非线性光学材料研究

非线性光学材料研究

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

非线性光学材料研究

摘要:

非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。本文通过对三种非线性光学材料—石墨烯、碳纳米管和量子点的性能、制备以及应用展开综合性描述。阐述当今时代非线性光学材料的发展前景和探索其未来更广阔的的应用领域。

关键词:

非线性光学材料;石墨烯;碳纳米管;量子点;综述

Study on nonlinear optical materials

Abstract:

Nonlinear optical material is a kind of optoelectronic functional material which has wide application prospect in the fields of photoelectric conversion, optical switch, optical information processing and so on. In this paper, the properties, preparation and application of three kinds of nonlinear optical materials - graphene, carbon nanotubes and quantum dots, are described. The development of nonlinear optical materials in the present age and its future application fields are described.

Key words:

Nonlinear optical materials; graphene; carbon nanotubes; quantum dots; review

1 简介

非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。

非线性光学是随着激光技术的出现而发展形成的一门学科分支,是近代科学前沿最为活跃的学科领域之一。数十年间,非线性光学在基本原理、新型材料的研究、新效应的发现与应用方面都得到了巨大的发展,成为光学学科中最活跃和最重要的分支学科之一。

1960年Maiman制成了世界上第一台红宝石激光器,人们对于光学的认识发生了重大变化。在高强度的激光作用到介质体系时,人们在大量的不同材料中都观察到与常见光学效应截然不同的现象,如介质的折射率和吸收系数会随光电场强度的变化而变化,这些新现象需要用非线性光学的基本原理予以解释。

自上个世纪60年代至今,非线性光学不断发展,一些重要的非线性光学效应相继被发现,新型的非线性光学晶体材料的试制成功,皮秒激光器件的广泛使用以及飞秒激光器的研究,使得利用超快脉冲进行非线性光学的研究得到重大推进,取得许多新的科研成果。非线性光学的应用离不开非线性光学(NLO)材料,它能实现光波频率转换,这种能力为实现全光学计算、开关和远距离通信提供了可能,应用前景广阔。

非线性光学材料是指一类受外部光场、电场和应变场的作用,频率、相位、振幅等发生变化,从而引起折射率、光吸收、光散射等变化的材料。在用激光做光源时,激光与介质间相互作用产生的这种非线性光学现象,会导致光的倍频、合频、差频、参量振荡、参量放大,引起谐波。利用非线性光学材料的变频和光折变功能,尤其是倍频和三倍频能力,可将其广泛应用于有线电视和光纤通信用的信号转换器和光学开关、光调制器、倍频器、限幅器、放大器、整流透镜和换能器等领域。

本文将要描写的三种非线性光学材料,石墨烯、碳纳米管和量子点均拥有优良的三阶非线性光学性质,实验研究证明,均存在着高的三阶非线性极化特性,在和其它材料进行复合后,取得了理想的非线性光学性质,效果显着。

2 非线性光学材料分类

作为一种较好的非线性光学材料,必须满足:(1)有适当大小的非线性系数;(2)在工作波长应有很高的透明度(一般吸收系数α<;(3)在工作波长可以实现相位匹配;(4)有较高的光损伤阀值;(5)能制成具有足够尺寸、光学均匀性好的晶体;(6)物化性能稳定,易于进行各种机械、光学加工。

下面对现在已知的非线性光学材料进行分类,并进行简单介绍。

无机非线性光学材料

1975年Chemla等人提出了用“分子工程学”方法探索有机非线性光学材料取得了很大的进展。1979年陈创天在阴离子基团理论及研究无机非线性光学材料基础上,提出了用分子工程学方法探索无机非线性材料的可能性,并总结出无机非线性材料的一些结构规律:(1)氧八面体或其它类似的阴离子基团的畸变愈大,对产生大的非线性系数愈有利;(2)当基团含有孤对电子时,该基团屹具育较大的二阶极化率;(3)具有共扼π轨道的无机平面基团将同样能产生较大的非线性系数。

有机非线性光学材料

有机非线性光学材料由于非线性系数大、响应快、可根据需要进行分子设计等突出特点,长期以来被人寄予厚望并已形成一个极为庞杂的体系。有机非线性光学材料与无机材料相比有下列优点:(1)有机材料的光极化来源于高度离域的π电子的极化,其极化比无机材料的离子极化容易,故其非线性光学系数比无机材料高1-2个数量级,可高达10-5esu 量级;(2)响应速度快,接近于飞秒。而无机材料只有皮秒;(3)光学损伤阀值高,可高达GW/cm -2量级,而无机材料只能达MW/cm -2量级;(4)可通过分子设计、合成等方法优化分子性能;(5)可通过聚集态没计控制材料性能,满足器件需要;(6)可进行形态设计,加工成体材、薄膜和纤维。有机非线性光学材料在频率转换和信号处理等方面有广阔的应用前景,已成为重要的研究课题之一。

微结构非线性光学材料

微结构的合理引入可以使材料的非线性光学效应显着增强,且往往能显示出常规材料不具备的新特性。由于其调制周期往往在亚微米量级,也有人称之为纳米材料,由于微加工手段的限制,这类材料问世较晚。这几年微结构非线性光学材料的发展十分迅猛,在理论和实验上都有许多重大进展。

超材料(meta-material )的光学非线性

Meta-material 泛指近年来人工合成的、具备自然界的材料所没有的奇异物理特性的新型材料,目前最热门的是负折射率材料和电磁感应透明材料。Meta-material 有超材料、人工电磁复合材料、特异超材料等多种译法,本文通称为超材料。由于其物理原理的特异性,超材料具有大幅提高物质的光学非线性的能力,且有可能在研究中发现新的非线性光学效应。

3 非线性光学材料之石墨烯的研究

石墨烯,由单层碳原子周期性排列组成的蜂窝状二维材料,具有优异的电、热、机械性能、高比表面积及易功能化等特点和优异的性能,受到材料、能源、环境、医学、物理、化学、生物等领域的广泛关注,是当前国际研究热点。其稳定有序的平面结构及超强的电子传导和迁移能力,使它成为半导体材料理想的载体。研究和制备石墨烯和半导体复合材料成为新的焦点,并取得了丰硕的成果。

