 215003) 哺乳动物的胃肠道寄生着最为复杂的微生物群体,被称之为肠道原籍菌群,新近的研究认为这些细菌有近1000多种。新生儿出生时胃肠道是无菌的,免疫系统几乎没有发育,但很快有种类繁多的细菌定植。随着细菌的定植,肠道菌群的建立,刺激机体产生大量的淋巴细胞和淋巴组织,促进全身免疫系统和粘膜免疫系统的正常发育并逐步成熟,这其中也包括肠相关淋巴组织(gut-associated lymphoid tissues ,GALTs)的发育和成熟。GALTs发育成熟的结果是对肠道原籍菌群的耐受和对病原菌的免疫反应。由于宿主基因易感性,肠道粘膜屏障功能减弱或缺乏恰当的粘膜免疫反应(如免疫耐受丢失),就会导致粘膜对肠道菌群免疫反应失控,甚至引起全身免疫反应紊乱,引起慢性持续性的炎症,如过敏性炎症和炎性肠病(inflammatory bowel disease, IBD)就是例证[1,2] 。 一、肠道菌群对婴幼儿粘膜免疫的作用 和肠道菌群的建立、定植和演替一样,出生时GALTs的活性较低,与新生儿期间,全身免疫系统短时间不成熟是一致的[3,4]。新生儿生后,其外周血中几乎测不到分泌IgA的B型浆细胞——推测这种B细胞是由GALTs衍生出来,然后随血流到达粘膜效应部位。一个月后,这些细胞显著增加,12个月后达到最高峰值。这就意味着有持续不断的微生物和外界环境对GALT的刺激所致。无菌鼠的PP结(Peyer’s patches)发育程度低下:仅有极少的生发中心,数量很少的淋巴细胞,主要是CD4+T 细胞、α-βTCRCD8+细胞和分泌IgA浆细胞;脾脏和淋巴结的少有B-和T-细胞带或区域,异常内皮微血管的过度增生,以致结构不完整[5]。正常的口服饮食抗原免疫耐受能力缺失。恢复大龄无菌鼠的正常肠道菌群,食物抗原的免疫耐受功能依旧缺失。这说明在很早的初级阶段,肠道菌群的建立、定植和成熟,对先天免疫系统和获得免疫的启动有着极其重要的作用。的确肠道菌群通过“入侵”肠上皮细胞和M细胞,对GALTs的发育起着很重要的作用。Gronlund等[6] 研究0~6个月的健康的新生儿时,发现肠道内脆弱类杆菌和双歧杆菌定植的时间越早,外周血中IgA定向细胞的含量可以越早地被检测到;随着肠内脆弱类杆菌和双歧杆菌数目的增加,外周血中的IgA定向细胞的数量也逐渐增加。GALTs在未成熟的初期,允许有2种显著对立作用:1)适度、恰当的针对病毒和细菌病原体的炎症反应调控免疫防御机制的发育;2)促进对食物抗原产生免疫耐受的极其复杂的免疫机制。在婴儿期的肠道菌群不断的、进行的构建和演替过程中,GALTs对这些复杂的肠道菌群产生耐受的同时,也有助于免疫系统诱导产生上述2种功能[3]。 二、肠道粘膜免疫系统的防御机制 肠道粘膜免疫系统是由免疫反应启动的有高度器官化场所和分散在固有层和肠上皮间的效应淋巴细胞等两部分组成的防御系统。外来的抗原物质,如细菌、病毒、食物中的大分子蛋白质等被摄入到GALT(如,PP结)和肠壁淋巴结内,这些高度器官化的二级淋巴器官结构是诱导肠特异性免疫的主要部位。被抗原激活的B细胞和T细胞从诱导场所通过淋巴引流管迁移到肠系膜淋巴结,然后进入血液循环,随着血流最后再归巢到粘膜效应部位。这些效应部位是由抗原特异性的T细胞和B细胞、分化的浆细胞、巨噬细胞、树突状细胞(DC)以及嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞等组成。总之,粘膜免疫系统的诱导部位和效应部位产生粘膜和血清抗体反应,T细胞介导免疫,局部免疫刺激或免疫抑制介质以及系统免疫无能(systemic anergy)[5,7]。 PP结位于肠粘膜下,是诱导肠特异性免疫的主要场所。在PP结圆顶区上分布有微皱褶细胞(microfold cell,M细胞)。M 细胞摄取和转运肠腔的抗原,如肠道病原菌、肠道原籍菌、病毒、食物中的抗原等到肠上皮下圆顶区,在此进行抗原处理和诱导特异性的免疫反应。圆顶区内有以B细胞为主的生发中心淋巴虑泡和以T细胞、巨噬细胞以及DC的滤泡间区。生发中心内含大量增殖淋巴母细

