用VASP计算的方法

用VASP计算的方法
用VASP计算的方法

This paper is published as part of Faraday Discussions volume 140: Electrocatalysis - Theory and Experiment at the Interface

Preface

Preface

Andrea E. Russell, Faraday Discuss., 2009 DOI:10.1039/b814058h

Introductory Lecture

Electrocatalysis: theory and experiment at the interface

Marc T. M. Koper, Faraday Discuss., 2009 DOI:10.1039/b812859f

Papers

The role of anions in surface electrochemistry

D. V. Tripkovic, D. Strmcnik, D. van der Vliet, V. Stamenkovic and N. M. Markovic, Faraday Discuss., 2009

DOI:10.1039/b803714k

From ultra-high vacuum to the electrochemical interface: X-ray scattering studies of model electrocatalysts Christopher A. Lucas, Michael Cormack, Mark E. Gallagher, Alexander Brownrigg, Paul Thompson, Ben Fowler, Yvonne Gründer, Jerome Roy, Vojislav Stamenkovi? and Nenad M. Markovi?, Faraday Discuss., 2009

DOI:10.1039/b803523g

Surface dynamics at well-defined single crystal microfacetted Pt(111) electrodes: in situ optical studies

Iosif Fromondi and Daniel Scherson, Faraday Discuss., 2009

DOI:10.1039/b805040f

Bridging the gap between nanoparticles and single crystal surfaces

Payam Kaghazchi, Felice C. Simeone, Khaled A. Soliman, Ludwig A. Kibler and Timo Jacob, Faraday Discuss., 2009

DOI:10.1039/b802919a

Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method

Zhi-You Zhou, Na Tian, Zhi-Zhong Huang, De-Jun Chen and Shi-Gang Sun, Faraday Discussion

General discussion

Faraday Discuss., 2009,

DOI:10.1039/b814699n

Papers

Differential reactivity of Cu(111) and

Cu(100) during nitrate reduction in acid electrolyte

Sang-Eun Bae and Andrew A. Gewirth,

Faraday Discuss., 2009

DOI:10.1039/b803088j

Molecular structure at electrode/electrolyte solution interfaces related to

electrocatalysis

Hidenori Noguchi, Tsubasa Okada and Kohei Uosaki, Faraday Discuss., 2009

DOI:10.1039/b803640c

A comparative in situ195Pt electrochemical-

NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials Fatang Tan, Bingchen Du, Aaron L. Danberry,

In-Su Park, Yung-Eun Sung and YuYe Tong, Faraday Discuss., 2009

DOI:10.1039/b803073a

Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-

enhanced Raman spectroscopy

Bin Ren, Xiao-Bing Lian, Jian-Feng Li, Ping-

Ping Fang, Qun-Ping Lai and Zhong-Qun

Tian, Faraday Discuss., 2009

DOI:10.1039/b803366h

Mesoscopic mass transport effects in electrocatalytic processes

Y. E. Seidel, A. Schneider, Z. Jusys, B. Wickman, B. Kasemo and R. J. Behm,

Faraday Discuss., 2009

DOI:10.1039/b806437g

Discussion

General discussion

Faraday Discuss., 2009,

DOI:10.1039/b814700k

View Article Online / Journal Homepage / Table of Contents f

Papers

On the catalysis of the hydrogen oxidation E. Santos, Kay P?tting and W. Schmickler, Faraday Discuss., 2009

DOI:10.1039/b802253d

Hydrogen evolution on nano-particulate transition metal sulfides

Jacob Bonde, Poul G. Moses, Thomas F. Jaramillo, Jens K. N?rskov and Ib Chorkendorff, Faraday Discuss., 2009

DOI:10.1039/b803857k

Influence of water on elementary reaction steps in electrocatalysis

Yoshihiro Gohda, Sebastian Schnur and Axel Gro?, Faraday Discuss., 2009

DOI:10.1039/b802270d

Co-adsorbtion of Cu and Keggin type polytungstates on polycrystalline Pt: interplay of atomic and molecular UPD Galina Tsirlina, Elena Mishina, Elena Timofeeva, Nobuko Tanimura, Nataliya Sherstyuk, Marina Borzenko, Seiichiro Nakabayashi and Oleg Petrii, Faraday Discuss., 2009

DOI:10.1039/b802556h

Aqueous-based synthesis of ruthenium–selenium catalyst for oxygen reduction reaction

Cyril Delac?te, Arman Bonakdarpour, Christina M. Johnston, Piotr Zelenay and Andrzej Wieckowski, Faraday Discuss., 2009

DOI:10.1039/b806377j

Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS)

Chengfei Yu, Shirlaine Koh, Jennifer E. Leisch, Michael F. Toney and Peter Strasser, Faraday Discuss., 2009

DOI:10.1039/b801586d

Discussion

General discussion

Faraday Discuss., 2009,

DOI:10.1039/b814701a

Papers

Efficient electrocatalytic oxygen reduction by the blue copper oxidase, laccase, directly attached to chemically modified carbons

Christopher F. Blanford, Carina E. Foster, Steady state oxygen reduction and cyclic voltammetry

Jan Rossmeisl, Gustav S. Karlberg, Thomas Jaramillo and Jens K. N?rskov, Faraday Discuss., 2009

DOI:10.1039/b802129e

Intrinsic kinetic equation for oxygen

reduction reaction in acidic media: the

double Tafel slope and fuel cell applications

Jia X. Wang, Francisco A. Uribe, Thomas E. Springer, Junliang Zhang and Radoslav R. Adzic, Faraday Discuss., 2009

DOI:10.1039/b802218f

A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt

Matthew Neurock, Michael Janik and Andrzej Wieckowski, Faraday Discuss., 2009

DOI:10.1039/b804591g

Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes

Flavio Colmati, Germano Tremiliosi-Filho,

Ernesto R. Gonzalez, Antonio Berná, Enrique Herrero and Juan M. Feliu, Faraday Discuss., 2009

DOI:10.1039/b802160k

Electro-oxidation of ethanol and

acetaldehyde on platinum single-crystal electrodes

Stanley C. S. Lai and Marc T. M. Koper,

Faraday Discuss., 2009

DOI:10.1039/b803711f

Discussion

General discussion

Faraday Discuss., 2009,

DOI:10.1039/b814702g

Concluding remarks

All dressed up, but where to go?

Concluding remarks for FD 140

David J. Schiffrin, Faraday Discuss., 2009

DOI:10.1039/b816481a

View Art

A ?rst principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt

Matthew Neurock,*a Michael Janik b and Andrzej Wieckowski c

Received 17th March 2008,Accepted 13th May 2008

First published as an Advance Article on the web 22nd August 2008DOI:10.1039/b804591g

First principles density functional theoretical calculations were carried out to examine and compare the reaction paths and ensembles for the electrocatalytic oxidation of methanol and formic acid in the presence of solution and applied electrochemical potential.Methanol proceeds via both direct and indirect pathways which are governed by the initial C–H and O–H bond activation,respectively.The primary path requires an ensemble size of between 3–4Pt atoms,whereas the secondary path is much less structure sensitive,requiring only 1–2metal atoms.The CO that forms inhibits the surface at potentials below 0.66V NHE.The addition of Ru results in bifunctional as well as electronic effects that lower the onset potential for CO oxidation.In comparison,formic acid proceeds via direct,indirect and formate pathways.The direct path,which involves the activation of the C–H bond followed by the rapid activation of the O–H bond,was calculated to be the predominant path especially at potentials greater than 0.6V.The activation of the O–H bond of formic acid has a very low barrier and readily proceeds to form surface formate intermediates as the ?rst step of the indirect formate path.Adsorbed formate,however,was calculated to be very stable,and thus acts as a spectator species.At potentials below 0.6V NHE,CO,which forms via the non-Faradaic hydrolytic splitting of the C–O bond over stepped or defect sites in the indirect path,can build up and poison the surface.The results indicate that the direct path only requires a single Pt atom whereas the indirect path requires a larger surface ensemble and stepped sites.This suggests that alloys will not have the same in?uence on formic acid oxidation as they do for methanol oxidation.

1.Introduction

The electrocatalytic oxidation of methanol and formic acid has been analyzed in great detail over the past decade as the result of their importance in the development of both methanol and formic acid fuel cells.1–4There are a number of elegant studies for methanol as well as formic acid oxidation over well-de?ned Pt and Pt alloy surfaces that have helped to establish the overall pathways and provide insights into the mechanisms that control these reactions.4–34Although much is known about the paths involved,a detailed understanding of the elementary steps in the mecha-nism as well as the explicit surface ensembles needed to carry out these steps is still

a

Departments of Chemical Engineering and Chemistry,University of Virginia,Charlottesville,VA,22904-4741,USA b

Department of Chemical Engineering,Pennsylvania State University,University Park,PA,16802,USA PAPER https://www.360docs.net/doc/9f5392889.html,/faraday_d |Faraday Discussions

P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

somewhat speculative and often debated.While theory and simulation have begun to provide mechanistic insights into some of the elementary steps for methanol decomposition in vapor phase over different metals,35–37there have been very few studies that have examined the in?uence of the solution phase or more realistic electrochemical interfaces.8,38–42

Methanol oxidation is thought to follow a dual path mechanism over Pt at suf?-ciently high potentials 4,6–8,18,20,43–45involving both ‘‘indirect’’and ‘‘direct’’pathways.The indirect path proceeds via the formation of CO followed by its subsequent oxidation to CO 2.The direct path proceeds instead through the formation of soluble intermediates,such as formaldehyde and formic acid,which can subsequently oxidize to form CO 2.In the indirect path,methanol weakly adsorbs to platinum and dehydrogenates via a sequence of steps to form adsorbed CO.At lower poten-tials,CO builds up on the surface and blocks the sites necessary for the activation of water to form surface hydroxyl intermediates that could oxidize it from the surface.At higher potentials,CO can be oxidized and both the indirect and the direct pathways can proceed.The direct path involves the formation of soluble secondary intermediates such as formaldehyde and formic acid 5–7,18,31,46–48Experiments by Korzeniewski et al.31,46–48carried out in different electrolytes suggested that formal-dehyde is the predominant secondary product and the path to formaldehyde requires signi?cantly smaller ensemble sizes than that for the primary path.Osawa et al.,10,21,26on the other hand,used surface enhanced infrared spectroscopy to suggest that the dual path proceeds through the formation of surface formate inter-mediates which form on polycrystalline Pt electrodes at potentials greater than 0.7V RHE and subsequently oxidize to form formic acid rather than formaldehyde.Koper et al.15,20showed that formaldehyde and formic acid could react to one another.Formaldehyde,for example,can be hydrolyzed to form methylene glycol which can oxidize over Pt to form formic acid.

