实验二 静态随机存储器实验

实验二  静态随机存储器实验
实验二  静态随机存储器实验

山西大学计算机与信息技术学院实验报告

图 2-1 SRAM6116引脚图

最终是挂接到CPU 上,所以其还需要一个读写控制逻辑,

图 2-2 读写控制逻辑

图 2-4 实验接线图

将时序与操作台单元的开关KK1、KK3 置为运行档、开关KK2 置为‘单步’档

IOR 开关置为1,打开电源开关,如果听到有‘嘀’ 报警声,

现象,立即关闭电源,重新检查接线,直到错误排除。

01H、02H、03H、04H 地址单元中分别写入数据11H、12H

2-3可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤如下图2-5.

2-5 写存储器流程图再写数据,具体操作步骤如下图

读存储器流程图

静态存储器-实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称计算机组成与结构 项目名称静态随机存储器实验 班级 学号 姓名 同组人员无 实验日期 2015-10-24

一、实验目的与要求 掌握静态随机存储器RAM 工作特性及数据的读写方法 二、实验逻辑原理图与分析 2.1 实验逻辑原理图及分析 实验所用的静态存储器由一片6116(2K ×8bit)构成(位于MEM 单元),如下 图所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS 常接地线。 由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如下图所示,由于T3的参与,可以保证MEM 的写脉宽与T3一致,T3由时序单元的TS3给出。IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1时为读,WR=1时为写。 XMRD XIOR XIOW XMWR RD IOM WE T3 读写控制逻辑 实验原理图如下如所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。

实验四 静态随机存储器实验

实验四静态随机存储器实验 一.实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二.实验设备 TDN—CM++计算机组成原理教学实验系统一台,排线若干。 三.实验内容 1.实验原理 实验所用的半导体静态存储器电路原理如图所示,实验中的静态存储器一片6116 (2K﹡8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。 地址灯AD0—AD7与地址线相连,显示地址线内容。数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。 因地址寄存器为8位,接入6116的地址A7—A0,而高三位A8—A10接地,所以 其实际容量为256字节。6116有三个控制线:CE(片选线)OE(读线)WE(写 线)。当片选有效(CE=0)时,OE=0时进行读操作,WE=0时进行写操作。本实 验中将OE常接地,在此情况下,当CE=0 WE=0时进行读操作,其写时间与T3 脉冲宽度一致。 实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由“SWITCH UNIT”单元的二进制开关模拟,其中SW—B为 低电平有效,LDAR为高电平有效。 2.实验步骤 (1)在时序电路模块中有两个二进制开关“STOP”和“STEP”,将“STOP” 开关置为“RUN”状态,将“STEP”开关置为“STEP”状态。 (2)按“图4 存储器实验连线图”连接实验线路,仔细查向无误后接通电源。 由于存储器模块内部的连线已经接好,因此只需完成电路的形成、控制信 号模拟开关、时钟脉冲信号T3与存储模块的外部连接。 (3)给存储器的00 01 02 03 04地址单元中分别写入数据11 12 13 14 15,具体操作步骤如下:(以向00号单元写入11为例)

计算机原理实验二 静态随机存储器实验 操作步骤

2.1 静态随机存储器实验 2.1.1 实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 2.1.2 实验设备 PC机一台,TD-CMA实验系统一套。 2.1.3 实验原理 实验原理图如图2-1-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR单元)给出。数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 RD WR 图2-1-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM 应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。 2.1.4 实验步骤 (1) 关闭实验系统电源,按图2-1-4连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。 (2) 将时序与操作台单元的开关KK1、KK3臵为运行档、开关KK2臵为‘单步’档(时序单元的介绍见附录二)。 (3) 将CON单元的IOR开关臵为1(使IN单元无输出),打开电源开关,如果听到有

‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。 图2-1-4 实验接线图 (4) 给存储器的00H、01H、02H、03H、04H地址单元中分别写入数据11H、12H、13H、14H、15H。由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST产生T3脉冲,即将地址打入到AR中。再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST产生T3脉冲,即将数据打入到存储器中。写存储器的流程如图2-1-5所示(以向00地址单元写入11H为例): WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 0 WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 1 T3= WR = 0 RD = 0 IOM = 0 IOR = 0 LDAR = 0 WR = 1 RD = 0 IOM = 0 IOR = 0 LDAR = 0 T3= 图2-1-5 写存储器流程图 (5) 依次读出第00、01、02、03、04号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。读存储器的流程如图2-1-6所示(以从00地址单元读出11H为例):

半导体存储器原理实验报告

_管理_学院__信息管理与信息系统_专业_2_班______组、学号3109005713___姓名_吴兴平_ ___协作者_林敬然__________ 教师评定_____________ 半导体存储器原理实验 1.实验目的与要求: 实验目的:(1)掌握静态存储器的工作特性及使用方法。(2)掌握半导体随机存储器如何存储和读取数据。 实验要求:按练习一和练习二的要求完成相应的操作,并填写表2.1各控制端的状态及记录表2.2的写入和读出操作过程。 2. 实验方案: (1)使用了一片6116静态RAM(2048×8位),但地址端A8-A10脚接地,因此实际上存储容量为256字节。存储器的数据线D7-D0接至数据总线。 (2)使用一片8位的74LS273作为地址寄存器(AR),地址寄存器的输出端接存储器6116的地址线A7-A0,所以存储单元的地址由地址存储器AR提供。 (3)数据开关(INPUT DEVICE)用来设置地址和数据,它经过一个三态门74LS245与数据总线相连,分别给出地址和数据。 (4)地址显示灯A D7-AD0与6116地址线相连,用来显示存储单元的地址,数据总线上的显示灯B7-B0用来显示写入存储单元的数据或从存储单元读出的数据。 (5)存储器有三个控制信号:CE片选信号、OE读命令信号、WE写信号。当片选信号CE=0时,RAM被选中,可以进行读/写操作;当CE=1时,RAM未被选中,不能进行读/写操作。读命令信号OE在本实验中已固定接地,在此情况下,当CE=0,WE=1时,存储器进行写操作,当CE=0,WE=0时,存储器进行读操作。

(6)LDAR是地址存储器AR存数控制信号。 (7)按图连接好实验电路,检查无误后通电。 (8)将表2.2的地址和内容转化为二进制。 (9)参考以上操作,向存储器单元里先写第一个单元的地址、然后向第一个地址,再写第二个地址,然后向第二个地址单元写内容,就这样不断循环操作,直到做完。 3. 实验结果和数据处理: (1)填写表2.1各控制端的状态。如下图所示: 表2.1 (2)记录表2.2的写入和读出操作过程。 向存储器的00H,01H,02H,03H,04H,05H,06H地址单元分别写入数据AAH,55H,33H,44H,66H,08H,F0H(十六进制),如表所示:

四川大学 操作系统上机实验 实验五 Windows虚拟存储器管理

实验报告 实验名称:Windows虚拟存储器管理 实验时间:2013年5月27日 实验人员:____郑笑凡___(姓名)__1143041243__(学号)____2011____(年级) 实验目的:1、了解Windows 2000/XP的内存管理机制,掌握页式虚拟存储技术。 2、理解内存分配原理,特别是以页面为单位的虚拟内存分配方法。 3、学会使用Windows 2000/XP下内存管理的基本API函数 实验环境:windows xp 实验步骤: 1、下载virtumem.cpp; 2、建立工程,将virtumen.cpp加入; 3、编译工程,观察结果,确信六种状态都出现至少一次,必要时可改程 序,方便观察结果; 4、看懂程序,按要求另写一段小程序; 5、编译,执行,观察结果。 6,总结。 实验陈述: 1、基础知识: pagefile.sys文件的位置在:__安装的系统盘根目录下____________________________________此文件的作用:____实现物理内存的扩展__________________________________________________ 改变此文件大小的方法:右击”我的电脑”,依次选择”属性”—“高级”—“性能选项”— “更改”_______________________________________ 虚拟地址空间中的页面分为:提交页面,保留页面,空闲页面 页面的操作可以分为:保留、提交、回收、释放、加锁 2、编程准备. 页面属性是在结构体MEMORY_BASIC_INFORMATION_的字段AllocationProtect 和字段中Protect体现出来的。 简述VirtualFree,VirtualPtotect,VirtualLock,VirtualUnlock,VirtualQuery的作用:_ VirtualFree:__释放虚存___________________________________________________ VirtualPtotect:_保留虚存_________________________________________________ VirtualLock:___加锁虚存_________________________________________________ VirtualUnlock:_解锁虚存________________________________________________ VirtualQuery:____查询虚存_______________________________________________ 3、编程 1)将virtumem.cpp加入工程,编译,执行。 是否能编译成功?是 请描述运行结果:

计算机组成原理上机实验报告

《计算机组成原理实验》课程实验报告 实验题目组成原理上机实验 班级1237-小 姓名 学号 时间2014年5月 成绩

实验一基本运算器实验 1.实验目的 (1)了解运算器的组成原理 (2)掌握运算器的工作原理 2.实验内容 输入数据,根据运算器逻辑功能表1-1进行逻辑、移位、算术运算,将运算结果填入表1-2。 表 1-1运算器逻辑功能表 运算类 A B S3 S2 S1 S0 CN 结果 逻辑运算65 A7 0 0 0 0 X F=( 65 ) FC=( ) FZ=( ) 65 A7 0 0 0 1 X F=( A7 ) FC=( ) FZ=( ) 0 0 1 0 X F=( ) FC=( ) FZ=( ) 0 0 1 1 X F=( ) FC=( ) FZ=( ) 0 1 0 0 X F=( ) FC=( ) FZ=( ) 移位运算0 1 0 1 X F=( ) FC=( ) FZ=( ) 0 1 1 0 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 0 1 1 1 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 算术运算 1 0 0 0 X F=( ) FC=( ) FZ=( ) 1 0 0 1 X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 1 X F=( ) FC=( ) FZ=( ) 1 1 0 0 X F=( ) FC=( ) FZ=( ) 1 1 0 1 X F=( ) FC=( ) FZ=( ) 表1-2运算结果表

静态随机存储器实验

实 验 项 目 静态随机存储器实验实验时间2015-11-14 实 验 目 的 掌握静态随机存储器RAM 工作特性及数据的读写方法。 实 验 设 备 PC机一台,TD-CMA实验系统一套 实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM 单元),如图2-1-1 SRAM 6116引脚图所示。6116 有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1-1 所示,当片选有效(CS=0)时,OE=0 时进行读操作,WE=0 时进行写操作,本实验将CS 常接地。 图2-1-1 SRAM 6116引脚图 由于存储器(MEM)最终是要挂接到CPU上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM的读写,实验中的读写控制逻辑如图2-1-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出(时序单元的介绍见附录2)。IOM用来选择是对I/O 还是对MEM进行读写操作,RD=1时为读,WR=1时为写。

实 验 原 理 图2-1-2 读写控制逻辑 实验原理图如图2-1-3所示,存储器数据线接至数据总线,数据总线上接有8个LED灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR单元)给出。数据开关(位于IN单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 图2-1-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR都连接至CON单元的CLR按钮。 实验时T3由时序单元给出,其余信号由CON单元的二进制开关模拟给出,其中IOM应为低(即MEM操作),RD、WR高有效,MR和MW低有效,LDAR高有效。