肠黏膜免疫屏障及其保护措施

动物营养学报2014,26(5):1157-1163C hi ne s e J our nal of A ni m al N ut r i t i on d o i :10.3969/j .i ssn .1006-267×.2014.05.005肠黏膜免疫屏障及其保护措施 谢天宇1 胡红莲2 高 民2* (1.内蒙古农业大学动物科学学院,呼和浩特010018;2.内蒙古农牧业科学院动物营养与饲料研究所,呼和浩特010031) 摘 要:肠黏膜是构成动物体内与外界环境之间最大的接触表面,是易受病原体定植和入侵的最常见部位。肠黏膜免疫屏障作为保护动物机体免受外来病原微生物侵扰的重要防线,可在抗原的刺激下利用免疫细胞和免疫相关物质产生特异性免疫应答,同时可对无害抗原下调免疫反应或产生免疫耐受。研究肠黏膜免疫屏障功能作用的机制并通过人为保护性措施来预防和修复肠黏膜免疫功能损伤对于动物机体免疫屏障功能的正常发挥和生产实践具有重要意义。关键词:肠黏膜;免疫屏障;保护措施 中图分类号:S 852.2 文献标识码:A 文章编号:1006-267X (2014)05-1157-07收稿日期:2013-12-11 基金项目:国家自然科学基金(31101739);现代农业(奶牛)产业技术体系建设专项资金资助(C A R S -37)作者简介:谢天宇(1989—),男,内蒙古乌兰浩特人,硕士研究生,研究方向为反刍动物营养与调控。E - m a i l :xi e 8803262@163.c om *通讯作者:高 民,研究员,硕士生导师,E -m a i l :gm yh1588@126.c om 我们通常所说的肠道屏障功能主要是依靠肠黏膜屏障功能来实现的,肠黏膜不仅是动物机体重要的消化吸收场所,同时也是抵御毒性大分子、防止机体感染的重要局部部位。正常情况下,肠黏膜处于低渗状态,肠黏膜上皮细胞的紧密连接结构状态和肠道相关淋巴组织(gut -a s s oc i a t e d l ym phoi d t i s s ue ,G A L T )的免疫防护作用可有效地阻止大分子物质通过,尤其是抑制细菌、毒素等通过肠黏膜向机体内部扩散的途径。但是肠黏膜屏障在受损时就会为细菌、组胺和内毒素等有害物质吸收入血提供通道,尤其是内毒素,其吸收入血会产生一系列的放大反应,轻则引起炎性反应、黏膜感染,重则导致动物多器官和系统性损伤,甚至导致机体不可抑制性的炎症反应,进而危及生命[1]。肠黏膜屏障主要包括机械屏障、生物屏障、化学屏障以及免疫屏障[2],本文主要对肠黏膜免疫屏障的功能特点、免疫机制以及保护性措施进行综述。 1 肠黏膜免疫屏障的结构特点和免疫机制1.1 肠黏膜免疫屏障的结构特点 肠黏膜免疫屏障是迄今为止动物和人类最重要的屏障之一[3-4]。肠黏膜免疫是区别于动物整体免疫系统的局部免疫,主要在抗原的刺激下产生局部的免疫反应,中和抗原物质,以避免机体本身受到损害。肠黏膜免疫屏障主要由G A L T 及其 分泌的分泌型免疫球蛋白A (s e c r e t e d i m m unogl ob-ul i n A ,s I gA )、细胞因子等免疫生成物质构成。 G A L T 包括派伊氏结(pe ye r 's pa t c h ,P P )、黏膜淋巴集合体、弥散黏膜淋巴组织以及免疫细胞,其中 免疫细胞包含肠上皮细胞(i nt e s t i na l e pi t he l i a l c e l l ,I E C )、上皮内淋巴细胞(i nt r a e pi t he l i a l l ym phoc yt e ,I E L )和固有层淋巴细胞(l a m i napr opr i a l l ym pho-c yt e ,L P L )等。 1.2 肠黏膜免疫屏障的免疫机制 肠黏膜免疫屏障主要是由摄取、递呈、处理抗原的诱导部位免疫细胞和发生免疫反应的效应部位免疫细胞共同发挥免疫功能构成的独立免疫体 系,其以s I gA 介导的体液免疫为主,细胞毒性介导的细胞免疫为辅。 肠黏膜免疫应答是免疫系统的特殊免疫细胞对于潜在危害病原进行识别及处理的过程。首 先,诱导免疫细胞,如P P 内的微褶皱细胞(m i c r o-f ol d c e l l ,M 细胞)选择性接触、黏附、摄取外部抗