石墨烯的性能

石墨烯的结构为由碳原子以SP 2杂化连接的单原子层构成的新型二维原子晶体,这种独特的结构使它成为世界上最薄却也是最坚硬的纳米材料,厚度仅为,石墨烯的热导率可达5000w ·m -1·k -1,是金刚石的3倍;电阻率约10-6cm ?Ω,比铜和银更低。石墨烯的强度是已测试材料中最高的,达130 GPa , 是钢的100多倍;其载流子迁移率达 ×10

4 cm 2·V -1·s -1,是目前已知的具有最高迁移率的锑化铟材料的2倍,超过商用硅片迁移率的 10 倍,在特定条件下(如低温骤冷等), 其迁移率甚至可高达×10

5 cm 2·V -1·s -1;另外,石墨烯还具有室温量子霍尔效应(Hall effect)及室温铁磁性等特殊性质。

石墨烯的制备

石墨烯的制备方法有很多,现简单介绍如下。

1 机械剥离法

用机械力的作用剥离出石墨烯片层。尺寸不易控制,产率低,不适合大规模生产。

2 氧化还原法

用强氧化剂在石墨层间引入含氧官能团,通过外力剥离得到单原子厚度氧化石墨烯,再进一步还原可得石墨烯。此法制得的石墨烯为独立单层石墨烯片,实验条件简单,是目前研究最多的方法。

3 化学气相沉积法(CVD)

将过渡金属薄片或者膜置于碳氢化合物气体中,过渡金属作为催化剂,在容器中高温使碳氢化合物裂解,从而在基板上沉积形成石墨烯膜。此方法最大的优点在于可制备出面积较大的石墨烯片。

4 晶体外延伸法

先将6H-SiC表面进行氧化或H2刻蚀预处理,再在高真空下加热除去氧化物,最后加热至1250℃~1450℃后恒温1min~20min得石墨烯片层。此方法特点为能够制得1-2碳原子层厚的石墨烯,但难以获得大面积、厚度均一的石墨烯。

5 电化学方法

将两个高纯的石墨棒平行插入含有离子液体的水溶液中,控制电压在10~20V,

30min后阳极石墨棒被腐蚀,液体中的阳离子在阴极还原形成自由基,与石墨烯片中的π电子结合,形成离子液体功能化的石墨烯片,之后经洗涤干燥得到石墨烯。此法制备的石墨烯片层大于单原子层厚度。

石墨烯的应用

石墨烯对物理学基础研究有着特殊意义,它使一些此前只能纸上谈兵的量子效应可以通过实验来验证,例如电子无视障碍、实现幽灵一般的穿越。石墨烯也有着全新的电学属性。石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的

1/300,远远超过了电子在一般导体中的运动速度。在塑料里掺入百分之一的石墨烯,就能使塑料具备良好的导电性;加入千分之一的石墨烯,能使塑料的抗热性能提高30摄氏度。在此基础上可以研制出薄、轻、拉伸性好和超强韧新型材料,用于制造汽车、飞机和卫星。随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空

航天、新能源电池领域。消费电子展上可弯曲屏幕备受瞩目,成为未来移动设备显示屏的发展趋势。柔性显示未来市场广阔,作为基础材料的石墨烯前景也被看好。韩国三星公司的研究人员也已制造出由多层石墨烯等材料组成的透明可弯曲显示屏,相信大规模商用指日可待。另一方面,新能源电池也是石墨烯最早商用的一大重要领域。之前美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。前不久美国NASA开发出应用于航天领域的石墨烯传感器,就能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测。而石墨烯在超轻型飞机材料等潜在应用上也将发挥更重要的作用。

4 非线性光学材料之碳纳米管的研究

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。纳米碳管作为一种碳素新材料,具有优异的力学、电学、储氢等物理性质,在纳米材料、纳米生物学、纳米化学等方面具有潜在的应用价值,成为近年来人们的研究热点。大批量、低成本合成纳米碳管是拓展纳米碳管应用研究的基础,因此对纳米碳管的合成研究也最多,并取得了一定的进展。纳米碳管的机械强度高,比表面积大,界面效应强,容易吸附金属催化剂,而被认为在催化剂载体领域里有很好的应用前景。

碳纳米管的性能

金属型单壁碳纳米管和金属型多壁碳纳米管碳纳米管均是弹道式导体,大电流通过不产生热量。每平方厘米最大电流密度可达1013安培。碳纳米管也是优良的热传导材料。多壁碳纳米管的热传导系数超过3000W/,高于天然金刚石和石墨原子基面的热传导系数2000W/。碳纳米管还是很好的超导材料,单壁碳纳米管SWNT的超导温度和直径相关,直径越小超导温度越高。直径时超导温度为;直径时超导温度为5K;直径时超导温度为20K。

碳纳米管CNT还有非常好的力学性能,小直径的单壁碳纳米管(SWNT)不但坚硬而且强度很高,是目前发现的唯一同时具有极高的弹性模量和抗拉强度的材料。单壁碳纳米管SWNT的弹性模量和抗拉强度分别达到和37GPa。多壁碳纳米管(MWNT)的弹性模量和抗拉强度分别达到和。碳纳米管CNT的抗拉强度可达钢的100倍,同时

密度只是钢的1/6。碳纳米管CNT作为导电相和加强相在复合材料领域有广阔的应用前景。

碳纳米管的中空结构,以及较石墨略大的层间距,是否具有更加优良的储氢性能,也成为科学家们关注的焦点。1997年,A.C.Dillon对单壁碳纳米管(SWNT)的储氢性能做了研究,SWNT在0℃时,储氢量达到了5%。DeLuchi指出:一辆燃料机车行驶

500km,消耗约31kg的氢气,以现有的油箱来推算,需要氢气储存的重量和体积能量密度达到65%和62kg/m3。这两个结果大大增加了人们对碳纳米管储氢应用前景的希望。碳纳米管的制备

目前常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法),固相热解法、辉光放电法和气体燃烧法等以及聚合反应合成法。电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。近年来有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。

近年来发展出了化学气相沉积法,或称为碳氢气体热解法(或称为CVD法),在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。目前这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。

除此之外还有固相热解法等方法。固相热解法是令常规含碳亚稳固体在高温下热解生长碳纳米管的新方法,这种方法过程比较稳定,不需要催化剂,并且是原位生长。但受到原料的限制,生产不能规模化和连续化。