实验二 数据存储器和程序存储器实验

实验二数据存储器和程序存储器实验 实验目的: 了解DSP内部数据存储器和程序存储器的结构 了解DSP指令的几种寻址方式 实验要求: 主要是对外扩数据存储器进行数据的存储、移动。该实验所需要的硬件主要是DSP、CPLD、DRAM。实验过程是:让学生通过CCS5000的DSP仿真器对DSP 进行仿真,向DSP外扩DRAM写入数据、读数据、数据块的移动,其操作结果通过CCS5000仿真界面进行观察或通过发光二极管观察其正确性。 实验步骤: 经过了实验一以后,相信各位同学对于CCS的基本操作已经了解,故在此不再赘述。 1、以Simulator方式启动CCS,打开项目文件,编译程序,加载目标代码文件。 2、打开各个观察窗口,值得注意的是,本实验需要打开三个内存窗口:Data页的0x2000(.data段)起始处、Data页的0x3000(.stack段)起始处、以及Program页的0x1f00起始处 3、按照实验一的步骤设置断点,观察方法也基本相同,下面仅对各个小段程序进行简要说明: bk0: 通过对XF引脚的置位和复位实现发光二极管的闪烁 bk1: 立即数寻址方式 bk2: 绝对地址寻址方式-数据存储器地址寻址 bk3: 绝对地址寻址方式-程序存储器地址寻址 bk4: 累加器寻址方式 bk5: 直接寻址方式(DP为基准) bk6: 直接寻址方式(SP为基准) bk7: 间接寻址方式 bk8: 存储器映射寄存器寻址方式 bk9: 堆栈寻址方式 bk10: 将程序存储器0x2000为起始地址的0x100个字复制到数据存储器的0x4000为起始地址的空间中

************************************************ * FileName: ex2.asm * * Description: 数据存储器和程序存储器实验* ************************************************ CMD文件: MEMORY { PAGE 0: VECS: origin = 0xff80, length = 0x80 PROG: origin = 0x1000, length = 0x1000 PAGE 1: DATA: origin = 0x2000, length = 0x1000 STACK: origin = 0x3000, length = 0x1000 } SECTIONS { .vectors: {} > VECS PAGE 0 .text: {} > PROG PAGE 0 .data: {} > DATA PAGE 1 .stack: {} > STACK PAGE 1 } 5000系列DSP汇编语言: .title "ex2" ;在清单页头上打印标题 .global reset,_c_int00 ;定义reset和_c_int00两个全局(外部标号),_c_int00是C ; ;行环境的入口点,该入口点在连接的rtsxxx.lib库中,DSP ;复位后,首先跳到0地址,复位向量对应的代码必须跳转 ;到C运行环境的入口点_c_int00. .mmregs ;输入存储器映象寄存器进符号表 .def _c_int00 ;识别定义在当前模块和用在其它模块中的一个或多个符号DA T0 .set 00H ;给符号DAT0设置值为00H DA T1 .set 01H DA T2 .set 02H DA T3 .set 03H DDAT0 .set 2004H DDAT1 .set 2005H DDAT2 .set 2006H DDAT3 .set 2007H PDAT0 .set 1f00H PDAT1 .set 1f01H PDAT2 .set 1f02H PDAT3 .set 1f03H .sect ".vectors" ;中断向量表, 表示以下语句行汇编进名为.vectors的初始化段, ;若用户的程序是要写进EPROM并在上电之后直接运 ;行,则必须包含Vectors.asm文件,这个文件的代码将作为IST ;(中断服务表),并且必须被连接命令文件(.cmd)分配到0 ;地址,DSP复位后,首先跳到0地址,复位向量对应的代码

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

计算机组成原理实验报告(运算器组成、存储器)

计算机组成原理实验报告 一、实验1 Quartus Ⅱ的使用 一.实验目的 掌握Quartus Ⅱ的基本使用方法。 了解74138(3:8)译码器、74244、74273的功能。 利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。 二.实验任务 熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。 新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。 三.74138、74244、74273的原理图与仿真图 1.74138的原理图与仿真图 74244的原理图与仿真图