The oxidation of formic acid is thought to be signi?cantly easier than methanol since CO 2is already present intact in the molecule.This would eliminate the need for an external oxidant.This is consistent with the fact that formic acid can oxidize at potentials signi?cantly less than those required to activate water.Three different paths for the oxidation of formic acid to CO 2have been suggested in the litera-ture.9,10,24,26,43,44,49,68The ?rst,which is known as the ‘‘direct path’’,involves the adsorption of formic acid onto the metal followed by the direct removal (dehydro-genation)of both protons to form CO 2.The direct path was clearly identi?ed by carrying out labeling studies in which 13CO was preadsorbed onto Pt before the oxidation of 12C-formic acid.The resulting product was found to be unlabeled,thus demonstrating that CO 2was formed via a ‘‘direct’’path from formic acid rather than from the adsorbed 13CO.25The second path,which is termed the ‘‘indirect path’’,involves the non-Faradaic dehydration of formic acid to CO and the subse-quent oxidation of CO to CO 2.In the ?nal ‘‘formate path’’,the O–H bond of formic acid is cleaved to form a surface formate intermediate which can subsequently react to form CO 2.9,49

Osawa et al.carried out the ?rst in-situ internal re?ection infrared studies using surface enhanced infrared adsorption spectroscopy (SEIRS)combined with cyclic voltammetry and chronoamperometry to determine the nature of the surface inter-mediates that form during formic acid oxidation under reaction conditions.They suggest that the reaction proceeds at potentials from 0.35V–0.9V NHE through the formation of an adsorbed formate intermediate.21,25,26More recent studies by Behm et al.,9,11,49,24–26however,indicate that formate decomposition is not involved in the dominant reaction path and plays a very minor role,if any,in the formation of CO 2.They found that the changes in the formate adlayer were similar to those found by acetate and (bi)sulfate and suggest that the adlayer is controlled by a fast adsorption/desorption equilibrium with the electrolyte.The changes in the formate coverage were considered to be the result of this exchange rather than the P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

predominantly through the direct activation of the formic acid.The formate that forms was thought to be a spectator species that inhibits the direct decomposition of formic acid to CO 2.They showed,via isotopic labeling,that C–H bond activation was involved in the rate determining step for the oxidation of formic acid.

Many of the different rate controlling processes outlined here for both methanol and formic acid oxidation can proceed over different surface ensembles.As such,the development of alloys which lead to enhanced electrocatalytic activity for methanol oxidation may have little in?uence on formic acid oxidation and vice-versa .In order to better understand the mechanisms that control both methanol and formic acid oxidation and the nature of the active sites necessary to carry out the controlling reaction steps,we have carried out ?rst-principle density functional theoretical calculations over the well-de?ned Pt(111)surface in the presence of solution and over a range of applied potentials.We compare the results for methanol oxidation on different alloys to the results on formic acid in an effort to understand the simi-larities and differences between the two and how alloying might change the results.

https://www.360docs.net/doc/9f5392889.html,putational methods

Plane wave density functional theoretical calculations were carried out herein using the Vienna Ab Initio Software Program (VASP)by Kresse and Hafner 50–52within the Generalized Gradient Approximation to determine the potential-dependent reac-tion energies and activation barriers for the oxidation of formic acid over Pt(111)and methanol over Pt(111)and PtRu(111)alloys at the electri?ed aqueous/metal inter-face.The metal surface was modeled using a 3?3super cell comprised of 3metal

layers with 9metal atoms per layer together with a 10A

?vacuum inserted between the top and bottom surfaces.The bottom layer of the surface was held ?xed at the experimental bulk distances.All of the calculations were carried out using the RPBE functional form of the exchange–correlation function,53–55ultrasoft pseudopo-tentials 56to model the electron ion interactions and a plane-wave basis cutoff energy of 396.0eV.The ?rst Brillioun zone was sampled using a 3?3?1Monkhorst–Pack 57k-point mesh,which was tested to converge a subset of the relative energies reported herein.Previous tests comparing 3and 5layer metal slabs found little change on the structural or potential dependent behavior of water over an Ni(111)surface.58

The aqueous solution phase was modeled using 24explicit solvent molecules chosen to ?ll up the vacuum region.The height of the background region was chosen so as to match the density of water near a metal surface of 0.86g cm à3at 0K.8,39,40,59,60The water molecules were initially oriented in a hexagonal bilayer in registry with the (111)surface and subsequently optimized.In order to study the adsorption of the reactant methanol and formic acid molecules and their subsequent reactions,model systems were created containing speci?c intermediates.One water molecule on the surface was therefore replaced with reactant,intermediate or product species.The surface metal layers,the adsorbates,and the aqueous interface were optimized for all the structures explored.

The potential dependence on the reaction energies and activation barriers were determined using the double-reference method of Filhol and Neurock.39,59,61The double-reference method involves calculating two different reference potentials in order to relate the electri?ed aqueous metal interface to a neutral aqueous system and a vacuum reference potential.The potential is controlled by systematically adding or subtracting fractions of an electron from the unit cell and applying an equal but opposite compensating,homogeneous background charge.The details of the approach and the approximations are described in detail elsewhere.59

3.Results

We report below on the results for the oxidation of methanol and formic acid over P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

compared and used to provide an understanding of how alloying may in?uence each of these systems.3.1Methanol oxidation

In a previous communication,we presented DFT-calculated overall reaction ener-gies for methanol decomposition over Pt(111).8Herein,we highlight just the salient features of the overall pathways and focus predominantly on the active surface ensembles necessary to carry out methanol decomposition and its subsequent oxida-tion,as this was not discussed previously.The general pathways involved in the oxidation of methanol are shown in Fig.1.The decomposition of methanol over Pt proceeds by the adsorption of methanol to the surface.The energies for both the C–H and O–H bond activation paths of methanol were calculated over a range of different potentials.Herein,we summarize the results for an arbitrary potential of 0.5V NHE.The reaction energies in Fig.2indicate that the elementary steps that make up the primary involve:

CH 3O*H /*CH 2O*H +H ++e à/*CHOH +H ++e à/

*COH +H ++e à/*CO +H ++e à

The elementary steps that make up the secondary reaction path proceeds via the initial activation of the O–H bond to form methoxy which then reacts to formalde-hyde:

CH 3O*H /CH 3O*+H++e à/*CH 2]O +H ++e à

The structure and speci?c surface site requirements to carry out both the primary C–H bond activation and the secondary O–H bond activation steps are illustrated in Fig.3.The primary reaction path requires an ensemble site comprised of at least 4Pt metal atoms to accommodate the formation of the formyl intermediate that forms.This is consistent with experimental results from Cuesta,62who used cyanide to modify the ensembles in the Pt(111)surface and showed that the indirect path for methanol to CO required a surface ensemble with three contiguous Pt atoms arranged

triangularly.

Fig.1The initial steps in dual path mechanism for the electrocatalytic oxidation of methanol over Pt to CO 2.The indirect path which proceeds through the formation of CO is shown in the center (in black).The direct paths which lead to the formation of formaldehyde and formic acid are shown at the top and bottom,respectively (in blue).The formaldehyde that forms can also react in solution to form formic acid or adsorbed formate.The interconversion of these steps is sketched in red.A more detailed set of possible elementary steps and how they may interconvert P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

The O–H activation of methanol,as well as the subsequent C–H activation of me-thoxy to formyl,take place over the top of a single metal atom,as is shown in Fig.3B and thus require signi?cantly smaller ensemble sizes which consist of at most 1to 2metal atoms.This secondary path is much less structure sensitive.This is consistent with the experimental results from Iwasita et al.6,7and Koper et al.15,20who demon-

Fig.2DFT-calculated reaction energies over Pt(111)for the initial methanol decomposition paths to CO and formaldehyde at a constant potential of 0.5V.The indirect path through CO shown in purple is favored.The path to formaldehyde is a secondary route that becomes more favorable at potentials slighter greater than 0.5V.

8

Fig.3DFT optimized structures on Pt(111)in solution at 0.5V for the intermediates in the electrocatalytic oxidation of methanol to:(A)CO via the primary path and (B)formaldehyde via the secondary path.The primary path requires 3–4metal atoms whereas the secondary route requires 1–2metal atoms.