碳纳米管的应用

碳纳米管在量子导线,晶体管,热传导材料,锂离子电池,超级电容器,储氢材料等方面中均有广泛而深刻的应用。人们将跨越碳纳米管的奇妙性质研究阶段,而着手解决从材料到器件、从器件到系统等诸多实际问题。相信在不远的将来,碳纳米管会走进我们的日常生活,成为我们工作和生活中不可或缺的一部分。

5 非线性光学材料之量子点的研究

量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。

当把量子点与石墨烯或量子点与碳纳米管复合,以得到它们的复合材料,这种复合材料性能良好,可作为功能材料。本文列举石墨烯/量子点复合材料的研究,描述如下。

石墨烯/量子点复合材料的性能

零维的石墨烯/量子点(graphenequantumdots,GQDs)由于其尺寸在10nm以下表现出更强的量子限域效应和边界效应,因此在许多领域如太阳能光电器件、生物医药、发光二极管和传感器等有着更加诱人的应用前景。GQDs还具有优异的宽吸收窄发射特性、光电转换能力、电子迁移率、溶液可加工性、PL和UCPL性质;良好的化学惰性、生物相容性、低毒性;良好的稳定性、生物相容性、环境友好性等等优良性能。石墨烯/量子点复合材料的制备

GQDs近年来逐渐成为各领域科学家关注的热点,尽管它的发展还处于起步阶段,合成也只是近两三年才开始研究,碳纳米晶体(包括碳纳米管、石墨烯、纳米碳、纳米碳点,统称碳点)的合成却可以追溯到更久以前,主要分为两大类方法:自上而下和自下而上的方法。自上而下包括电弧放电法、激光切割法、电化学氧化法等,自下而上的方法包括燃烧热法、支架法、微波法等。

GQDs的合成方法很多可看作是对碳纳米晶体合成方法的延伸和补充。本文主要从材料学的角度,沿用自上而下和自下而上的思路综述了制备GQDs的两大类方法。自上而下的方法是指通过物理或化学方法将大尺寸的石墨烯薄片(GSs)切割成小尺寸的GQDs,包括水热法、电化学法和化学剥离碳纤维法等;自下而上的方法则是指以小分子作前体通过一系列化学反应制备GQDs,主要是溶液化学法、超声波和微波法等。在

这些反应中,GQDs因反应中加入增溶基团而具有良好的水溶性。另外一些较为特殊的方法,如电子束刻蚀和钌催化富勒烯C60开笼法,所需要的苛刻制备条件很大程度上限制了这些方法的推广。

石墨烯/量子点复合材料的应用

石墨烯量子点是准零维的纳米材料,其内部电子在各方向上的运动都受到局限,所以量子局限效应特别显着,具有许多独特的性质。这或将为电子学、光电学和电磁学领域带来革命性的变化。应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。石墨烯量子点在生物、医学、材料、新型半导体器件等领域具有重要潜在应用。能实现单分子传感器,也可能催生超小型晶体管或是利用半导体激光器所进行的芯片上通讯用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等等。

6 总结与展望

非线性光学材料的应用十分广泛。随着非线性光学的迅速发展和材料科学的进步,新型非线性光学材料正在以前所未有的高速度不断涌现,这既促进了相关领域的发展,也丰富了非线性光学材料的种类。

在此对近期出现的非线性光学材料做了宏观体块材料、微结构材料、超材料的大致分类,并将宏观体块材料划分为无机和有机,概述了这几类材料近年来取得的重大进展,对其中性能优异或最有潜力的材料进行了重点介绍,讨论了它们的新特性的产生机制和适用范围。并以三种非线性光学材料—石墨烯、碳纳米管和量子点为引,全面介绍了它们的性能、制备与应用等。

在非线性光学材料的进一步探索中,应注意将这些不同类型的材料巧妙地结合起来,如能获得综合性能优异的有机-无机复合宏观材料,并结合微结构的光子局域性、慢光的特性对其非线性光学效应进行放大,有可能研发出功能更为强大的新材料,并进一步地得到对非线性光学材料研究理论的深入和应用领域的拓展。

参考文献

[1]姜玮,温泉武,田华,马松梅. 非线性光学材料进展[J].甘肃科技.2006(08)

[2]孙晶,黄勇刚,王小云. 3阶非线性光学材料的研究进展及其展望[J].吉首大学学报

(自然科学版).2012(06)

[3]吴林,赵波. 非线性光学和非线性光学材料[J].大学化学. 2002(06)

[4]非线性光学材料[J]. 中国光学与应用光学文摘. 2008(02)

[5]非线性光学材料[J]. 中国光学与应用光学文摘. 2008(03)

[6]非线性光学材料[J]. 中国光学与应用光学文摘. 2008(04)

[7]非线性光学非线性光学材料[J]. 中国光学与应用光学文摘.2007(05)

[8]红霞. 我国合成新型短波长非线性光学材料[J]. 功能材料信息. 2013(04)