粘膜免疫佐剂的研究进展

粘膜免疫佐剂的研究进展 摘要:黏膜免疫在机体抵抗病原入侵时发挥着重要的作用,疫苗通过黏膜免疫可以引起局部和全身的免疫应答。但是疫苗经过消化道黏膜时常受到消化液的降解,而且常常会引起免疫耐受,为了克服这些困难,人们设计了大量的黏膜免疫佐剂以增强机体对抗原的黏膜免疫力和全身的免疫应答水平。这里将近年来粘膜免疫佐剂的研究进展做一下叙述。 关键词:粘膜免疫;佐剂;类型;研究进展 机体约有80%以上的细菌、病毒和寄生虫的感染都起始于粘膜表面。粘膜免疫可以诱导局部粘膜产生分泌性IgA(sIgA)、IgM和IgG等保护性抗体,并可诱导其它部位的粘膜也产生sIgA,这是粘膜免疫保护作用的主要机制。此外,粘膜免疫还诱导粘膜CTL反应,并且产生分泌IFN-γ的CD4+T细胞,这对于病原体侵入的预防和清除是非常重要的[1]。因此粘膜免疫是保护机体免于病原体侵犯的重要屏障,在疫苗的设计中具有重要意义。 目前机体粘膜免疫的机制还不完全清楚。现有研究表明,基于粘膜免疫的疫苗由于诱导的免疫往往反应较弱,持续时间短,难以取得理想的免疫保护效果。目前认为,如重组蛋白、合成多肽和DNA等抗原的免疫原性较弱是重要原因之一,因此需要设法提高免疫反应的强度,并且还有一些疫苗需要转变免疫反应类型,以突出粘膜免疫等。这些方面的问题使佐剂的使用显得尤为迫切和重要,因此对于粘膜免疫佐剂的研究已经成为感染免疫和疫苗领域的一个研究热点[2]。目前,已报道的粘膜免疫佐剂主要分为四类:第一类是细菌性物质;第二类是各种细胞因子;第三类是某些无机成分;第四类是可增强抗原递呈的相关载体[3]。 1 细菌性物质 大多数细菌来源的蛋白、核酸或者其它成分均能增强免疫,其原因大多是它们的保守成分可与模式识别受体(Pattern-recognition receptor,PRR)结合。PRR主要分为两种:Toll样受体(Toll-1ike receper,TLR)和核苷酸结合的寡聚化结构域(Nucleotide-binding oligomerization domain,NOD)。其中TLR识别胞外配体,NOD针对胞内病原体及其产物引发级联信号转导。 1.1 细菌毒素和其衍生物 1.1.1 霍乱毒素(CT)和大肠杆菌不耐热肠毒素(LT) CT和LT都属于A-B型细菌蛋白毒素家族,而且两者的氨基酸序列有80%的相同。晶体结构分析显示两者有很相近的结构特征,也很好地说明两者具有同源性。 CT是由A、B两种亚单位组成的AB5型结构的六聚体蛋白,A亚单位(CTA)有240个氨基酸,在第192位氨基酸附近被蛋白酶裂解后可以生成CTA1和CTA2两个多肽,二者以二硫键相连。CTAl具有ADP-核糖基转移酶的作用;CTA2的主要功能是连接CTAl和B亚单位(CTB)。 与CT相同,LT的A亚单位(LTA)是酶活性单位,B亚单位(LTB)具有与靶细胞结合的功能,LTB除可与神经节苷脂l(GMl)结合,还可与GM2、非GM糖脂类受体等结合。与CT引起的致死性腹泻相比,LT引起的腹泻要温和的多,而且与CT相比,LT同样具有很好的粘膜佐剂作用,基本上不诱生IgE,却能有效地启动机体局部和全身的体液和细胞免疫。因此,LT 作为佐剂可能比CT更胜一筹。 CT(LT)发挥毒素的大致作用过程为CTB通过GMl的结合位点与细胞表面的GMl受体结合,经过吞噬作用CT分子进入细胞,主动转运至内质网,CTA与CTB分离,进入细胞质。CTAl通过结合NAD,ADP-核糖转移酶作用于GTP结合蛋白,引起腺苷酸环化酶长久活化,