P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s

other soluble intermediates was greatest on the Pt(111)surface in sulfuric acid and lowest in perchloric acid.They demonstrated that the (bi)sulfate strongly adsorbs and inhibits the sites that lead to the indirect path to form CO.Perchlorate,on the other hand,is more weakly held to the surface and requires fewer sites,and there-fore does not strongly inhibit the CO formation path for the Pt(111)surface.

In addition to the dehydrogenation pathways depicted in Fig.2,each of the inter-mediates that form can subsequently undergo oxygen addition to form CO 2contain-ing intermediates.We have carried out subsequent DFT calculations to examine most of these paths in the vapor phase.In addition,we have explored,in much greater detail,the potential dependent reaction energies and activation barriers for CO oxidation over Pt(111)in solution,as this is the most dif?cult and important oxidation step.The overall reaction energies for the oxidation of CO via adsorbed atomic oxygen,hydroxyl intermediates,or water to CO 2and COOH are shown as a function of potential in the phase diagram in Fig.4.These results indicate that on the Pt(111)surface,hydroxyls are the active oxidants and appear at above 0.6V NHE as the result of the oxidation of water.CO is oxidized at a just slightly higher potential of 0.66V NHE.Theory was subsequently used to calculate potential dependent activation barriers for CO oxidation.The calculated activation barriers for CO +OH coupling,suggested to be the rate-limiting step,decreases from about 0.52eV to 0.38eV in moving from 0.0V to 1.0V NHE,which is consistent with experimental results.633.2In?uence of ruthenium

The oxidation of methanol is typically carried out by the introduction of Ru which aids in the oxidation of CO to CO 2via both bifunctional and electronic or ligand effects.29,63,64In the bifunctional mechanism,water is activated over Ru atoms in the surface to form active hydroxyl intermediates that can then oxidize CO bound to neighboring Pt sites.We used theory to analyze various arrangements of Pt

Fig.4The DFT-calculated electrochemical surface phase diagrams for the reaction energy vs.potential for the reaction of CO and water to CO 2and COOH over Pt(111).39

P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s

potential dependent energies for both water activation and CO oxidation steps over Pt,Ru,a well dispersed Pt 66.7%Ru 33.3%surface alloy on Pt,Ru surface ensembles with the Pt(111)surface,and a pseudomorphic Pt overlayer on Ru in order to eluci-date the effects on the CO oxidation kinetics.A summary of the DFT calculated results are presented in Table 1which shows the onset potentials for the activation of water and the subsequent oxidation of adsorbed CO by surface OH groups over each of the alloy structures.The results indicate that the addition of Ru into the surface helps to lower the onset potential for the activation of water,and in addition,subsurface Ru atoms weaken the adsorption of CO.Both effects help promote CO oxidation.There appears to be an optimal balance of the amount of Ru needed in the surface which will enhance the formation of OH without poisoning the surface.This is consistent with other experimental studies.65–67While the addition of Ru to the surface decreases the Pt surface ensemble size which is important for methanol decomposition,it also results in a greater number of nearest neighbor Pt-CO and Ru-OH pairs that can enhance the reactivity.Subsurface Ru lowers the barriers for the CO +OH reaction via electronic interactions 3.3Oxidation of formic acid

As was discussed earlier in the introduction,formic acid can be oxidized via three different paths.These three paths are illustrated in Fig.5(a schematic adopted from Behm 9).The ?rst path,depicted in the middle of Fig.5,involves the direct decomposition of formic acid into CO 2+2H +and 2e à.The second,depicted at the bottom of Fig.5,involves an indirect route in which formic acid is ?rst dehydrated to CO.CO is then re-oxidized in a second step to form CO 2.The third path,depicted at the top of Fig.5,involves the conversion of formic acid into

Table 1The DFT calculated onset potentials for the activation of water to OH +H ++e àand CO oxidation to CO 2over model Pt(111)and Ru(0001)alloy surfaces.The higher than expected potentials for the activation of water are due to the fact that activation is carried out directly next to CO.The activation of water on Pt(111)in the absence of CO was calculated to be 0.66V SURFACE H 2O OH*+H ++e à

CO +H 2O CO 2+2H ++2e àPt ML

/Ru(0001) 1.22V 0.01

V Pt(111)

1.29V 0.55V Ru dispersed 0.74V 0.66V Ru islands

0.55

V

0.78

V

Fig.5The reaction paths involved in the electrocatalytic oxidation of formic acid to CO 2.(A)Direct path (center)to CO 2,(B)indirect path through CO (bottom),and (C)formate path though the formation of the formate intermediate (top).Schematic follows that proposed by Behm et al.9,11,49Experimental evidence also suggests the possible exchange of formate with P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

a surface formate intermediate that can subsequently react to form CO 2.All three of these paths were examined herein using density functional theory together with the double-reference method in order to determine their potential dependence reaction energies and activation barriers.Formic acid can adsor

b on Pt(111)in the presence of solution in an upright fashion through both the OH group and the oxygen of the C ]O,or lying parallel to the surface via a di-s interaction with C ]O.While the adsorption in the upright mode is more favorable in the gas phase,the two modes of adsorption in solution are nearly equivalent.Formi

c aci

d readily reacts from th

e upright mode to form a surface formate intermediate and proton.The formate intermediate is bound to a bridge site in a di-s mode through its two oxygen atoms.The molecule is quite rigid in this con?guration with the C–H bond oriented along the surface normal,thus making it very dif?cult to activate the C–H.The dissocia-tion o

f the C–H bond from this state requires bendin

g the CH group out of the CO 2plane,whic

h costs over 1eV in energy.Alternatively,the molecule can reorient itself to be bound through one of the oxygen atoms and the hydrogen.This also costs over 1eV in energy at positive potentials as it requires breaking the very highly polarized Pt–O bond.

If the C–H bond of formic acid is activated initially instead,the hydroxy carbonyl (COOH)intermediate is formed.At positive potentials,it readily deprotonates to form CO 2and H +with a very low activation barrier.While we did not observe the simultaneous activation of both C–H and O–H bonds,we did ?nd that the O–H bond was very easy to activate subsequent to C–H bond activation.We can not,however,rule out the possible simultaneous activation of both bonds.In either case,the COOH intermediate is unstable and unlikely to be observed,therefore sug-gesting this path is the direct path of Fig.5.

Formic acid,formate as well as hydroxy carbonyl intermediates can all potentially react via the activation of the C–O bond,which would result in the formation of adsorbed CO.While we have not calculated this path in solution,we would expect,based on vapor phase calculations for the activation of the RC–OH bond over Pt(111),the barrier to be greater than 1eV.The C–O bond is quite strong and there is little reason to expect the rate of this non-Faradiac process to be substantially altered by variations in potential.Experimentally,it has been reported that formic acid dehydration can not occur over Pt(111).69The reaction instead requires defect sites on the surface.Based on the theoretical estimates and the experimental results,we conclude that CO activation requires step edges or defect sites.Despite the higher activation barrier the calculated overall reaction energy for this step is highly exothermic.The CO intermediates that form are very strongly bound to Pt,and therefore would be expected to be observed at low potentials at which the CO oxida-tion rate is slow.

The ensemble requirements for both the direct as well as the formate pathways shown along the middle and the top branches in Fig.6,respectively,are 1to 2metal atoms.The indirect path,which is shown along the bottom branch in Fig.6,on the other hand,requires a signi?cantly larger ensemble size in order to activate the C–O bond.As such,the direct and formate pathways are characteristically different than that for methanol activation,which requires at least 4metal atoms along its primary path.The indirect path would be similar to methanol since both require the oxida-tion of CO.

3.4The effect of potential

We carried out calculations over a range of potentials in order to establish the potential dependence of all three paths,compare with experiment and establish which path ultimately controls the chemistry at different conditions.For the sake of comparison,we report here on the energies at three very different potentials:0.0,0.5and 1.0V NHE in order to see the changes that can occur as a function P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

The resulting elementary reaction energies calculated at 0V are shown in Fig.7.Formic acid can react to form adsorbed CO and water,which is thermodynamically the most favored path,with an overall reaction energy of à2.06eV.Based on previous gas phase C–OH activation calculations over Pt(111),the activation barrier is speculated to be over 1eV and will thus require step or defect sites.Any CO that forms on the surface at lower potentials will be strongly bound,build up over time and inhibit the surface.The activation of the O–H bond of formic acid,on the other hand,occurs quite easily in solution with a barrier of less then 0.05eV and is exothermic at the surface by à0.78eV.The resulting formate group can either continue on and break its C–H bond to form CO 2and a proton or undergo the reverse recombination reaction and form formic acid.As was discussed above,the barrier to break the C–H bond of the bound formate intermediate is very

dif?cult

Fig.7DFT-calculated potential energy surface for the direct,indirect,and formate paths for

Fig.6DFT calculated surface ensembles required for the direct oxidation path (center),the indirect path through CO (bottom)and the formate path (top)for the oxidation of formic acid over Pt(111)to CO 2at a constant potential of 0.5V.

P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

as it requires overcoming a barrier of 1.2eV.At lower potentials,the adsorbed formate would preferentially react with a proton and come off as formic acid.The barrier for this reverse reaction is 0.78eV.The adsorption and dissociation of formic acid to form formate may be expected to reach equilibrium.The equilibrium to form surface formate at this low of a potential is signi?cantly smaller than that found at higher potentials,and both surface formate or formic acid species will compete with strongly-bound CO.We would therefore expect a very low surface concentration of formate intermediates and instead a much larger concentration of CO at steady state conditions.The initial activation of the C–H bond of formic acid has a barrier of 0.5eV,which is greater than that required to break the O–H bond of the acid.The hydroxyl carbonyl surface intermediate that forms,however,is quite reactive and can readily cleave the O–H bond to form CO 2directly with an activation barrier of 0.52eV.At lower potentials,this path should dominate any CO 2production but its activity will be quite low due to inhibition by CO,which covers the surface.The formate path at lower potentials is simply inactive.These results are consistent with the experimental results of Osawa et al.10,24–26and Behm et al.,9–11,49which show that the surface is highly covered in CO at potentials up to 0.9V but has a decreasing intensity from 0.3V to 0.7V RHE.Formate,which slowly begins to appear at 0.3V,dominates the surface at 0.9V RHE.