[9]储祥勇. 新型有机材料光学非线性的研究[D]. 苏州大学 2014

[10]赵欣. 氧化石墨烯及其杂化材料超快光学非线性研究[D]. 南开大学 2013

[11]陈建丽. 氧化石墨烯的功能化及其衍生物、复合物的制备与性能研究[D]. 吉林大学

2013

[12]许士才. 石墨烯的制备、表征及光电性质应用研究[D]. 山东师范大学 2014

[13]陈建丽. 氧化石墨烯的功能化及其衍生物、复合物的制备与性能研究[D]. 吉林大学

2013

[14]王进. 有机离子类非线性光学材料的设计、合成、结构与性能研究[D]. 中国科学院研

究生院(西安光学精密机械研究所) 2012

非线性光学晶体的研究现状

非线性光学晶体的研究现状 摘要 本文论述了近几年的非线性光学晶体的研究现状,重点介绍了非线性光学晶体中的两大类:无机非线性晶体和有机非线性晶体的研究现状。 关键字:非线性光学晶体;无机;有机;现状; 1.引言 1961年, Franken首次发现了水晶激光倍频现象。这一现象的发现,不仅标志着非线性光学的诞生, 而且强有力地促进了非线性光学晶体材料的迅速发展。 随着非线性光学的深入研究和新型材料的不断发展, 使得非线性光学晶体材料在信息通讯、激光二极管、图像处理、光信号处理及光计算等众多领域都具有极为重要的作用和巨大的潜在应用,这些研究与应用对非线性光学晶体又提出了更多更高的物理化学性能要求, 同时许多应用也还在层出不穷地发展中,正是由于非线性光学晶体有着如此广阔的应用前景以及这些应用可能带来的光电子技术领域的重大突破,所以寻找与合成性能优异的新型非线性光学晶体一直是一个非常重要的课题,成为该领域人们关注的热点之一。 2.无机非线性光学晶体 无机非线性光学晶体是人们研究得较早的非线性光学材料, 大致可分为:(1)无机盐类晶体,包括硼酸盐、磷酸盐、碘酸盐、铌酸盐、钛酸盐等盐类晶体;(2)半导体型非线性光学晶体, 如Te、Se、GaAs、ZnSe、CdGeAs2 和CdGe(As1-xP)2等。随着激光科学与技术的不断发展,在频率转换方面,无机非线性光学晶体材料起着越来越重要的作用,下面我简单介绍几种。 (1)Cr : KTP晶体 晶体磷酸钦氧钾(KITOPO4,KTP )是一种具有优良性能的非线性光学晶体,具有非线性光学系数大, 透光波段宽,化学性能稳定,耐高温等特性.现已广泛地被用于激光频率转换领域.近些年来,随着光电子技术的发展,人们对掺杂KTP型晶体进行了多方面的研究,已形成了一系列KTP晶体家族.掺入有价值的稀土离子并使其符合发光要求,可获得激光自倍频晶体.1990年,LinJT首次简单地报道了Cr: KTP晶体实现激光自倍频运转情况. Cr : K T P 晶体的荧光发射波段为8 00-8 50n m, 可望在自倍频后转换成波长为400-425nm的蓝色激光输出.但Cr: K T P晶体对蓝光有较强的吸收, 可采用晶体的定向生长方法来加以弥补.波长800-850nm 的基频光, 远小于KTP晶体的n类位相匹配的截止波长(1000nm左右), 因此, 当Cr :KTP晶体自倍频时, 只能使用I类位相匹配,而I类相匹配的有效非线性光学数相当小.但随着对KTP晶体应用研究的深入,特别是它在光波导领域中的应用,人们已成功地研制出多种新的位相匹配技术,如准位相匹配技术,实现了高效率I类倍频转换,输出波长范围为380-480nm,效率已超过50 % /w·cm2, 这些新的应用技术的发明,为进一步研究Cr:KTP晶体的激光自倍频效应展示出广阔的应用前景。 (2)AgGaS2 和AgGaSe2 晶体 AgGaS2 属于黄铜矿结构的晶体,点群42m。其透过范围从0.53 ~12μm。尽管它是以上提到的所有红外晶体中非线性光学参数最小的,但由于它达到550 nm的超短波透明性, 可用在Nd:YAG激光器泵浦的OPO中以及使用二氧化碳、Ti:蓝宝石、Nd:YAG与IR 染料,波长范围3-12μm的激光器的各种不同混频试验中。它还应用于直接对抗红外系统和CO2激光器的SHG。 AgGaSe2 也属于黄铜矿结构。具有0.73 ~18μm的透过波段范围。它的有效传输范围是0.9 ~16 μm,当使用各种现行常用的激光器泵浦时,其相位匹配范围大的特点使其应用到OPO中具有很大潜力;当使用波长2.05μm的Ho:YLF激光器泵浦时, 波长在 2.5 ~

非线性光学材料小结

非线性光学材料 一、概述 20 世纪60 年代, Franken 等人用红宝石激光束通过石英晶体,首次观察到倍频效应,从而宣告了非线性光学的诞生,非线性光学材料也随之产生。 定义:可以产生非线性光学效应的介质 (一)、非线性光学效应 当激光这样的强光在介质传播时,出现光的相位、频率、强度、或是其他一些传播特性都发生变化,而且这些变化与入射光的强度相关。 物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p 。在光强度不是很高时,分子的诱导偶极矩p 线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E 的非线性函数,如下表示: p = α E + β E2 + γ E3 + ?? 式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应) ,γ为二阶分子超极化率(三阶效应) 。即基于电场强度E 的n 次幂所诱导的电极化效应就称之为n 阶非线性光学效应。 对宏观介质来说, p = x (1) E + x(2) E2 + x (3)E3 + ?? 其中x (1) 、x(2) 、x(3) ??类似于α、β、γ??,表示介质的一阶、二阶、三阶等n 阶非线性系数。因此,一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。 目前研究较多的是二阶和三阶非线性光学效应。 常见非线性光学现象有: ①光学整流。E2项的存在将引起介质的恒定极化项,产生恒定的极化电荷和相应的电势差,电势差与光强成正比而与频率无关,类似于交流电经整流管整流后得到直流电压。 ②产生高次谐波。弱光进入介质后频率保持不变。强光进入介质后,由于介质的非线性效应,除原来的频率ω外,还将出现2ω、3ω、……等的高次谐波。1961年美国的P.A.弗兰肯和他的同事们首次在实验上观察到二次谐波。他们把红宝石激光器发出的3千瓦红色(6943埃)激光脉冲聚焦到石英晶片上,观察到了波长为3471.5埃的紫外二次谐波。若把一块铌酸钡钠晶体放在1瓦、1.06微米波长的激光器腔内,可得到连续的1瓦二次谐波激光,波长为5323埃。非线性介质的这种倍频效应在激光技术中有重要应用。 ③光学混频。当两束频率为ω1和ω2(ω1>ω2)的激光同时射入介质时,如果只考虑极化强度P的二次项,将产生频率为ω1+ω2的和频项和频率为ω1-ω2的差频项。利用光学混频效应可制作光学参量振荡器,这是一种可在很宽范围内调谐的类似激光器的光源,可发射从红外到紫外的相干辐射。 ④受激拉曼散射。普通光源产生的拉曼散射是自发拉曼散射,散射光是不相干的。当入射光采用很强的激光时,由于激光辐射与物质分子的强烈作用,使散射过程具有受激辐射的性质,称受激拉曼散射。所产生的拉曼散射光具有很高的相干性,其强度也比自发拉曼散射光强得多。利用受激拉曼散射可获得多种新波长的相干辐射,并为深入研究强光与

(整理)非线性光学复习材料.