黏膜免疫系统

粘膜免疫系统(Mucosal immune system,MIS)是指广泛分布于呼吸道、胃肠道、泌 尿生殖道粘膜下及一些外分泌腺体处的淋巴组织,是执行局部特异性免疫功能的主要 场所。 1简介 粘膜免疫系统是机体整个免疫网络的重要组成部分,又是具有独特结构和功能的独立 免疫体系,它在抵抗感染方面起着极其重要的作用,粘膜表面与外界抗原(比如食物、共生菌、有害病原体等)直接接触,是机体抵抗感染的第一道防线。而且,实验证明,通过粘膜免疫后,粘膜局部的抗体比血清抗体出现的早、效价高且维持时间长。粘膜 免疫系统构成了机体的第一道防线,它可以将外来病原微生物或其他外来抗原在侵入 机体组织之前被消灭,不至于对机体组织造成损伤。现将动物粘膜免疫系统作一简要 概述,错误和不足之处请读者指正。 2构成与功能 粘膜免疫系统由肠粘膜相关淋巴组织(GALT)、支气管粘膜相关淋巴组织(BALT)、眼结膜相关淋巴组织(CALT)和泌尿生殖道粘膜相关淋巴组织(UALT)四部分构成,它们在抗病毒免疫反应中起着非常重要的作用。 粘膜免疫系统主要由粘膜结合淋巴组织(MALT)构成。所谓粘膜结合淋巴组织,即沿着呼吸道、消化道、泌尿生殖道粘膜上皮及某些外分泌腺(哈德氏腺、胰腺、乳腺、 泪道、唾液腺分泌管等)分布并广泛存在于上皮下的淋巴组织,是粘膜接触并摄取抗 原和最初免疫应答产生的部位。粘膜免疫系统担负着哨兵的责任,区分无害与有害以 决定是放过去(耐受)还是拦下来(免疫反应)。粘膜免疫系统主要是通过产生分泌 型IgA(sIgA)和IgM发挥作用, sIgA可以阻止微生物在粘膜上皮层驻扎繁殖,禁止它们进入上皮层。特殊的位置、极其重要的作用使粘膜免疫系统形成与外周免疫系统 迥然不同的解剖学结构、淋巴细胞和免疫反应分子机制。从数量上说,粘膜免疫系统 是免疫系统中最大的,这里淋巴细胞的数量比其他部分的总和还要多,60%T细胞的 工作岗位在粘膜。 3解剖学性质 粘膜免疫系统的淋巴组织有两个基本特征:一是接近抗原,二是诱导和效应位点的区 域化,以消化道相关淋巴组织(GALT)为例:消化道相关淋巴组织由Peyer结(PP)、肠系膜淋巴结(MLN)以及分散在粘膜固有层(LP)和肠上皮中的大量淋巴细胞组成。 PP中有明确的T细胞区和B细胞区,是典型的二级淋巴器官,位于小肠系膜的对侧,与肠腔仅隔一层立方上皮细胞。这层上皮细胞被称为滤泡相关上皮,之中除了普通的 肠细胞、各种类型的淋巴细胞外,还有一种特殊的上皮细胞(M细胞),负责摄取和