1. 4.74273的原理图与仿真图、

实验2 运算器组成实验 一、实验目的 1.掌握算术逻辑运算单元(ALU)的工作原理。 2.熟悉简单运算器的数据传送通路。 3.验证4位运算器(74181)的组合功能。 4.按给定数据,完成几种指定的算术和逻辑运算。 二、实验电路 附录中的图示出了本实验所用的运算器数据通路图。8位字长的ALU由2片74181构成。2片74273构成两个操作数寄存器DR1和DR2,用来保存参与运算的数据。DR1接ALU的A数据输入端口,DR2接ALU的B数据输入端口,ALU的数据输出通过三态门74244发送到数据总线BUS7-BUS0上。参与运算的数据可通过一个三态门74244输入到数据总线上,并可送到DR1或DR2暂存。 图中尾巴上带粗短线标记的信号都是控制信号。除了T4是脉冲信号外,其他均为电位信号。nC0,nALU-BUS,nSW-BUS均为低电平有效。 三、实验任务 按所示实验电路,输入原理图,建立.bdf文件。 四.实验原理图及仿真图 给DR1存入01010101,给DR2存入10101010,然后利用ALU的直通功能,检查DR1、

静态随机存储器实验实验报告

**大学 实验(实训)报告 实验名称运算器、存储器所属课程计算机组成与结构所在系计算机科学与技术班级 学号 姓名 指导老师 实验日期

**大学实验(实训)报告 实验静态随机存储器实验 2.1. 实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 2.2. 实验内容 给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据 11H、12H、13H、14H、15H,再依次读出数据。 2.3. 实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 2.4. 实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM单元),如图2-1所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如下图,当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS常接地。 图2-1 SRAM 6116 引脚图 由于存储器最终挂接到CPU上,所以还需要一个读写控制逻辑,使得CPU能控制MEM 的读写,实验中的读写控制逻辑如图2-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出。IOM用来选择是对 I/O还是对MEM进行读写操作,RD=1时为读,WR=1时为写。

实验原理如图2-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0 的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器给出。数据开关经一个三态门连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD 、WR 高有效,MR 和MW 低有效,LDAR 高有效。 2.5.实验步骤 MR MW D7 —————D0D7 —————D0 A7 —————A0 OE CS T3 IOM RD WE 读写译码 RD WR 74LS27374LS245IN 单元 AD7 | || AD0 LDAR IOR IN_B A10 —A8————— ————— ——————————----—————6116

实验二 I2C存储器实验

I2C存储器实验 实验目的 1、了解I2C总线的工作原理 2、掌握I2C总线驱动程序的设计和调试方法 3、掌握I2C总线存储器的读写方法 实验仪器 单片机开发板、稳压电源、计算机 实验原理 1、 I2C总线常识 I2C总线采用一个双线式漏极开路接口,可在一根总线上支持多个器件和主控器。所连接的器件只会把总线拉至低电平,而决不会将其驱动至高电平。总线在外部通过一个电流源或上拉电阻器连接至一个正电源电压。当总线空闲时,两条线路均为高电平。在标准模式中,I2C 总线上的数据传输速率高达100kbit/s,而在快速模式中则高达400kbit/s。 I2C总线上的每个器件均由一个存储于该器件中的唯一地址来识别,并可被用作一个发送器或接收器(视其功能而定)。除了发送器和接收器之外,在执行数据传输时,还可把器件视作主控器或受控器。主控器是负责启动总线上的数据传输并生成时钟信号以允许执行该传输的器件。同时,任何被寻址的器件均被视作受控器。 CAT24WC01/02/04/08/16是一个1K/2K/4K/8K/16K位串行CMOS EEPROM,内部含有128/256/512/1024/2048个8位字节,CATALYST公司的先进CMOS技术实质上减少了器件的功耗,CAT24WC01有一个8字节页写缓冲器,CAT24WC02/04/08/16有一个16字节页写缓冲器,该器件通过I2C总线接口进行操作,有一个专门的写保护功能,并且器件能与400KHzI2C 总线兼容。 引脚名称和功能如图1所示。 图1 24系例I2C存储器引脚说明 通过器件地址输入端A0、A1和A2可以实现将最多8个24WC01和24WC02器件4个24WC04器件,2个24WC08器件和1个24WC16器件连接到总线上。 2、I2C总线协议 (1)只有在总线空闲时才允许启动数据传送。 (2)在数据传送过程中,当时钟线为高电平时,数据线必须保持稳定状态,不允许有跳变。时钟线为高电平时,数据线的任何电平变化将被看作总线的起始或停止信号。 (3)起始信号 时钟线保持高电平期间,数据线电平从高到低的跳变作为I2C 总线的起始信号。 (4) 停止信号 时钟线保持高电平期间,数据线电平从低到高的跳变作为I2C 总线的停止信号。I2C 总线时序:

静态随机存储器实验

静态随机存储器实验 一、实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二、实验设备 (1)TDN-CM+或者TDN-CM++教学试验系统一套和导线若干。 (2)PC机(或示波器)一台。 三、实验原理 实验所用的半导体静态存储器电路原理如图1所示。(见最后一页) 实验中的静态存储器由一片6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。(地址灯为AD0--AD7显示地址线内容。)数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。 地址寄存器为8位,接入6116的地址A7—A0,其高三位A8—A10接地,那么实际容量为256字节。 6116有三个控制线:CE(片选线),OE(读线),WE(写线)。当CE=0和OE=0时进行读操作,WE=0时进行写操作。 本实验中将OE常接地,在此情况下,当CE=0,WE=0时进行读操作,CE=0,WE=1时进行写操作,其写时间与T3脉冲宽度一致。 实验时将T3脉冲接至实验板上时序电路模块的TS3相应插孔中,其脉冲宽度可调,其它电平控制信号由SWITCH UNIT单元的二进制开关模拟,其中SW-B为低电平有效,LDAR为高电平有效。 四、实验步骤 (1)具体接线方法如图2所示。(见最后一页)按图连接实验线路,仔细查线无误后,接通电源。 (2)形成时钟脉冲信号T3。 1、接通电源,用示波器接入方波信号源的输出插孔H23,调节电位器W1及W2, 使H23端输出实验所期望的频率的方波。 2、将时序电路模块中的φ和H23排针相连。 3、在时序电路模块中有两个二进制开关STOP和STEP。将STOP开关置为 "RUN"状态,STEP开关置为"EXEC"状态时,按动微动开关START,则T3输出。 为连续的方波信号.此时,调节电位器W1,用示波器观察,使T3输出实验要求的脉冲信号。同时可测得T3的频率和占空比(我用的是f=85.03HZ 占空比为0.24)。 然后使STOP开关为"RUN"状态,STEP开关为"STEP"状态时,每按动一次微动开关START,则T3输出一个单脉冲,其脉冲宽度与连续方式相同。 (3)写存储器。给存储器的00,01,02,03,04地址单元分别写入数据11H,12H,13H,14H,15H。具体如下 1、写地址。关闭存储器的片选(CE=1),打开地址锁存器门控信号(LDAR=1),打开数据开关三态门(SW-B=0),由数据开关给出所要写入的存储单元的地址,按动START产生T3脉冲将地址打入地址锁存器。

南京中医药大学虚拟存储器管理实验

实验三虚拟存储管理 实验性质:验证 建议学时:3 实验目的: 存储管理的主要功能之一是合理的分配空间。请求页式管理是一种常用的虚拟存储管理技术。本实验的目的是请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换方法。 预习内容: 阅读教材《计算机操作系统》第四章,掌握存储器管理相关概念和原理。 实验内容: (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分。 具体的实施方法是: ①在[0,319]的指令地址之间随机选取一起点m; ②顺序执行一条指令,即执行地址为m+1的指令; ③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; ④顺序执行一条指令,其地址为m’+1; ⑤在后地址[m’+2,319]中随机选取一条指令并执行; ⑥重复上述步骤,直至执行320次指令。 (2)将指令序列变换成页地址流。 设:①页面大小为1K; ②用户内存容量为10块到32块; ③用户虚存容量为32K; 在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页(对应的虚存地址为[0,9]); 第10条~第19条指令为第1页(对应的虚存地址为[10,19]); …… 第310条~第319条指令为第31页(对应的虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下述各种算法在不同的内存容量下的缺页率。 ①先进先出的算法(FIFO); ②最近最少使用算法(LRU); ③最佳淘汰法(OPT):先淘汰最不常用的页地址; ④最少访问页面算法(LFU)。 缺页率=(页面失效次数)/(页地址流长度)= 缺页中断次数/ 320 在本实验中,页地址流的长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。