{ 非线性光学复习资料 1. 高斯单位制下的麦克斯韦方程组,并由此推导波动方程: 2 222224)(1)(t c t c NL ??-=???+????P E E πε 高斯单位制下麦克斯韦方程组 t c c t c ??+= ??=????-=??=??E j B B B E E 14014ππρ 2. 线性光学与非线性光学的主要区别。 A 为线性光学,B 为非线性光学 E (1)A :单束光在介质中传播,通过干涉、衍射、折射可以改变光的空间能量分布和传播方向,但与介质不发生能量交换,不改变光的频率。 & B :一定频率的入射光可以通过与介质的相互作用而转换成其他频率的光(倍频等),还可以产生一系列在光谱上周期分布的不同频率和光强的光(受激拉曼散射等)。 (2)A :多束光在介质中交叉传播,不发生能量相互交换,不改变各自的频率。B :多束光在介质中交叉传播,可能发生能量相互转移,改变各自频率或产生新的频率。 (3)A :光与介质相互作用,不改变介质的物理参量,这些物理参量只是光频的函数,与光场强度变化无关; B :光与介质相互作用,介质的物理参量如极化率、吸收系数、折射率等是光场强度的函数(非线性吸收和色散、光克尔效应、自聚焦等)。 (4)A :光束通过光学系统,入射光强与透射光强之间一般呈线性关系;B :光束通过光学系统,入射光强与透射光强之间呈非线性关系。 (5)多束光在介质中交叉传播,各束光的相位信息彼此不能相互传递。 B :多束光在介质中交叉传播,光束之间可以相互传递相位信息,而且两束光的相位可以互相共轭(光学相位共轭)。 3. ( 4. 写出电场强度的付氏振幅的表达形式,并对电强度进行付氏分解。 对于角频率为1ω、波矢为1k 、初相位为1φ的单色平面波:

有机非线性光学材料

有机非线性光学材料 杨韶辉 摘要: 该文简要介绍非线性光学材料及其特性,阐述了有机非线性光学材料的分类及其应用,着重对各类有机低分子非线性光学材料进行分类讨论。 关键词:有机非线性光学材料,有机低分子非线性光学材料 一、非线性光学材料概述 [1] 1961年,Franken首次发现了若干材料的激光倍频现象。因非线性光学的 发展与激光技术的发展密切相关,故这种现象的发现,不仅标志着非线性光学的诞生,而且强有力地推动了非线性光学材料科学的发展。科技工作者之所以对非线性光学感兴趣,主要有以下原因:可利用非线性光学效应做成某种器件,例如变频器,从而有可能提供从远红外到亚毫米波、从真空紫外到X射线的各种波段的相干光源;由于某些非线性光学效应,例如双光子吸收、受激喇曼散射等,会引起入射到介质中的光束的衰减,从而限制了通过介质的光通量,又如自聚焦现象会引起入射光束的畸变,强度太强时,甚至会导致介质的不可逆损伤,这就从实际向人们提出了急需解决的问题;由于非线性光学效应是通过强激光与组成非线性介质的原子或分子的相互作用体现的,因而非线性光学现象是获得这些原子或分子的微观性质信息的一种手段。 正因非线性光学的诸多特性,使人们对具此类特性的材料研究日益深化,并正不断地被应用到光通信技术等各个方面。尤其多年来对有机材料的非线性光学特性研究,为其应用提供了理论依据,如酞菁类化合物,它的非线性系数高、响应快、光损伤阈值高和化学稳定等特性, [2,3]因而有着无法估量的非线性光学应用前景。

在线性光学范围内,描述电磁辐射在介质中传播规律的麦克斯韦方程组是一组线性的微分方程,它们只包括场强矢量的一次项。当单一频率的辐射入射到非吸收介质时,除喇曼散射外,其频率是不会发生变化的。如果不同频率的光同时入射到介质时,它们彼此之间不产生耦合,不可能产生新的频率,若以数学形式表示时,具有线性的关系。但在激光出现后,介质在强激光作用下产生的电极化强度P与入射辐射强度E的关系,不是简单的线性关系。从而引起非线性光学效应。它反映了介质与强激光束相互作用的基本规律。非线性光学是由于构成物质 [4]的原子核及其周围电子在电磁波场的作用下产生非谐振性运动的结果。一般而言,要寻找具有好的非线性光学性质的材料,其关键性能指标是:(1)非线性系数高;(2)响应时间短;(3)光损 [4]伤阈值高。 产生非线性光学效应的首要条件取决于材料。一般来说,无论从材料的组成,还是结构,就种类而言,大致分两类:无机非线性光学材料和有机非线性光学材料。 非线性光学材料人们已经找到很多,按其非线性效应来分可以分为二阶非线性光学材料和三阶非线性光学材料二阶非线性光学材料主要有: (1)无机倍频材料如三硼酸锂(LBO)、铌酸锂(LiNbO)、碘酸短(LiIO,KDP)、33磷酸氧钛钾(KTiOPO,KTP)、β-偏硼酸钡(β-BaBO,BBO)、α石英等 424 ( 2)半导体材料有硒化镉( CdSe)、硒化镓(GaSe)、硫镓银、硒镓银、碲(Te)、硒(Se)等 (3)有机倍频材料有尿素、L-磷酸精胺酸(LAP)、醌类、偏硝基苯胺、2-甲苯-4-硝基苯胺、羟四甲基四氢吡咯基硝基吡啶、氨基硝基二苯硫醚、硝苯基羟基四氢吡咯以及它们的衍生物 (4)金属有机化合物,如二氯硫脲合镉、二茂铁类化合物、苯基或吡啶基过渡金属羰