鼻黏膜给药系统国内外探究进展

目前注射给药系统中存在的问题 由注射引起的炎症和交叉感染>600,000/年(美 国) 增加HIV的感染几率(4.1-8.3/100 transports) 对环境的要求 不便于流动患者的治疗 喷射给药系统(Jet injection systems) “Needleless”给药途径: , 直肠, 透皮等

鼻黏膜给药的特点(1) 鼻粘膜面积大,粘膜下血管非常丰富,动脉、 静脉和毛细血管交织成网状,药液可迅速吸 收自血管进入体循环,吸收速度和肌肉注射 相似; 药物经鼻黏膜吸收后直接进入体循环,可免 受胃肠道中酶的破坏和肝脏对药物的首过效 应;提高生物利用度; 胃肠道中容易破坏的药物,极性大而胃肠道 难于吸收的药物,鼻粘膜都能很好的吸收; 分子量大的多肽类、蛋白类药物,也能在吸 收促进剂的存在下较好地吸收; 提高患者的顺应性,用药方便,适合自身给 药; 可实现疫苗免疫 鼻黏膜给药体系的应用

(A) 100 l, (B) 70 μl, (C) 50 μl, (D) 20 μl. A B (A)给药50 μl后马上杀死.(B) 给药50 μl,2h后杀死

单剂量干粉鼻腔用药装置 https://www.360docs.net/doc/9f17191347.html,/parenterals/routes/nasal_spray_bottle.jpg 液体给药装置 粉末给药装置 鼻黏膜给药雾化装置(MAD) 增加药物鼻黏膜吸收的途径 personnel to delivery nasal medications as an Broad 30-micron spray

无毒; 生物可降解; 具有生物黏附性; Mao et al. Int J Pharm, 2004, 272(1-2), 37-43.

益生菌对肠道黏膜免疫的影响讲解

益生菌对肠道黏膜免疫的影响 李亚杰,赵献军 (西北农林科技大学动物科技学院,陕西杨陵712100) 收稿日期:2006—03—21 基金项目:陕西省农业攻关项目(2005KO2一G05—02) 作者简介:李亚杰(1978- ),女,内蒙古赤峰人,硕士研究生,主要从事动物中毒病与营养代谢性疾病研究。 摘要:益生菌作为一类以活菌为主的新型菌制剂,能在肠道内定殖,维护肠道菌群平衡,并刺激肠黏膜免疫组织,对肠道黏膜免疫有重要的影响。益生菌可直接作用于宿主的免疫系统,刺激胸腺、脾脏和法氏囊等免疫器官的发育,促进巨噬细胞活力或发挥佐剂作用,活化肠黏膜内相关淋巴组织,使免疫球蛋白A分泌增加,使免疫球蛋白A 生物合成增加,提高消化道黏膜免疫功能。 关键词:益生菌;肠道菌群;黏膜免疫 人和动物胃肠道、呼吸道、泌尿生殖道的黏膜及一些和分泌腺有关黏膜,构成了机体的重要黏膜系统,它对人和动物的健康至关重要。黏膜免疫已经成为新的免疫研究热点,这是因为机体95%以上的感染发生在黏膜或由黏膜入侵机体,另外,黏膜既存在局部免疫,又存在共同黏膜免疫系统(common mucosal immune system,CMIS)。动物的先天性或非特异性免疫应答,亦即机体免疫系统识别和排除各种异物,主要依靠机体黏膜的屏障作用。 1 肠道黏膜免疫 1.1 肠道黏膜免疫的重要性 肠道不仅是消化吸收的重要场所,同时也是“应激反应的中心器官”和“多脏器功能衰竭(multiple organ deficiency syndrome,NODS)的始动器官”,又是机体内最大的细菌和内毒素库。肠道黏膜免疫系 统包括肠道相关淋巴组织(gut associated lymphoid tissues,GALT)和有关细胞、分子成分,如淋巴细 胞、巨噬细胞、粒细胞、嗜银细胞和抗体、溶菌酶、抗菌肽等。肠道相关淋巴组织由肠上皮淋巴细胞( intestinal intraepithelial lymphocytes,IEL)、固有层淋巴细胞(1amina propria lymphocyte,LPL)、微皱褶细胞(又称膜上皮细胞、M细胞)和回肠集合淋巴结(paYer’s patches,PP)等肠相关淋巴组织构成[1]。它可抵御细菌、病毒和毒素从消化道入侵,肠黏膜抗体形成细胞占体内抗体细胞的7O%~8O ,产生免疫球蛋白A(IgA)的量比体内其他Ig类型的总量还要多。肠道与单核一巨噬细胞系统、肝、脾等免疫功能器官相比,是最大的免疫器官。肠道淋巴组织最多,超过所有组织。肠道黏膜面积巨大,约2倍于皮肤表面,每时每刻黏膜都要接触大量抗原,担负着重要的免疫功能。 1.2 肠道黏膜免疫的机制 黏膜免疫与系统免疫有所不同,黏膜免疫主要是发挥免疫抑制作用,而系统免疫主要起免疫增强作用,这与两个系统的不同作用方式有关。对抗病原微生物的肠黏膜免疫可分为先天性免疫和后天获得性免疫,其先天性免疫是构成肠黏膜屏障的基础[2]。 发生在肠道中的黏膜免疫反应是由肠黏膜表面附着的抗原引发的,肠道黏膜中的淋巴滤泡集结将抗原物质转移到淋巴滤泡集结中的巨噬细胞,巨噬细胞对抗原进行加工,并将抗原转移给辅助性T细胞,辅助性T细胞激活B淋巴细胞,B淋巴细胞分化增强,产生大量分泌型IgA(SIgA),SIgA是黏膜免疫的主要效应因子,然SIgA难以通过激活补体等途径直接杀伤病毒,但是可以通过大量非炎性反应途径清除病毒感染。SIgA发挥主要作用的部位是局部黏膜,局部黏膜免疫的基本原理是由于局部抗原刺激比全身更能有效的刺激机体黏膜分泌大量SIgA,