《计算机组成原理》实验二报告

《计算机组成原理》 实验报告 学院:计算机学院 专业:软件工程 班级学号:130803 313002384 学生姓名:胡健华 实验日期:2014-11-13 指导老师:李鹤喜 五邑大学计算机学院计算机组成原理实验室

实验二 一、实验名称:SRAM 静态随机存储器实验 二、实验目的: 掌握静态随机存储器RAM工作特性及数据的读写方法。 三、实验内容: 1、向存储器中指定的地址单元输入数据,地址先输入AR寄存器,在地址灯上显示;再将数据 送入总线后,存到指定的存储单元,数据在数据显示灯显示。 2、从存储器中指定的地址单元读出数据, 地址先输入AR寄存器,在地址灯显示; 读出的数据送入 总线, 通过数据显示灯显示。 四、实验设备: PC机一台,TD-CMA实验系统一套。 五、实验步骤: 1、关闭实验系统电源,按图2-4 连接实验电路,并检查无误,图中将用户需要连接的信号用 圆圈标明。 2、将时序与操作台单元的开关KK1、KK3 置为运行档、开关KK2 置为‘单步’档。 3、将CON 单元的IOR 开关置为1(使IN 单元无输出),打开电源开关,如果听到有‘嘀’报 警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。 图2-4

4、给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据11H、12H、13H、14H、15H。 由前面的存储器实验原理图(图2-1-3)可以看出,由于数据和地址由同一个数据开关给出,因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST 产生T3 脉冲,即将地址打入到AR 中。再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST 产生T3脉冲,即将数据打入到存储器中。写存储器的流程如图2-5 所示(以向00 地址单元写入11H为例): 图2-5 5、依次读出第00、01、02、03、04 号单元中的内容,观察上述各单元中的内容是否与前面写 入的一致。同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN 单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。读存储器的流程如图2-6 所示(以从00 地址单元读出11H 为例): 图2-6 如果实验箱和 PC 联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明请看附录1),方法是:打开软件,选择联机软件的“【实验】—【存储器实验】”,打开存储器实验的数据通路图,如图2-7 所示。 进行上面的手动操作,每按动一次ST 按钮,数据通路图会有数据的流动,反映当前存储器所做的操作(即使是对存储器进行读,也应按动一次ST 按钮,数据通路图才会有数据流动),或在软件中选择“【调试】—【单周期】”,其作用相当于将时序单元的状态开关置为‘单步’档

计算机组成原理实验静态随机存储器

实验二SRAM 静态随机存储器实验 存储器是计算机各种信息存储与交换的中心。在程序执行过程中,所要执行的指令是从存储器中获取,运算器所需要的操作数是通过程序中的访问存储器指令从存储器中得到,运算结果在程序执行完之前又必须全部写到存储器中,各种输入输出设备也直接与存储器交换数据。把程序和数据存储在存储器中,是冯·诺依曼型计算机的基本特征,也是计算机能够自动、连续快速工作的基础。 一、实验目的 掌握静态随机存储器RAM工作特性及数据的读写方法。 二、实验设备 PC机一台,TD-CMA实验系统一套。 三、实验原理 实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM单元),如图2-1所示。6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表2-1所示,当片选有效(CS=0)时,OE=0时进行读操作,WE=0时进行写操作,本实验将CS常接地。 图2-1 SRAM 6116引脚图 由于存储器(MEM)最终是要挂接到CPU上,所以其还需要一个读写控制逻辑,使得CPU能控制MEM 的读写,实验中的读写控制逻辑如图2-2所示,由于T3的参与,可以保证MEM的写脉宽与T3一致,T3由时序单元的TS3给出。IOM用来选择是对I/O还是对MEM进行读写操作,RD=1时为读,WR=1时为写。 表2-1 SRAM 6116功能表 CS WE OE功能 1 0 0 0× 1 × 1 不选择 读 写 写