二维非线性光学材料

二维非线性光学材料 项目简介 光学信息处理是解决当前大数据处理系统在带宽、能耗、速度等瓶颈问题上的主要技术手段。纳米尺度非线性光学材料是全光集成系统中高性能单元器件(光开关、光调制器、探测器等)的核心。具有优异非线性光学特性,特别是非线性吸收和折射率的二维纳米半导体材料在物性、集成度、兼容性上独具优势,是构筑未来高性能全光信息系统的关键之一。 作为国际上最早开展二维材料非线性光学工作的研究者之一,在中组部、国家基金委、中科院、上海市科委等项目的资助下,我们团队在国际上率先揭示了石墨烯、过渡金属硫化物和黑磷等重要二维材料的超快非线性光学特性,验证了高性能二维半导体在强激光防护光限幅器和超短脉冲激光锁模器上的重要应用,取得如下主要成果: 成果一:二维半导体非线性光学效应及物理 在国际上首先揭示了过渡金属硫化物、石墨烯、黑磷等重要二维半导体的非线性光学特性;证实了钼硫族二维材料的宽带非线性吸收和折射率,以及禁带调控色散效应;实现了二维半导体的非线性特性调控工程;从单层MoS2中观测到暗态激子共振巨双光子吸收效应;观测到二维半导体中的自相位调制效应、非线性折射率色散、二维材料光学特征矩阵、光致透明效应、快/慢饱和吸收效应、全光开关调控和光限幅特性、双光子吸收饱和效应等;这些原创成果为理解二维半导体非线性光学物理机理,开发高性能非线性光学器件及全光计算等集成系统应用奠定了良好的实验和理论基础。 成果二:二维半导体非线性光学材料及应用 基于石墨烯、MoS2及其改性衍生材料等优异的非线性特性,实现了超短激光脉冲锁模器和强激光防护光限幅器等重要应用;合成出酞菁修饰的石墨烯宽带强激光防护光限幅材料;合成出MoS2、MoSe2、WS2、WSe2等过渡金属硫化物宽波段强激光防护光限幅材料;在批量制备大尺寸、高性能二维半导体非线性光学材料和二维半导体强激光防护光限幅复合材料等方面进行了大量原创性基础研究工作。特别是以非线性激光防护物理研究,结合高性能激光防护材料研制为基础,正在为中电53所、中航工业613所等单位的激光应用系统研制强激光防护装置,用于对某型号机载光电系统和激光雷达探测器进行防护,在宽波段、多时间尺度上对抗外部强激光的干扰和致盲,具有防护阈值低、消光比高、稳定性强等特点。该装置可以填补某型机载光电系统无激光防护装置的空白,可以对多种型号的激光雷达进行有效的激光损伤防护,具有很好的市场价值,如无人驾驶汽车激光雷达防护等。 2011-2016年期间,我们团队在ACS Nano、Laser & Photonics Reviews、Nanoscale、Carbon、Photonics Research、Optics Letters、Progress in Materials Science等国际SCI期刊发表二维材料非线性光学论文27篇,他引1269次。其中8篇代表性论文被他引988次,平均每篇被他人引用123次,最高单篇他引426次。主要完成人中1人入选国家青年拔尖人才和基金委优秀青年科学基金、2人入选中科院“百人计划”、3人入选上海市优秀学术带头人。

非线性光学材料

非线性光学材料 摘要:非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。 关键词:非线性光学材料;光电功能材料 1.简介 在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。非线性光学材料是指一类受外部光场、电场和应变场的作用,频率、相位、振幅等发生变化,从而引起折射率、光吸收、光散射等变化的材料。在用激光做光源时,激光与介质间相互作用产生的这种非线性光学现象,会导致光的倍频、合频、差频、参量振荡、参量放大,引起谐波。利用非线性光学材料的变频和光折变功能,尤其是倍频和三倍频能力,可将其广泛应用于有线电视和光纤通信用的信号转换器和光学开关、光调制器、倍频器、限幅器、放大器、整流透镜和换能器等领域。物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p。在光强度不是很高时,分子的诱导偶极矩p线性正比于光的电场强度E。然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。分子诱导偶极矩p 就变成电场强度E的非线性函数,如下表示:p=αE+βE2+γE3+……式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应),γ为二阶分子超极化率(三阶效应)。即基于电场强度E的n次幂所诱导的电极化效应就称之为n阶非线性光学效应。一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。易于生产、价格便宜等也是应当考虑的因素。目前研究较多的是二阶和三阶非线性光学效应。 2.非线性光学材料分类 自从20世纪60年代诞生起,非线性光学材料的研究取得了很大的进展,有很多已经进实用化阶段[1-3]。根据组成可将非线性光学材料大致分为无机非线性光学材料,有机非线性

非线性光学晶体材料

非线性光学晶体材料 一、什么是非线性光学晶体 光通过晶体进行传播时,会引起晶体的电极化。当光强不太大时,晶体的电极化强度与光频电场之间呈线性关系,其非线性关系可以被忽略;但是,当光强很大时,如激光通过晶体进行传播时,电极化强度与光频电场之间的非线性关系变得十分显著而不能忽略,这种与光强有关的光学效应称为非线性光学效应,具有这种效应的晶体就称为非线性光学晶体。 二、非线性光学晶体材料的产生 1961年,美国科学家Franken将一束红宝石产生的激光束入射到石英晶体上,发现射出的激光束中除了红宝石的693.4nm的光束外,在紫外区还出现了一条二倍频率的347.2nm的光谱线,这是首次发现晶体的非线性光学效应。科学家们立即认识到非线性光学材料可以作为激光变频材料。在近50年的发展中,非线性光学晶体材料已成为最重要的信息材料之一,广泛应用于激光通信、光学雷达、医用器件、材料加工、x射线光刻技术等,在人们的生活中起到了越来越重要的作用。 图1 激光的倍频辐射现象 三、非线性光学晶体材料的应用和发展 非线性光学晶体与激光紧密相连,是实现激光的频率转换、调制、偏转和Q 开关等技术的关键材料。当前,直接利用激光晶体获得的激光波段有限,从紫外到红外谱区,尚有激光空白波段。而利用非线性光学晶体,可将激光晶体直接输