流感病毒呼吸道黏膜感染免疫防御机制的研究进展

H eparan Su lfate Proteog l ycans Are Involved i n the Recogn iti on of C ell u l ar Targets by NKp30and NKp46.J I m m un ol ogy ,2004,173 (4):2392-2401. 6 C arri ngton M,W ang S ,M arti n1M P ,et a.l H i erarchy of resistance to cervical n eop l asia m ediat ed by co m b i nati ons of kill er i m m unoglobu li n -li ke receptor and hum an leukocyt e an ti gen loci.J E xp M ed ,2005,201(7):1069-1075. 7 G eorgeW N ,M aureen P M,G l adm an D ,et a.l H eteroz ygoteAdvan t age i n Au toi m m une D i sease : H ierarchy of Protecti on /Suscep ti b ili ty Con ferred by HLA and K iller Ig -L i ke Receptor Co m b i nations i n Ps oriati c A rt hriti s .J I mm uno,l 2004,173(7):4273-4276. 8 Yen J H,M oore BE,Naka ji m a T ,et a.l M a j or H ist oco m pati b ili ty C o mp lex C lass I -recogn izing R eceptors Are D isease R i sk G enes i n Rheum at oid A rt h ri ti s .J Exp M ed ,2001,193(10):1159-1167.9 M o m ot T ,Koch S,H unzel m ann N ,et a.l A ssociati on of k iller cell i m m unog l obu li n-li ke receptors w it h scl eroder m a .A rthritis Rh eum,2004,50(5):1561-1565.10 Katz G , Gazit R,Arnon T I , et a.l M HC C l ass I -Independen t Recogn ition ofNK -Acti vati ng Recep t or KI R2DS4.J I mmuno,l 2004,173(3):1819-1825. 11 Za m bello R ,Falco M,C h i es aM D,et a.l Expression and f un cti on of K I R and nat u ral cytotoxicit y receptors i n NK-t ype ly m phoproli ferative d i seases of granu l arl y m phocyt es .B lood,2003,102(5): 1797-1805. 12 S i vori S ,FalcoM,M arcenaro E,et a.l E arly expressi on of tri ggeri ng recep tors and regu lat ory ro l e of 2B4i n hu m an nat ural k ill er cell precurs ors undergoi ng i n vitro d ifferen ti ati on .Proc Natl A cad Sci USA ,2002,99(7):4526-4531. 13 C ostello RT,Fauri at C,S i vori S,et a.l NK cells :inn ate i m m un i ty agai nst h e matol ogical m ali gnancies ?T rends I mmuno.l ,2004,25 (6):328-333. 14 Pende D ,Botti no C,Castricon i R, et al .PVR (CD155)and Necti n -2(CD112)as li gand s of the hum an DNA M-1(CD226) acti vati ng receptor : i nvolve m en t i n tumor cell l ysis .M olecu lar I mm unol ogy ,2005,42(4):463-469. 