As the potential is increased to 0.5V NHE,both the direct path and the formate path become thermodynamically more favorable as both involve electro-oxidation steps (Fig.8).The formation of surface formate becomes 0.22eV more exothermic in moving from 0V to 0.5V NHE.The subsequent activation barrier for breaking the C–H bond of formate to form CO 2is reduced by 0.1eV (from 1.2to 1.1eV).The direct activation of formic acid to the hydroxyl carbonyl becomes more exothermic by 0.26eV and its barrier is lowered by 0.03eV (from 0.50to 0.47eV).There is no change in the thermodynamics or the kinetics for the dehydration of formic acid to CO and water as it is a non-Faradaic reaction.The barrier for the subsequent oxidation of CO to CO 2is reduced from 1.42eV at 0V to 0.99eV at 0.5V.While this is a signi?cant drop,there is likely little change in the macroscopic behavior of the system,as CO will still build up and act to poison the surface.The direct path is still the most favorable and remains strongly inhibited by chemisorbed CO on the

surface.

Fig.8DFT-calculated potential energy surface for the direct,indirect,and formate paths for P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

As the potential is increased to 1V NHE more signi?cant changes occur in the importance of the various paths,as seen in Fig.9.The greatest change is that the indirect route,which produces CO,no longer acts to poison the surface.The activa-tion barrier to oxidize CO is reduced down to 0.5eV.Earlier,we showed that CO is readily oxidized at potentials greater then 0.66V.CO therefore no longer acts to inhibit the surface.This is well established experimentally as well,since CO is oxidized from Pt(111)at potentials above 0.6V RHE.29,63Other oxidation reactions also become more favorable as the potential is increased.The reaction energies for the initial steps of both the formate (O–H activation)and direct (C–H activation)paths become more exothermic by 0.21eV.The C–H activation barrier for the conversion of formic acid to the hydroxyl carbonyl intermediate (*COOH)is lowered down to 0.05eV.

The barrier for the activation of the C–H bond of adsorbed formate to CO 2is decreased by 0.1eV.The change in this barrier is rather small in comparison with the change in the overall thermodynamics for creating the formate intermediate.The activation barrier for the reverse reaction,i.e.the reduction of formate back to formic acid is energetically very unfavorable at 1.0V NHE as the barrier is increased to over 1.2eV.The result is that formate has a low barrier to form but is energetically a very stable surface intermediate.As such,it remains bound very strongly to the surface and acts as a spectator.The formation of CO 2is therefore dominated by the direct path.The higher coverage of formate may lead to minor contributions from the indirect path.The results from the calculations suggest that the surface should become covered with formate intermediates at higher poten-tials as they form faster than they can be removed.They are thermodynamically stable and no longer inhibited from forming by adsorbed CO.The barriers for the C–H as well as the subsequent O–H activation of formic acid via the direct path are both lower than 0.5eV and can readily occur.Formate appears to predomi-

Fig.9DFT-calculated potential energy surface for the direct,indirect,and formate paths for the oxidation of formic acid over Pt(111)to CO 2held at a constant potential of 1.0V.

P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

The results reported here are consistent with the results for formic acid oxidation over Pt by Behm and colleagues 9that suggest that formate is a spectator species which does not undergo further oxidation.The predominant path to CO 2over a wide potential range is through the direct path which involves the activation of the C–H bond followed by the facile activation of the O–H bond.While the results reported herein indicate that these are two distinct steps,they do not rule out a path involving the simultaneous C–H and O–H activation.In either case,we refer to this path as the direct path as our results are consistent with the fact that this path proceeds without the formation of a stable,observable,intermediate at any potential of interest.The barriers for both steps are less than 0.5eV and become more favor-able at higher potentials.At potentials lower than 0.66V,CO forms as the result of dehydration and builds up on the surface,thus inhibiting the oxidation of formic acid to CO 2.This is consistent with the presence of CO seen from the SEIRS data from Osawa and Behm at potentials between 0.1V RHE up to 0.9V RHE.At higher potentials,the CO can be oxidized from the surface.It is removed more rapidly than it is formed and as such does not build up on the surface at potentials greater then 0.66V.

3.5.Ensemble requirements

While the oxidation of formic acid to CO 2can proceed through any one of the three paths presented,the direct route appears to be the dominant path.For completeness,however,we discuss the site requirements for all three pathways.The direct activa-tion of formic acid to CO 2,which involves the initial activation of the C–H bond,was found to require just one metal atom.The hydroxyl carbonyl intermediate that forms,binds to the surface through the carbon atom in an atop con?guration.The subsequent O–H activation of the bound *COOH intermediate occurs quite easily with a low activation barrier and also involves only 1or 2metal atoms.The site requirement for the activation of the O–H bond of formic acid to form formate is quite similar,requiring only a single Pt atom.As such,both the direct and the formate paths have much lower ensemble requirements than that for the primary (indirect)path for the activation of methanol over Pt.The ?nal path,which involves the indirect activation of formic acid to CO,requires defect sites as well as a much larger surface ensemble in order to activate the C–O bond.The oxidation of CO that forms is very dif?cult at lower potentials and CO acts to poison the surface.The difference in ensemble requirements can lead to signi?cant differences upon alloying.We found that the primary oxidation path for methanol to CO 2was considerably enhanced by the presence of Ru in the surface.Ru aids in the activation of water to form hydroxyl intermediates which enhances the oxidation of CO to CO 2,i.e.the bifunctional mechanism.The most active surfaces would therefore be ones in which Pt and Ru were intimately mixed in the surface in order to enhance their activity.This is the result of both the large surface ensemble requirements as well as the fact that all of the intermediates that might form require an oxidant to ultimately be converted to CO 2.Subsurface Ru signi?cantly enhances the reaction by weakening the adsorption of CO,which is known as the ligand or electronic effect.While the ligand effect is very important,it is not a very strong function of ensemble size and tends to be localized to nearest neighbor surface and subsurface sites.

In the oxidation of formic acid,CO 2is already explicitly present in the fuel.The site requirements for simple C–H and O–H scission are only 1–2metal atoms.As such,one might expect small changes in activity as the result of alloying.While the addition of Ru to the surface will help to enhance the oxidation of CO formed via the indirect pathway,the results reported here indicate that there is a very small effect,if any,on the overall rates of oxidation as the presence of Ru would not be expected to enhance the activation of the C–H bond of formic acid to initiate the P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

do not require the activation of water to produce a sacri?cial oxidant as the CO 2in the reactant remains intact.Both,however,do require the activation of C–H and O–H bonds of the acid.The C–H bond activation in general is preferentially carried out over Pt and should therefore not be explicitly in?uenced by Ru with exception of weaker electronic in?uences.The activation of the O–H bond of an acid occurs readily over Pt and therefore does not require Ru either.

4.Summary and conclusions

First principles density functional theoretical calculations help to con?rm that meth-anol oxidation proceeds through both the direct and indirect pathways that are governed by C–H and O–H bond activation,respectively.The indirect path,which proceeds via the formation of CO,is the dominant path.The rate,however,is signif-icantly lower at potentials less than 0.6V NHE over Pt(111)where CO is strongly chemisorbed and inhibits oxidation.The ensemble size required for the indirect and direct paths are characteristically different.The indirect path requires 3–4Pt atoms in order to accommodate the carbon bound CH x O fragments that form,which is consistent with experimental ?ndings by Cuesta.62The direct path,which leads to the production of formaldehyde and/or formic acid,on the other hand,requires only 1–2Pt atoms,and as such,is much less in?uenced by anion adsorption.This is consistent with the experimental results presented by Iwasita et al.6,7and Koper et al.,15,20which indicate that bi(sulfate)blocks Pt sites and inhibits the indirect path but has much less or an in?uence on the direct path.