XMRD XMWR XIOW XIOR RD T3WR 图2-2 读写控制逻辑 实验原理图如图2-3所示,存储器数据线接至数据总线,数据总线上接有8个LED 灯显示D7…D0的内容。地址线接至地址总线,地址总线上接有8个LED 灯显示A7…A0的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。地址寄存器为8位,接入6116的地址A7…A0,6116的高三位地址A10…A8接地,所以其实际容量为256字节。 RD WR 图2-3 存储器实验原理图 实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。实验时T3由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD 、WR 高有效,MR 和MW 低有效,LDAR 高有效。

计算机组成原理实验报告二半导体存储器原理实验

半导体存储器原理实验 一、实验目的: 1、掌握静态存储器的工作特性及使用方法。 2、掌握半导体随机存储器如何存储和读取数据。 二、实验要求: 按练习一和练习二的要求完成相应的操作,并填写表2.1各控制端的状态及记录表2.2的写入和读出操作过程。 三、实验方案及步骤: 1、按实验连线图接线,检查正确与否,无误后接通电源。 2、根据存储器的读写原理,按表2.1的要求,将各控制端的状态填入相应的栏中以方便实验的进行。 3、根据实验指导书里面的例子练习,然后按要求做练习一、练习二的实验并记录相关实验结果。 4、比较实验结果和理论值是否一致,如果不一致,就分析原因, 然后重做。 四、实验结果与数据处理: (1)表2.1各控制端的状态

2)练习操作 数据1:(AA)16 =(10101010)2 写入操作过程: 1)写地址操作: ①应设置输入数据的开关状态:将试验仪左下方“ INPUT DEVICE ”中的8位数据开关D7-D0 设置为00000000 即可。 ②应设置有关控制端的开关状态:先在实验仪“SWITCH UNIT ”中打开输入三态门控制端,即SW-B=0 ,打开地址寄存器存数控制信号,即LDAR=1, 关闭片选信号(CE ),写命令信号(WE )任意,即CE=1,WE=0 或1。 ③应与T3 脉冲配合可将总线上的数据作为地址输入AR 地址寄存器中:按一下微动开关START 即可。 ④应关闭AR 地址寄存器的存数控制信号:LDAR=0 。 2)写内容操作: ①应设置输入数据的开关状态:将试验仪左下方“ INPUT DEVICE ”中的8位数据开关D7-D0 设置为10101010 。 ②应设置有关控制端的开关状态:在实验仪“SWITCH UNIT ”中打开输入三态门控制端, 即SW-B=O,关闭地址寄存器存数控制信号,即LDAR=O,打开片选信号(CE )和写命令 信号(WE),即CE=0,WE=1。 ③应与T3 脉冲配合可将总线上的数据写入存储器6116的00000000地址单元中:再按一下 微动开关START 即可。 ④应关闭片选信号和写命令信号:即CE=1,WE=0。 读出操作过程: 1 )写地址操作:参考写入操作的写地址操作 2)读内容操作: ①关闭输入三态门控制端,即SW-B=1。 ②地址寄存器存数控制信号(LDAR)任意,不过最好关闭,即LDAR=0 ,防止误按脉冲信号存入数据。 ③关闭写命令信号(WE),即WE=0,打开片选信号(CE),即CE=0,不需要T3脉冲,即 不要按微动开关START。此时00000000地址的内容通过“ BUS UNIT ”中数据显示灯B7-B0 显示出来。 数据2:(55)16 =(01010101)2 写入操作过程: 1)写地址操作: ①设置输入数据的开关状态:将试验仪左下方“ INPUT DEVICE ”中的8位数据开关D7-D0 设置为

相关文档
最新文档