出的激光转换成新波段的激光,从而开辟新的激光光源,拓展激光晶体的应用范围。非线性光学晶体材料是光电子技术特别是激光技术的重要物质基础,可以用于激光频率转换、调制激光的强度和相位、实现激光信号的全息存储等,在激光通讯、激光信息存储与处理、激光材料加工以及军用激光技术等领域都有重要应用。 图2 非线性光学材料的广泛应用 近几十年来,人们在研究与探索非线性光学晶体材料方面做了大量工作,取得了丰硕的研究成果,涌现出了一批性能优良的非线性光学晶体。人们已将非线性光学晶体材料,由无机晶体拓展到有机晶体,由体块晶体发展到薄膜、纤维和超晶格材料。将非线性光学晶体的性质与其内部微观结构联系起来,有意识的通过分子设计、晶体工程等科学方法来探索与研制各种新型的非线性光学晶体材料,向科学更深层次的方向发展,从而促成了非线性光学领域内不断创新。

非线性光学材料研究

非线性光学材料研究 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

非线性光学材料研究 摘要: 非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。本文通过对三种非线性光学材料—石墨烯、碳纳米管和量子点的性能、制备以及应用展开综合性描述。阐述当今时代非线性光学材料的发展前景和探索其未来更广阔的的应用领域。 关键词: 非线性光学材料;石墨烯;碳纳米管;量子点;综述 Study on nonlinear optical materials Abstract: Nonlinear optical material is a kind of optoelectronic functional material which has wide application prospect in the fields of photoelectric conversion, optical switch, optical information processing and so on. In this paper, the properties, preparation and application of three kinds of nonlinear optical materials - graphene, carbon nanotubes and quantum dots, are described. The development of nonlinear optical materials in the present age and its future application fields are described. Key words: Nonlinear optical materials; graphene; carbon nanotubes; quantum dots; review 1 简介 非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。 非线性光学是随着激光技术的出现而发展形成的一门学科分支,是近代科学前沿最为活跃的学科领域之一。数十年间,非线性光学在基本原理、新型材料的研究、新效应的发现与应用方面都得到了巨大的发展,成为光学学科中最活跃和最重要的分支学科之一。

非线性光学材料

非线性光学材料 物理科学与技术学院 物理学类 胡健 2010301020087 【摘要】:本文主要介绍非线性光学材料的发展历程,种类,特征,即非光学性,并展望了非线性光学材料的发展前景,和它在科研项目中所发挥的作用。 【关键字】:非线性光学材料,共振非线性,非共振非线性,非线性系数。 一、非线性光学的由来: 非线性光学材料起步的时间较短。在1961年Franken等用红宝石光束通过石英晶体时,观察到倍频效应。1962年Bloembergen等创立了光波混频理论,这就是非线性光学的的诞生。进而产生非线性光学材料。它指一类受到外部光场、电场和应变场的作用,频率、相位、振幅等发生变化,从而引起折射率、光吸收、光散射等变化的材料,能够进行光波频率转换和光信号处理,比如利用混频现象实现对弱光信号的放大、利用非线性响应实现光记录和运算功能等,因此在激光、通讯、电子仪器及医药器材等领域有重要的应用价值。 二、非线性光学的种类 非线性光学材料就是那些光学性质依赖于入射光强度的材料,非线性光学性质也被称为强光作用下的光学性质,这是因为这些性质只有在

激光的强相干光作用下表现出来的,通过利用非线性光学晶体的倍频、和频、差频、光参量放大和多光子吸收等非线性过程可以得到频率和入射光频率不同的激光,从而达到光频率变换的目的,因此对非线性光学材料的确立就有了以下的依据①有较大的非线性极化率。这是基本的但不是唯一的要求。由于目前激光器的功率可达到很高的水平,即使非线性极化率不很大,也可通过增强入射激光功率的办法来加强所要获得的非线性光学效应;②有合适的透明程度及足够的光学均匀性,亦即在激光工作的频段内,材料对光的有害吸收及散射损耗都很小;③能以一定方式实现位相匹配(见光学位相复共轭);④材料的损伤阈值较高,能承受较大的激光功率或能量;⑤有合适的响应时间,分别对脉宽不同的脉冲激光或连续激光作出足够响应。 对非线性光学材料中最为实用的进行简单介绍: (1)、半导体材料 在电子学中,半导体材料有着极为广泛的用途,通过引入少量的掺杂,就会极大地改变其光学性能,从而满足对半导体材料的不同性能的要求。半导体材料的三阶非线性光学效应表现为与强度相关的反射率和吸收系数。从微观结构来讲,这些效应广义地分类为共振非线性和非共振非线性。当光子能量接近于半导体的基础吸收限时,由光子激发产生载流子,从而产生共振非线性,当光子能量远低于基础吸收限时,产生非共振非线性。半导体材料非线性光学效应的反应速率与产生非线性的机理密切相关。反应最快的非线性光学过程是光电辐射与束缚电子之间的非共振作用,这些与光子作用的电子占据了外层电子壳

(整理)非线性光学复习材料.

非线性光学复习资料 1. 高斯单位制下的麦克斯韦方程组,并由此推导波动方程: 2 222224)(1)(t c t c NL ??-=???+????P E E πε 高斯单位制下麦克斯韦方程组 t c c t c ??+= ??=????-=??=??E j B B B E E 14014ππρ 2. 线性光学与非线性光学的主要区别。 A 为线性光学,B 为非线性光学 E (1)A :单束光在介质中传播,通过干涉、衍射、折射可以改变光的空间能量分布和传播方向,但与介质不发生能量交换,不改变光的频率。 B :一定频率的入射光可以通过与介质的相互作用而转换成其他频率的光(倍频等),还可以产生一系列在光谱上周期分布的不同频率和光强的光(受激拉曼散射等)。 (2)A :多束光在介质中交叉传播,不发生能量相互交换,不改变各自的频率。B :多束光在介质中交叉传播,可能发生能量相互转移,改变各自频率或产生新的频率。 (3)A :光与介质相互作用,不改变介质的物理参量,这些物理参量只是光频的函数,与光场强度变化无关; B :光与介质相互作用,介质的物理参量如极化率、吸收系数、折射率等是光场强度的函数(非线性吸收和色散、光克尔效应、自聚焦等)。 (4)A :光束通过光学系统,入射光强与透射光强之间一般呈线性关系;B :光束通过光学系统,入射光强与透射光强之间呈非线性关系。