Formic acid oxidation can also proceed to CO 2through both direct and indirect pathways.In addition,there is a third path which involves the formation of formate intermediates on the surface.Similar to that for methanol,the direct path proceeds via the initial activation of the C–H bond.The barrier for this step is 0.5eV at 0V NHE and drops down to 0.4eV at higher potentials.The barrier to activate the O–H bond of the hydroxyl carbonyl that forms is very low over a range of potentials,and is thus readily activated to form CO 2directly.Based on the calculated activation barriers,this path appears to be the dominant route to form CO 2and requires the presence of step or defect sites.At lower potentials,however,the direct path is blocked by CO which covers the surface.The indirect path,which is responsible for CO formation,is controlled by the non-Faradaic hydrolytic activation of the C–O bond of formic acid or formate.At potentials lower than 0.67V NHE,the CO that forms is thermodynamically quite stable and can not be oxidized from the surface.At potentials greater than 0.6V,CO is oxidized and the direct path is much less inhibited.The formate path,which involves the activation of the O–H bond of formic acid,initiates quite readily over Pt,thus resulting in the formation of formate intermediates.At lower potentials,this path is blocked due to the pres-ence of CO on the surface.As the potential is increased between 0.5–1.0V NHE,formate formation becomes preferable.The activation barrier for the subsequent activation of the formate C–H bond,however,is prohibitive.The computational results indicate that formate forms on the surface at these higher potentials but acts as a spectator,which is consistent with experimental results from Behm.9

The site speci?city for the direct and indirect paths involved in the oxidation of formic acid were found to be quite similar to those found for methanol.The direct path appears to occur over just 1or 2Pt atoms.The indirect path,however,requires splitting the C–O bond which requires a signi?cantly greater ensemble size and defect sites.There is one signi?cant difference,however,between the ensemble size effects for methanol and formic acid.In methanol,the indirect path through CO is the major path to CO 2over a wide range of potentials.In formic acid,however,the direct path is actually the dominant path to CO 2over nearly all poten-tials.This helps to explain the signi?cant differences concerning the in?uence of Ru on methanol and formic acid oxidation.Ru signi?cantly enhances the methanol P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

Acknowledgements

We gratefully acknowledge the Army Research Of?ce for funding through a MURI grant (DAAD19-03-1-0169)for fuel cell electrocatalysis research as well as the computational time from the U.S.Army Research Laboratory Major Shared High Performance Computing Resource Center,the Molecular Sciences Computing Facility in the William R.Wiley Environmental Molecular Sciences Laboratory at Paci?c Northwest Laboratory,and National Center for Computational Sciences at Oak Ridge National Laboratory.AW acknowledges support from the National Science Foundation under grant NSF CHE06-51083.We also kindly acknowledge the very helpful discussions with Sally Wasileski,Christopher Taylor,Jean Sebastian Filhol,and Tom Zawodzinski.

References

1Fuel Cell Handbook ,U.S.Department of Energy,7th edn,2004.

2W.Vielstich,https://www.360docs.net/doc/9f5392889.html,mm and H.A.Gasteiger,Handbook of Fuel Cells Fundamentals,Technology and Applications ,John Wiley and Sons,2003.

3A.Wieckowski,E.R.Savinova and C.G.Vayenas,Catalysis and Electrocatalysis at Nanoparticle Surfaces ,CRC Press Taylor &Francis Group,2003.

4T.D.Jarvi and E.M.Stuve,Fundamental Aspects of Vacuum and Electrocatalytic Reactions of Methanol and Formic Acid on Platinum Surfaces,in Electrocatalysis ,ed.J.Lipkowski and P.N.Ross,Wiley-VCH,1998.

5E.A.Batista and T.Iwasita,Adsorbed intermediates of formaldehyde oxidation and their role in the reaction mechanism,Langmuir ,2006,22(18),7912–7916.

6E.A.Batista,G.R.P.Malpass,A.J.Motheo and T.Iwasita,New insight into the pathways of methanol oxidation,https://www.360docs.net/doc/9f5392889.html,mun.,2003,5(10),843–846.

7E.A.Batista,G.R.P.Malpass,A.J.Motheo and T.Iwasita,New mechanistic aspects of methanol oxidation,J.Electroanal.Chem.,2004,571(2),273–282.

8D.Cao,G.Q.Lu,A.Wieckowski,S.A.Wasileski and M.Neurock,Mechanisms of methanol decomposition on platinum:A combined experimental and ab initio approach,J.Phys.Chem.B ,2005,109(23),11622–11633.

9Y.X.Chen,M.Heinen,Z.Jusys and R.J.Behm,Bridge-bonded formate:Active intermediate or spectator species in formic acid oxidation on a Pt ?lm electrode?,Langmuir ,2006,22(25),10399–10408.

10Y.X.Chen,S.Ye,M.Heinen,Z.Jusys,M.Osawa and R.J.Behm,Application of in-situ attenuated total re?ection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics:Formic acid oxidation on a Pt ?lm electrode at elevated temperatures,J.Phys.Chem.B ,2006,110(19),9534–9544.

11Y.X.Chen,M.Heinen,Z.Jusys and R.J.Behm,Kinetic isotope effects in complex reaction networks:Formic acid electro-oxidation,ChemPhysChem ,2007,8(3),380–385.

12R.B.de Lima,M.P.Massafera,E.A.Batista and T.Iwasita,Catalysis of formaldehyde oxidation by electrodeposits of PtRu,J.Electroanal.Chem.,2007,603(1),142–148.

13H.Hoster,T.Iwasita,H.Baumgartner and W.Vielstich,Pt-Ru model catalysts for anodic methanol oxidation:In?uence of structure and composition on the reactivity,Phys.Chem.Chem.Phys.,2001,3(3),337–346.

14T.H.M.Housmans and M.T.M.Koper,Methanol oxidation on stepped Pt n (111)?(110)electrodes:A chronoamperometric study,J.Phys.Chem.B ,2003,107(33),8557–8567.15T.H.M.Housmans,A.H.Wonders and M.T.M.Koper,Structure sensitivity of methanol electrooxidation pathways on platinum:An on-line electrochemical mass spectrometry study,J.Phys.Chem.B ,2006,110(20),10021–10031.

16T.Iwasita,H.Hoster,A.John-Anacker,W.F.Lin and W.Vielstich,Methanol oxidation on PtRu electrodes.In?uence of surface structure and Pt-Ru atom distribution,Langmuir ,2000,16(2),522–529.

17T.Iwasita,Erratum to Electrocatalysis of methanol oxidation [Electrochimica Acta 47(22–23):3663–3674],Electrochim.Acta ,2002,48(3),289–289.

18T.Iwasita,Electrocatalysis of methanol oxidation,Electrochim.Acta ,2002,47(22–23),3663–3674.

19Z.Jusys and R.J.Behm,Methanol oxidation on a carbon-supported Pt fuel cell catalyst -A kinetic and mechanistic study by differential electrochemical mass spectrometry,J.Phys.P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

https://www.360docs.net/doc/9f5392889.html,i,N.P.Lebedeva,T.H.M.Housmans and M.T.M.Koper,Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes,Top.Catal.,2007,46,320–333.

21A.Miki,S.Ye,T.Senzaki and M.Osawa,Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde,methyl formate,and dimethoxymethane on platinum electrodes in acidic solution,J.Electroanal.Chem.,2004,563(1),23–31.

22H.Miyake,E.Hosono,M.Osawa and T.Okada,Surface-enhanced infrared absorption spectroscopy using chemically deposited Pd thin ?lm electrodes,Chem.Phys.Lett.,2006,428(4–6),451–456.

23Y.Mukouyama,M.Kikuchi,G.Samjeske,M.Osawa and H.Okamoto,Potential oscillations in galvanostatic electrooxidation of formic acid on platinum:A mathematical modeling and simulation,J.Phys.Chem.B ,2006,110(24),11912–11917.

24G.Samjeske,A.Miki,S.Ye,A.Yamakata,Y.Mukouyama,H.Okamoto and M.Osawa,Potential oscillations in galvanostatic electrooxidation of formic acid on platinum:A time-resolved surface-enhanced infrared study,J.Phys.Chem.B ,2005,109(49),23509–23516.

25G.Samjeske and M.Osawa,Current oscillations during formic acid oxidation on a Pt electrode:Insight into the mechanism by time-resolved IR spectroscopy,Angew.Chem.,Int.Ed.,2005,44(35),5694–5698.

26G.Samjeske,A.Miki,S.Ye and M.Osawa,Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy,J.Phys.Chem.B ,2006,110(33),16559–16566.

27H.A.Gasteiger,N.Markovic,P.N.Ross and E.J.Cairns,Methanol Electrooxidation on Well-Characterized Pt-Rn Alloys,J.Phys.Chem.,1993,97(46),12020–12029.

28A.V.Tripkovic,K.D.Popovic,J.D.Lovic,N.M.Markovic and V.Radmilovic,Formic acid oxidation on Pt/Ru nanoparticles:Temperature effects,Curr.Res.Adv.Mater.Process.,2005,494,223–228.

29N.M.Markovic and P.N.Ross,Surface science studies of model fuel cell electrocatalysts,Surf.Sci.Rep.,2002,45(4–6),121–229.

30A.V.Tripkovic,K.D.Popovic,B.N.Grgur,B.Blizanac,P.N.Ross and N.M.Markovic,Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions,Electrochim.Acta ,2002,47(22–23),3707–3714.

31D.Kardash,C.Korzeniewski and N.Markovic,Effects of thermal activation on the oxidation pathways of methanol at bulk Pt-Ru alloy electrodes,J.Electroanal.Chem.,2001,500(1–2),518–523.

32K.Wang,H.A.Gasteiger,N.M.Markovic and P.N.Ross,On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces,Electrochim.Acta ,1996,41(16),2587–2593.

33N.M.Markovic,H.A.Gasteiger,P.N.Ross,X.D.Jiang,I.Villegas and M.J.Weaver,Electrooxidation Mechanisms of Methanol and Formic-Acid on Pt-Ru Alloy Surfaces,Electrochim.Acta ,1995,40(1),91–98.

34H.A.Gasteiger,N.Markovic,P.N.Ross and E.J.Cairns,Electrooxidation of Small Organic-Molecules on Well-Characterized Pt-Ru Alloys,Electrochim.Acta ,1994,39(11–12),1825–1832.

35S.K.Desai,M.Neurock and K.Kourtakis,A periodic density functional theory study of the dehydrogenation of methanol over Pt(111),J.Phys.Chem.B ,2002,106(10),2559–2568.36J.Greeley and M.Mavrikakis,A ?rst-principles study of methanol decomposition on Pt(111),J.Am.Chem.Soc.,2002,124(24),7193–7201.