15 Flai g R M,S t ark S ,W atz lC,et a.l Cu tti ng E dge :NTB-A Acti vates NK Cell s v i aH o m oph ilic Interacti on.J I mmuno.l ,2004,172(11):6524-6527. 16 M arcenaro E,Augugli aro R,FalcoM,et a.l CD59i s physically and f un cti onall y as soci ated w i th nat u ral cyt otoxicit y recep tors and activates hum an NK cel-l m ed i ated cyt otox i city .E ur J I mmuno.l ,2003,33(12):3367-3376.17 G ilfill an S,H o EL ,C ell a M, et a.l NKG2D recru its t w o d i s ti nct adapters to tri gger NK cell acti vati on and costi m u l ati on .Nat I mm uno.l,2002,3(12):1150-1155. 18 V ernerisM R ,Kara m iM,B aker J ,et a.l Role ofNKG2D s i gn ali ng i n t h e cyt otoxicit y of acti vated and expanded CD8+T cells .B l ood ,2004,103(8):3065-3072. 19 T akak i R ,H ayaka w a Y,N el son A ,et a.l IL -21Enhances Tum or R ej ecti on through a NKG2D -Dep endent M echan is m.J I mmuno.l , 2005,175(4):2167-2173. 20 Vank aya l apati R ,Garg A,Porgador A, et a.l Rol e of NK C el -l A cti vati ng R ecep tors and Their L i gands i n t he Lysis ofM ononuclear Phagocytes Infected w it h an In tracell u l ar Bacteri um.J I mmuno.l,2005,175(7):4611-4617. 21 Cai Zhang ,J i an Zhang ,H a i m i ng W e,i et a.l I mb al an ce of NKG2D and its i nh i b it ory counterparts :H ow does t um or escape fro m i nnate i m mun it y ?In ternati onal I mm unophar m acology ,2005,5(7-8): 1099-1111. 22 Coudert J D,Z i m m er J ,To m asello E ,et a.l A ltered NKG2D f unction i n NK cells i nduced by chron ic expos u re toNKG2D ligand-expressi ng t um or cells .B lood,2005,106(5):1711-1717.23 A r m eanu S , B itzer M, Lauer U M, et a.l Nat u ral K ill er C el-l M ediat ed Lys i s ofH epat oma C ells v i a Sp ecific I ndu cti on of NKG2D Ligands by t he H i ston e Deacet y l as e Inh i b i tor Sod i um V al proate .Can cer Research,2005,65(14):6321-6329. (收稿日期:2005-10-15) 基金项目:国家科技攻关项目(2004BA 519A70) 作者单位:100071北京,军事医学科学院微生物流行病研究所,病原微生物生物安全国家重点实验室(杨鹏辉,博士研究生);310029杭州,浙江大学生工食品学院(杨潞芳,博士研究生) 审校者:军事医学科学院微生物流行病研究所王希良 流感病毒呼吸道黏膜感染免疫防御机制的研究进展 杨鹏辉 杨潞芳 摘要 流感发病率高,流行广,是由流感病毒通过呼吸道黏膜感染引起的重要传染病。呼吸道黏膜不仅是流感病毒的感染部位,也是防御病毒感染的部位。在流感病毒侵入机体后天然免疫系统立即作出应急反应,如果病毒逃过了非特异性免疫系统,就会被获得性免疫系统加以反应性清除。关键词 流感病毒;黏膜感染;黏膜免疫;免疫防御机制 文章编号 1673-4394(2006)05-0305-05 中图分类号 R392.1 文献标识码 A

相关文档
最新文档