(5)多束光在介质中交叉传播,各束光的相位信息彼此不能相互传递。 B :多束光在介质中交叉传播,光束之间可以相互传递相位信息,而且两束光的相位可以互相共轭(光学相位共轭)。 3. 写出电场强度的付氏振幅的表达形式,并对电强度进行付氏分解。 对于角频率为1ω、波矢为1k 、初相位为1φ的单色平面波: )cos()(),(11111φωω-?-=r k E r E t t )cos()(),(11111φωω-?-=r k E r E t t 引入付氏振幅: ] )(exp[)(2 1 ),(1111φωω+?=r k E E i r 将其所代表的单色平面波改写成: )exp(),()exp(),(),(11111t i t i t ωωωωr E r E r E *+-= 这样,(1-2-3)式可改写成对称形式: )exp(),()exp(),(),(11111t i t i t ---+-=ωωωωr E r E r E 其中 n n -=-ωω , ),(),(r E r E n n -*=ωω, n 为整数。 这样由N 个频率分别为n ω、波矢为n k 、初相位为n φ的单色平面波组成的光波场),(t r E 就 可表示为: ) exp(),(),(t i t n N N n n ωω-= ∑-=r E r E 4. 非线性极化张量的宏观性质及相应得推导过程: (1)真实性条件:) ,,() 2(m n s ωωω-χ是复张量,它的复共轭张量满足: ),,(),,()2()2(m n s m n s ωωωωωω--=-* χχ 证明。因为),()2(r P s ω是频率为s ω的二次非线性极化矢量),(t r P (2) s 的付氏振 幅,所以有:

非线性光学材料研究

非线性光学材料研究 摘要: 非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。本文通过对三种非线性光学材料—石墨烯、碳纳米管和量子点的性能、制备以及应用展开综合性描述。阐述当今时代非线性光学材料的发展前景和探索其未来更广阔的的应用领域。 关键词: 非线性光学材料;石墨烯;碳纳米管;量子点;综述 Study on nonlinear optical materials Abstract: Nonlinear optical material is a kind of optoelectronic functional material which has wide application prospect in the fields of photoelectric conversion, optical switch, optical information processing and so on. In this paper, the properties, preparation and application of three kinds of nonlinear optical materials - graphene, carbon nanotubes and quantum dots, are described. The development of nonlinear optical materials in the present age and its future application fields are described. Key words: Nonlinear optical materials; graphene; carbon nanotubes; quantum dots; review 1 简介 非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。? 非线性光学是随着激光技术的出现而发展形成的一门学科分支,是近代科学前沿最为活跃的学科领域之一。数十年间,非线性光学在基本原理、新型材料的研究、新效应的发现与应用方面都得到了巨大的发展,成为光学学科中最活跃和最重要的分支学科之一。?

非线性光学晶体

1、(1)查阅资料综述主要非线性光学晶体种类、性能特征、液相生长技术及 其制;(2)试以倍频/混频非线性光学效应原理分析光参量振荡器工作原理。 非线性光学晶体的种类: KDP晶体:中文名称磷酸二氢钾晶体 英文名称potassium dihydrogen phosphate crystal,KDP 化学式为KH2PO4的非线性光学晶体,属四方晶系。非线性系数d3630.63×10012m/V,对0.69430m激光倍频相位匹配角θmm50.451°。 磷酸二氢钾(KDP)晶体是一种最早受到人们重视的功能晶体,人工生长KDP 晶体已有半个多世纪的历史,是经久不衰的水溶性晶体之一。KDP晶体的透光波段为178nm~1.45um,是负光性单轴晶,其非线性光学系数d36(1.064um)=0.39pm/V,常常作为标准来比较其他晶体非线性效应的大小,可以实现Ⅰ类和Ⅱ类位相匹配,并且可以通过温度调谐来实现非临界位相匹配(包括四倍频和和频)。属于四方晶系,点群D4h,无色透明。该晶体具有多功能性质。上世纪50年代,KDP作为性能优良的压电晶体材料,主要被应用于制造声纳和民用压电换能器。60年代,随着激光技术出现,由于KDP晶体具有较大的非线性光学系数和较高的激光损伤阈值,而且晶体从近红外到紫外波段都有很高的透过率,可对1.064μm激光实现二倍频,同时KDP晶体又是一种性能优良的电光晶体材料。使得该晶体在高功率激光系统受控热核反应、核爆模拟等重大技术上更显现出它的应用前景,因此,对特大尺寸的KDP优质光学晶体的研究,在国内外一直受到研究者的极大关注。 性能特征:1. 晶体溶解度:从溶液中生长单晶体,很重要的一个参数是了解物质的溶解度。根据溶解度与温度的关系绘制得到物质的溶解度曲线,它是选择晶体生长方法和生长温度区间的重要依据。 2.晶体结晶习性:取少量纯固体磷酸二氢钾将其配制成未饱和溶液(以溶解度曲线为依据),自然蒸发数日后逐渐达到饱和,此时溶液形成少量晶核,在结晶驱动力作用下,逐渐形成外形完整的KDP小籽晶。 3. 单晶培养:根据物质的溶解度曲线,配置某一温度下一定量的饱和溶液(注意控制溶液pH≈ 4.5)至育晶器中,将育晶器放入恒温槽,用吊晶法准确测出溶液饱和点温度,然后升温至比饱和点温度高出5℃,让溶液恒温隔夜过热,除净结晶中心。选择Z轴方向无缺陷晶片作为生长籽晶,固定于籽晶架上,在稍高于饱和点温度下,放入籽晶,并逐渐降至饱和点,采用降温法按每天一定降温速率(0.4℃/day)从水溶液中培养单晶。 KTP晶体: 具有大的非线性系数,大的容许温度和容许角度,激光损伤阈值较高,化学性质稳定,不潮解,机械强度适中,倍频转化效率高达70%以上等特性,是中小功率固体绿光激光器的最好倍频材料。 性能特征:大的非线性光学系数(约为KDP晶体的15倍)宽的接收角度和小的走离角透过波段宽高光电转换效率和低的介电常数具有良好的物理、化学和机械性能高的热传导系数(为BBN晶体的2倍)低失配度相比于BBO 和 LBO 成本较低。现在最主要应用是二倍频和OPO应用(激光测距),尤其是OPO应用近几年发展非常迅速。 LiNbO 晶体: 3 铌酸锂晶体简称LN,自1965年Ballman等报道利用Czochralshi技术成功

相关文档
最新文档