37J.Kua and W.A.Goddard,Oxidation of methanol on 2nd and 3rd row Group VIII transition metals (Pt,Ir,Os,Pd,Rh,and Ru):Application to direct methanol fuel cells,J.Am.Chem.Soc.,1999,121(47),10928–10941.

38S.Desai and M.Neurock,A ?rst principles analysis of CO oxidation over Pt and Pt 66.7%Ru 33.3%(111)surfaces,Electrochim.Acta ,2003,48(25–26),3759–3773.

39M.J.Janik and M.Neurock,A ?rst principles analysis of the electro-oxidation of CO over Pt(111),Electrochim.Acta ,2007,52(18),5517–5528.

40M.J.Janik,C.D.Taylor and M.Neurock,First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide,Top.Catal.,2007,46,306–319.

41C.Hartnig,J.Grimminger and E.Spohr,The role of water in the initial steps of methanol oxidation on Pt(211),Electrochim.Acta ,2007,52(6),2236–2243.

42C.Hartnig,J.Grimminger and E.Spohr,Adsorption of formic acid on Pt(111)in the presence of water,J.Electroanal.Chem.,2007,607(1–2),133–139.43A.Capon and R.Parsons,J.Electroanal.Chem.,1973,44,1.44A.Capon and R.Parsons,J.Electroanal.Chem.,1973,45,205.

45E.Herrero,W.Chrzanowski and A.Wieckowski,Dual path mechanism in methanol P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

46C.Korzeniewski and C.L.Childers,Formaldehyde yields from methanol electrochemical oxidation on platinum,J.Phys.Chem.B ,1998,102(3),489–492.

47C.L.Childers,H.L.Huang and C.Korzeniewski,Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts,Langmuir ,1999,15(3),786–789.

48M.Islam,R.Basnayake and C.Korzeniewski,A study of formaldehyde formation during methanol oxidation over PtRu bulk alloys and nanometer scale catalyst,J.Electroanal.Chem.,2007,599(1),31–40.

49Y.X.Chen,M.Heinen,Z.Jusys and R.B.Behm,Kinetics and mechanism of the electrooxidation of formic acid -Spectroelectrochemical studies in a ?ow cell,Angew.Chem.,Int.Ed.,2006,45(6),981–985.

50G.Kresse and J.Hafner.,Phys.Rev.B:Condens.Matter Mater.Phys.,1993,47,558.51G.Kresse and J.Furthmu ¨ller,Phys.Rev.B:Condens.Matter Mater.Phys.,1996,54,11169.52G.Kresse and J.Furthmu ¨ller,Comput.Mater.Sci.,1996,6,15.

53J.P.Perdew,K.Burke and M.Ernzerhof,Phys.Rev.Lett.,1996,77,77.54J.P.Perdew,K.Burke and M.Ernzerhof,Phys.Rev.Lett.,1998,80,891.

55B.Hammer,L.B.Hansen and J.K.N?rskov,Phys.Rev.B:Condens.Matter Mater.Phys.,1999,59,7413.

56D.Vanderbilt,Phys.Rev.B:Condens.Matter Mater.Phys.,1990,41,7892.57H.J.Monkhorst and J.D.Pack,Phys.Rev.B:Solid State ,1976,13,5188.

58C. D.Taylor,R.G.Kelly and M.Neurock,First-principles calculations of the electrochemical reactions of water at an immersed Ni(111)/H 2O interface,J.Electrochem.Soc.,2006,153,E207–E214.

59C.D.Taylor,S.A.Wasileski,J.S.Filhol and M.Neurock,First principles reaction modeling of the electrochemical interface:Consideration and calculation of a tunable surface potential from atomic and electronic structure,Phys.Rev.B:Condens.Matter Mater.Phys.,2006,73(16).

60J.Rossmeisl,J.K.Norskov,C.D.Taylor,M.J.Janik and M.Neurock,Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111),J.Phys.Chem.B ,2006,110(43),21833–21839.

61J.S.Filhol and M.Neurock,Elucidation of the electrochemical activation of water over Pd by ?rst principles,Angew.Chem.,Int.Ed.,2006,45(3),402–406.

62A.Cuesta,At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum,J.Am.Chem.Soc.,2006,128(41),13332–13333.

63H.A.Gasteiger,N.Markovic,P.N.Ross and E.J.Cairns,Co Electrooxidation on Well-Characterized Pt-Ru Alloys,J.Phys.Chem.,1994,98(2),617–625.

64W.Chrzanowski and A.Wieckowski,Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis,Langmuir ,1998,14(8),1967–1970.

65B.Hayden,Single Crystal Surfaces as Model Platinum-Based Hydrogen Fuel Cell Electrocatalysts,in Catalysis and Electrocatalysis at Nanoparticle Surfaces ,ed.E.S.A.Wieckowski and C.Vayenas,Marcel Dekker,Inc,2003,p.171–210.

66K.Sasaki,J.X.Wang,M.Balasubramanian,J.McBreen,F.Uribe and R.R.Adzic,Ultralow platinum content fuel cell anode electrocatalyst with a long term performance stability,Electrochim.Acta ,2004,49,3873–3877.

67Brankovic,J.X.Wang and R.R.Adzic,J.Electrochem.Soc.,2001,4(12),A217–A220.68S.G.Sun,J.Clavilzer and A.Bewick,J.Electroanal.Chem.,1988,240,147–159.69M.D.Macia’,E.Herrero and J.M.Feliu,Electrochim.Acta ,2002,47,3653.

P u b l i s h e d o n 22 A u g u s t 2008. D o w n l o a d e d b y S u n Y a t -S e n (Z h o n g s h a n ) U n i v e r s i t y o n 20/10/2015 14

VASP参数设置详解

VASP参数设置详解 计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅 转自小木虫,略有增减 软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: 对所计算的体系进行注释:SYSTEM

●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV ●定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF ●定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG ●定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT ●其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ?SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM ?NWRITE:输出内容详细程度。取值:0~4,缺省值:2

VASP表面计算步骤小结

VASP表面计算步骤小结(侯博士)一、概述 vasp用“slab”模型来模拟表面体系结构。 vasp计算表面的大概步骤是: 材料体性质的计算;表面模型的构造;表面结构的优化;表面性质的计算。 二、分步介绍 1、材料体性质计算: 本步是为了确定表面计算时所需的一些重要参数:ENCUT、SIGMA(smearing 方法为ISMEAR=1 或0时;而通常表面体系结构优化时选择这种smearing方法)、晶格参数。 <一> 在计算前,要明确:何种PP;ENCUT;KPOINTS ;SIGMA;PREC;EX-CO,这其实是准备proper input files。 a. 何种PP 选择的PP能使计算得到的单个原子能量值在1meV~10meV之间。[参见P 21]所求得的单原子能量(对称性破缺时)可用来提高结合能的精度。 b. ENCUT [ 参见P 14 ] 选择的ENCUT应使得总能变化在0.001eV左右为宜。 注意:试探值最小为POTCAR中的ENMAX(多个时,取最大的),递增间隔50; 另外,在进行变体积的结构优化时,最好保证ENCUT=1.3ENMAX,以得到合理精度。 c. PREC [参见P 16] 控制计算精度的最重要参数,决定了(未指定时)ENCUT、FFT网格、ROPT取值。 一般计算取NORMAL;当要提高Stress tensor计算精度时,HIGH 或ACCURATE,并手动设置ENCUT。 d. EDIFF & EDIFFG [参见P16] EDIFF 判断电子结构部分自恰迭代时自恰与否,一般取默认值=1E-4; EDIFFG 控制离子部分驰豫 e. ISTART & ICHARGE [参见P 16] ISTART = 1, ICHARG = 11:能带结构、电子态密度计算时; ISTART =0, ICHARG = 2:其余计算 ISTART = 1,ICHARG = 1(其他所有不改变):断点后续算设置 f. GGA & VOSKOWN [参见P 16] GGA=91: Perdew -Wang 91; GGA=PE: Perdew-Burke-Ernzerhof VOSKOWN=1( GGA=91时);VOSKOWN=默认(其余情况) g. ISIF [参见P 16] 控制结构参数之优化。在对原胞进行变形状或者体积的优化时,ENCUT要取大(比如1.3ENMAX或PREC=HIGH),以消除Pulay Stress导致的误差。 h. ISMEAR & SIGMA [参见P 18] 进行任何静态计算时,且K点数目大于4,ISMEAR=-5; 当原胞太大,导致K点数目小于4时,ISMEAR = 0,并且要设置一个SIGMA; 对绝缘体和半导体,不论是静态计算还是结构优化,ISMEAR = -5; 对金属体系,SMEAR=1和 2,并且设置一个SIGMA; 能带结构计算,用默认值:ISMEAR=1,SIGMA=0.2; 一般来说,对于任何体系,任何计算,采用ISMEAR=0,并选择合适的SIGMA都会得到合理结果。 选择的SIGMA应使得entropy T*S EENTRO 绝对值最小。K 点数目变化后,SIGMA需再优化。 i. RWIGS [参见P 19] 一般取POTCAR中以A为单问的RWIGS值。 j. K points [参见P 19] 选择的K点应使得总能变化在0.001eV左右即可。 k. 一些重要的参数在默认下的值NSW =0,IBRION=-1,ISIF=2:静态计算。

vasp在计算磁性的实例和讨论

兄弟,问3个问题 1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了? 2,另外,磁性计算应该比较负责。你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。 ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。还不敢确定到底是哪个程序可能不可靠。 3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。 1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。因为有间隙区存在,不一致是正常的。 2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。虽然并没有改变定性结论。感觉PAW似乎不能很好地描述较强耦合。我试图在找出原因,主要使用exciting和vasp做比较。计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。 3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。倒没有特别要注意的地方,个人认为。 归根结底,需要一个优秀的交换关联形式出现 VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢? 一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论! 设置ISPIN=2计算得到的态密度成为自旋态密度。 设置ISPIN=2就可以计算磁性,铁磁和反铁磁在MAG里设置。最后得到的DOS是分up和down的。 磁性计算 (2006-12-03 21:02) 标签: - 分类:Vasp ·磁性计算

vasp计算参数设置

软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: l 对所计算的体系进行注释:SYSTEM l 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V l 定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF l 定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG l 定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT l 其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ? SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM

VASP几个计算实例

用VASP计算H原子的能量 氢原子的能量为。在这一节中,我们用VASP计算H原子的能量。对于原子计算,我们可以采用如下的INCAR文件 PREC=ACCURATE NELMDL=5make five delays till charge mixing ISMEAR=0;SIGMA=0.05use smearing method 采用如下的KPOINTS文件。由于增加K点的数目只能改进描述原子间的相互作用,而在单原子计算中并不需要。所以我们只需要一个K点。 Monkhorst Pack0Monkhorst Pack 111 000 采用如下的POSCAR文件 atom1 15.00000.00000.00000 .0000015.00000.00000 .00000.0000015.00000 1 cart 000 采用标准的H的POTCAR 得到结果如下: k-point1:0.00000.00000.0000 band No.band energies occupation 1-6.3145 1.00000 2-0.05270.00000 30.48290.00000 40.48290.00000 我们可以看到,电子的能级不为。 Free energy of the ion-electron system(eV) --------------------------------------------------- alpha Z PSCENC=0.00060791 Ewald energy TEWEN=-1.36188267 -1/2Hartree DENC=-6.27429270 -V(xc)+E(xc)XCENC= 1.90099128 PAW double counting=0.000000000.00000000 entropy T*S EENTRO=-0.02820948 eigenvalues EBANDS=-6.31447362 atomic energy EATOM=12.04670449 ---------------------------------------------------

VASP控制参数文件INCAR的简单介绍

限于能力,只对部分最基本的一些参数(>,没有这个标志的参数都是可以不出现的) 详细说明,在这里只是简单介绍这些参数的设置,详细的问题在后文具体示例中展开。 部分可能会干扰VASP运行的参数在这里被刻意隐去了,需要的同学还是请查看VASP自带的帮助文档原文。 参数列表如下: >SYSTEM name of System 任务的名字*** >NWRITE verbosity write-flag (how much is written) 输出内容详细程度0-3 缺省2 如果是做长时间动力学计算的话最好选0或1(首末步/每步核运动输出) 据说也可以结合shell的tail或grep命令手动输出 >ISTART startjob: restart选项0-3 缺省0/1 for 无/有前次计算的WAVECAR(波函数) 1 'restart with constant energy cut-off' 2 'restart with constant basis set' 3 'full restart including wave function and charge prediction' ICHARG charge: 1-file 2-atom 10-const Default:if ISTART=0 2 else 0 ISPIN spin polarized calculation (2-yes 1-no) default 2 MAGMOM initial mag moment / atom Default NIONS*1 INIWAV initial electr wf. : 0-lowe 1-rand Default 1 only used for start jobs (ISTART=0) IDIPOL calculate monopole/dipole and quadrupole corrections 1-3 只计算第一/二/三晶矢方向适于slab的计算 4 全部计算尤其适于就算孤立分子 >PREC precession: medium, high or low(VASP.4.5+ also: normal, accurate) Default: Medium VASP4.5+采用了优化的accurate来替代high,所以一般不推荐使用 high。不过high可以确保'绝对收敛',作为参考值有时也是必要的。 同样受推荐的是normal,作为日常计算选项,可惜的是说明文档提供的信息不足。 受PREC影响的参数有四类:ENCUT; NGX,NGY,NGZ; NGXF, NGYF, NGZF; ROPT 如果设置了PREC,这些参数就都不需要出现了 当然直接设置相应的参数也是同样效果的,这里不展开了,随后详释

VASP计算前的各种测试

BatchDoc Word文档批量处理工具 (计算前的)验证 一、检验赝势的好坏: (一)方法:对单个原子进行计算; (二)要求:1、对称性和自旋极化均采用默认值; 2、ENCUT要足够大; 3、原胞的大小要足够大,一般设置为15 ?足矣,对某些元素还可以取得更小一些。 (三)以计算单个Fe原子为例: 1、INCAR文件: SYSTEM = Fe atom ENCUT = 450.00 eV NELMDL = 5 ! make five delays till charge mixing,详细意义见注释一 ISMEAR = 0 SIGMA=0.1 2、POSCAR文件: atom 15.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1 Direct 0 0 0 3、KPOINTS文件:(详细解释见注释二。) Automatic Gamma 1 1 1 0 0 0 4、POTCAR文件:(略) 注释一:关键词“NELMDL”: A)此关键词的用途:指定计算开始时电子非自洽迭代的步数(即

NELMDL gives the number of non-selfconsistent steps at the beginning), 文档批量处理工具BatchDoc Word 文档批量处理工具BatchDoc Word densitycharge fastermake calculations 。目的是“非自洽”指的是保持“非自Charge density is used to set up the Hamiltonian, 所以不变,由于洽”也指保持初始的哈密顿量不变。: B)默认值(default value)(时) 当ISTART=0, INIWANELMDL = -5 V=1, and IALGO=8 ) ISTART=0, INIWA V=1, and IALGO=48( NELMDL = -12 时当 ) 其他情况下NELMDL = 0 ( NELMDL might be positive or negative. ionic each applied means A positive number that after a delay is (movement -- in general not a convenient option. )在每次核运动之后(只在A negative value results in a delay only for the start-configuration. 第一步核运动之前)NELMDL”为什么可以减少计算所需的时间?C)关键词“ the the is Charge density used Hamiltonian, to set then up wavefunctions are optimized iteratively so that they get closer to the exact a optimized wavefunctions wavefunctions of Hamiltonian. this From the old with density charge is calculated, the which is then mixed new Manual P105input-charge density. A brief flowchart is given below.(参自页) 是比较离谱的,在前一般情况下,the initial guessed wavefunctions 不变、保持初始的density次非自洽迭代过程中保持NELMDLcharge

VASP-INCAR参数设置

V A S P-I N C A R参数设置-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1. 结构优化 (Opt) SYSTEM = opt ISTART = 0 INIWAV = 1 ICHARG = 2 ISPIN = 2 LREAL = Auto ENCUT = 400 PREC = high NSW= 600 NELM = 60 IBRION = 2 ISIF = 2 POTIM = 0.1 ALGO= Fast LVDW = .TRUE. EDIFF = 1E-5 EDIFFG = 1E-4 or -0.05 # 体系需计算TS时,全部结构优化EDIFFG均设置为-0.05 ISMEAR = 0 SIGMA = 0.2 LCHARG = .FALSE. LWAVE = .FALSE.

2. 过渡态搜索 (TS): 计算时先进行低精度计算,再进行高精度计算 SYSTEM= TS ISTART = 0 INIWAV = 1 ICHARG = 2 ISPIN = 2 LREAL = Auto ENCUT = 400 PREC = high NSW = 600 NELMIN = 6 IBRION = 3 or 1 # 过渡态计算低精度为3,高精度为1 ISIF = 2 POTIM = 0.01 ALGO = Fast LVDW = .TRUE. EDIFF = 1E-5 EDIFFG = -1 or -0.05 # 过渡态计算低精度为-1,高精度为-0.05 ISMEAR = 0 SIGMA = 0.05 LCHARG= .FALSE. LWAVE= .FALSE. IMAGES=8 # TS专属设置 SPRING=-5 # TS专属设置 LCLIMB=.TRUE. # TS专属设置

用vasp计算硅的能带结构

用vasp计算硅的能带结构 在最此次仿真之前,因为从未用过vasp软件,所以必须得学习此软件及一些能带的知识。vasp是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包。用vasp计算硅的能带结构首先要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为 (a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR(原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run

VASP磁性计算总结篇_共7页

以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。非线性磁矩计算: 1)计算非磁性基态产生WAVECAR和CHGCAR文件。 2)然后INCAR中加上 ISPIN=2 ICHARG=1 或 11 !读取WAVECAR和CHGCAR文件 LNONCOLLINEAR=.TRUE. MAGMOM= 注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩 ②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一 步的计算是非磁性的(ISPIN=1)。 磁各向异性能(自旋轨道耦合)计算: 注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨 道计算只适用于PAW赝势,不适于超软赝势。 自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。如下: LSORBIT = .TRUE. SAXIS = s_x s_y s_z (quantisation axis for spin) 默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。 要使初始的磁矩方向平行于选定方向,有以下两种方法: MAGMOM = x y z ! local magnetic moment in x,y,z SAXIS = 0 0 1 ! quantisation axis parallel to z or MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定) SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1 两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个

初学VASP中电子态密度计算设置参考

初学VASP中电子态密度计算基本设置参考主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

VASP经典学习教程,有用

VASP 学习教程太原理工大学量子化学课题组 2012/5/25 太原

目录 第一章Linux命令 (1) 1.1 常用命令 (1) 1.1.1 浏览目录 (1) 1.1.2 浏览文件 (1) 1.1.3 目录操作 (1) 1.1.4 文件操作 (1) 1.1.5 系统信息 (1) 第二章SSH软件使用 (2) 2.1 软件界面 (2) 2.2 SSH transfer的应用 (3) 2.2.1 文件传输 (3) 2.2.2 简单应用 (3) 第三章V ASP的四个输入文件 (3) 3.1 INCAR (3) 3.2 KPOINTS (4) 3.3 POSCAR (4) 3.4 POTCAR (5) 第四章实例 (5) 4.1 模型的构建 (5) 4.2 V ASP计算 (8) 4.2.1 参数测试 (8) 4.2.2 晶胞优化(Cu) (13) 4.2.3 Cu(100)表面的能量 (2) 4.2.4 吸附分子CO、H、CHO的结构优化 (2) 4.2.5 CO吸附于Cu100表面H位 (4) 4.2.6 H吸附于Cu100表面H位 (5) 4.2.7 CHO吸附于Cu100表面B位 (6) 4.2.8 CO和H共吸附于Cu100表面 (7) 4.2.9 过渡态计算 (8)

第一章Linux命令 1.1 常用命令 1.1.1 浏览目录 cd: 进入某个目录。如:cd /home/songluzhi/vasp/CH4 cd .. 上一层目录;cd / 根目录; ls: 显示目录下的文件。 注:输入目录名时,可只输入前3个字母,按Tab键补全。1.1.2 浏览文件 cat:显示文件内容。如:cat INCAR 如果文件较大,可用:cat INCAR | more (可以按上下键查看) 合并文件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3 目录操作 mkdir:建立目录;rmdir:删除目录。 如:mkdir T-CH3-Rh111 1.1.4 文件操作 rm:删除文件;vi:编辑文件;cp:拷贝文件 mv:移动文件;pwd:显示当前路径。 如:rm INCAR rm a* (删除以a开头的所有文件) rm -rf abc (强制删除文件abc) tar:解压缩文件。压缩文件??rar 1.1.5 系统信息 df:分区占用大小。如:df -h du:各级目录的大小。 top:运行的任务。 ps ax:查看详细任务。 kill:杀死任务。如:kill 12058 (杀死PID为12058的任务)注:PID为top命令的第一列数字。

VASP遇到小总结问题

VASP 计算的过程遇到的问题 01、第一原理计算的一些心得 (1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质; 评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电子间的交换关联作用。 (2)关于DFT中密度泛函的Functional,其实是交换关联泛函 包括LDA,GGA,杂化泛函等等 一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案; GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BL YP泛函也属于GGA; 此外还有一些杂化泛函,B3L YP等。 (3)关于赝势 在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法,一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。 赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。 赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 (4)关于收敛测试 (a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。 (b)K-point,即K网格,一般金属需要较大的K网格,采用超晶胞时可以选用相对较小的K网格,但实际上还是要经过测试。 (5)关于磁性 一般何时考虑自旋呢?举例子,例如BaTiO3中,Ba、Ti和O分别为+2,+4和-2价,离子全部为各个轨道满壳层的结构,就不必考虑自旋了;对于BaMnO3中,由于Mn+3价时d 轨道还有电子,但未满,因此需考虑Mn的自旋,至于Ba和O则不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用,具体的可参照磁性物理。 (6)关于几何优化 包括很多种了,比如晶格常数和原子位置同时优化,只优化原子位置,只优化晶格常数,还有晶格常数和原子位置分开优化等等。

用VASP进行Partial Charge分析实例

用VASP进行Partial Charge分析实例 VASP Version : 4.6 在这篇文章中,我将首先介绍Partial Charge的概念,以及如何用VASP具体的计算Partial Charge。首先,所谓的Partial Charge是针对与Total Charge来说的,指的是某个能量范围、某个K点或者某个特定的态所对应的电荷密度。在文献中最常见的是价带顶部,导带底部,表面态或者局域态所对应的Partial Charge。通过分析这些态所对应的Partial Charge,可以得到体系的一些性质,比如局域态具体的是局域在哪个原子上等。我将通过具体的例子说明如何用VASP进行Partial Charge Analysis。 进行Partial Charge Analysis的第一步是进行自洽的计算,得到体系的电子结构。这一步的计算采用通常的INCAR和KPOINTS文件。在自洽计算结束后,我们需要保存WAVECAR文件。(通过在INCAR文件中设置LWAVE=TRUE实现)在这个例子中,假设我们需要计算一个硅纳米线的导带和价带的Partial Charge。硅纳米线的结构如下: 第二步是画出能带结构,以决定你需要画哪条能带的那个K点的态所对应的Partial Charge。关于具体如何用VASP画能带,请参见用VASP4.6计算晶体硅能带实例一文。我们得到硅纳米线的能带结构如下: 画能带时有些小技巧。你可以用一些支持列模块的编辑器,如UltraEdit,将OUTCAR里的各个K点所对应的本征值粘贴到Origin中。这一步完成后,在Origin中做一个矩阵转置,然后将K点坐标贴到第一列,并将其设为X坐标。如此画出来的基本上就是能带图了。在Origin 中可以通过设置纵轴范围来更加清楚的区分费米能级附近的各条能带。如上的硅纳米线所对应的能带结构图如下: 决定画哪条能带,或者那些感兴趣的K点之后,有如下几种方法计算不同的Partial Charge。如果你希望计算价带顶端的Partial Charge,则需要首先通过能带结构图确定价带的能带标号。需要注意,进行Partial Charge分析必须要保留有自洽计算的WAVECAR才可以。 第一种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. IBAND= 20 21 22 23 KPUSE= 1 2 3 4 LSEPB=.TRUE. LSEPK=.TRUE. 这样的INCAR给出的是指定能带,指定K点所对应的Partial Charge。分析导带、价带等的Partial Charge特性,通常采用的都是这种模式。 第二种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 1 charge: 1-file 2-atom 10-const LPARD=.TRUE. EINT = -10.3 -5.1 LSEPB=.FALSE. LSEPK=.FALSE. 这样的INCAR给出的是在能量之间的Partial Charge。这种模式适合于分析某个能量区间内的波函数的性质。 第三种Partial Charge分析的INCAR ISTART = 1 job : 0-new 1-cont 2-samecut

VASP磁性计算总结篇

在线说明书整理出来的非线性磁矩和自旋轨道耦以下是从VASP 合的计算说明。非线性磁矩计算:和CHGCAR文件。1)计算非 磁性基态产生WAVECAR)然后INCAR中加上2ISPIN=2文件和CHGCAR11 !读取WAVECAR ICHARG=1 或LNONCOLLINEAR=.TRUE. MAGMOM= 注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁 矩,如 MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个 原子的y方向有磁矩 ②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR 和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。 磁各向异性能(自旋轨道耦合)计算: 注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选 项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。. 自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在 磁各向异性能(MAE),所以要定义初始磁矩的方向。如下:LSORBIT = .TRUE. SAXIS = s_x s_y s_z (quantisation axis for spin) 默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z

方向有磁矩。 要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,z SAXIS = 0 0 1 ! quantisation axis parallel to z or MAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定) SAXIS = x y z ! quantisation axis parallel to vector (x,y,z),如 0 0 1 两种方法原则上应该是等价的,但是实际上第二种方法更精确。第二种方法允许读取已存在的WAVECAR(来自线性或者非磁性计算)文件,并且继续另一个自旋方向的计算(改变SAXIS 值而MAGMOM保持不变)。当读取一个非线性磁矩计算的WAVECAR时,自旋方向会指定平行于SAXIS。 计算磁各向异性的推荐步骤是:(注文件CHGCAR首先计算线性磁矩以产生WAVECAR 和 1)LMAXMIX)。意加入INCAR中加入:2)然后LSORBIT = .TRUE.ICHARG = 11 ! non selfconsistent run, read CHGCAR !或 ICHARG ==1 优化到易磁化轴,但此时应提高EDIFF的精度LMAXMIX = 4 ! for d elements increase LMAXMIX to 4,

初学VASP最重要的INCAR参数

初学VASP(六) 最重要的INCAR参数 初学VASP(六) 最重要的INCAR参数 INCAR是决定how to do 的文件 限于能力,只对部分最基本的一些参数(>,没有这个标志的参数都是可以不出现的) 详细说明,在这里只是简单介绍这些参数的设置,详细的问题在后文具体示例中展开。 部分可能会干扰VASP运行的参数在这里被刻意隐去了,需要的同学还是请查看VASP自带 的帮助文档原文。 参数列表如下: >SYSTEM name of System 任务的名字 *** >NWRITE verbosity write-flag (how much is written) 输出内容详细程度 0-3 缺省2 如果是做长时间动力学计算的话最好选0或1(首末步/每步核运动输出) 据说也可以结合shell的tail或grep命令手动输出 >ISTART startjob: restart选项 0-3 缺省0/1 for 无/有前次计算的WAVECAR(波函数) 1 'restart with constant energy cut-off' 2 'restart with constant basis set' 3 'full restart including wave function and charge prediction' ICHARG charge: 1-file 2-atom 10-const Default:if ISTART=0 2 else 0 ISPIN spin polarized calculation (2-yes 1-no) default 2 MAGMOM initial mag moment / atom Default NIONS*1 INIWAV initial electr wf. : 0-lowe 1-rand Default 1 only used for start jobs (ISTART=0) IDIPOL calculate monopole/dipole and quadrupole corrections 1-3 只计算第一/二/三晶矢方向适于slab的计算 4 全部计算尤其适于就算孤立分子 >PREC precession: medium, high or low(VASP.4.5+ also: normal, accurate)

相关文档
最新文档