核壳贵金属催化剂的组成(二):铂基三元催化剂

核壳贵金属催化剂的组成(二):铂基三元催化剂
核壳贵金属催化剂的组成(二):铂基三元催化剂

核壳贵金属催化剂的组成(二):铂基三元催化剂

2016-08-20 13:24来源:内江洛伯尔材料科技有限公司作者:研发部

PdPt@PtC试样的透射电镜图像二元或多元金属合金型电催化剂所表现出来的较好的催化活性,启发研究者将金属合金应用于核壳结构催化剂,使用合金作核或壳层,不仅可以进一步减少贵金属的用量,节约催化剂成本,还可以进一步提高催化剂的活性。

核壳型M@PtRu作为阳极催化剂具有如下优点:一方面Ru存在形成的氧化物种Ru-OH 使CO易于从Pt表面氧化脱附,增强催化剂的抗CO中毒性能,同时核与壳间的特殊效应可进一步提高催化剂的活性。

Lee等将PtRu沉积在Au纳米粒子上制备了Au@PtRu/C电催化剂,改善了PtRu的利用率,进一步提高了催化剂的比质量活性。Zhao等使用硼氢化钠和水合肼双还原剂结合置换法将PtRu沉积在Co核上制备了Co@PtRu/MWCNTs核壳催化剂,同样显示出了对甲醇氧化良好的催化活性。

与Pt相比,Pd的储量丰富且成本较低,同时Pd具有一定的耐酸腐蚀性,因此,被广泛用作金属核构筑核壳结构电催化剂。Adzic等制备了系列以Pd或Pd合金为核的Pd-M@Pt-M 电催化剂,其中Pd3Fe(111)@Pt电催化剂表现出与Pt(111)相近的氧还原动力学行为。进一步研究证实Pt壳层与Pd3Fe(111)核之间存在电子相互作用,导致Pt的d带中心和电子结构发生改变,减弱了-OH ads在Pt表面的吸附,从而提高了氧还原催化活性。廖世军等制备了一种以

PdPt合金为核的二元低铂催化剂PdPt@Pt/C,该催化剂对甲醇氧化的催化活性比商业Tanaka50wt%Pt/C高3倍,且I f:I b值高达1.05(一般Pt催化剂该比值约为0.70),表明该催化剂在催化阳极甲醇氧化和抗中间产物毒化方面均具有良好的性能。作者认为高活性可归因于该催化剂具有较高的Pt利用率,同时,XPS结果表明核与壳之间存在着电子相互作用,这种相互作用也利于催化活性的提高。Wang及其合作者利用两步胶体法也制备了以Pd-M合金为核的氧还原反应电催化剂,PdSn@Pt/C、PdNi@Pt/C、Pd3Fe@Pt/C,三种电催化剂较商用的Pt/C 催化剂,均表现出了高的氧还原催化活性。此外,作者发现,Pd3Fe@Pt/C催化氧还原是按照四电子途径进行的。Shao等采用化学镀法联合欠电位沉积法在Co-Pd核壳结构粒子上覆盖了单层Pt,制备了Pt-Co-Pd三元核壳结构催化剂。此催化剂直径为3-4 nm,并且总金属的质量比活性是商用Pt/C电催化剂的3倍。

Gustavo等运用量子化学方法研究了二元X@(X=Ir,Au,Pd,Rh,Ag,Co,Ni,Cu)和三元Pd3X@Pt(X=Co,Fe,Cr,V,Ti,Ir,Re)模型电催化剂的氧还原反应活性。计算表明,在核壳结构催化剂中,核可有效调变Pt壳层的d空轨道和表面Pt-Pt距离,从而减弱了氧化物种在表面的吸附,促进氧还原反应的进行。采用理论计算对深化理解核壳结构之间相互作用、电催化剂活性和反应机制具有十分重要的意义。但需指出的是,目前,核壳结构之间相互作用研究工作仍较为初步,尚无法建立起核壳结构电催化剂的野构-效冶关系,相关研究工作待深入发展。

贵金属催化剂基础知识

贵金属催化剂基础知识 2016-04-17 13:02来源:内江洛伯材料科技有限公司作者:研发部 各种贵金属催化剂 贵金属催化剂已经有很长的历史了,它的工业应用可以追溯到19世纪的70年代,以铂为催化剂的接触法制造硫酸的工业。1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到上世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。从上世纪70年代起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。 贵金属催化剂的英文名称是precious metal catalyst,它主要是以铂族金属(Platinum Group Metal )为主的铂(Pt)、钯(Pd)、钌(Ru)、铑(Rh)、铱(Ir)、锇(Os)等为催化活性组分的载体类非均相催化剂和铂族金属无机化合物或有机金属配合物组成的各类均相催化剂。铂族金属由于其d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。 按催化剂的主要活性金属分类,常用的有:铂催化剂、钯催化剂和铑催化剂、钌催化剂等。贵金属催化剂由于其无可替代的催化活性和选择性,在石油、化工、医药、农药、食品、环保、能源、电子等领域中占有极其重要的地位。在石油和化学工业中的氢化还原、氧化脱氢、催化重整、氢化裂解、加氢脱硫、还原胺化、调聚、偶联、歧化、扩环、环化、羰基化、甲酰化、脱氯以及不对称合成等反应中,贵金属均是优良的催化剂。 在环保领域贵金属催化剂被广泛应用于汽车尾气净化、有机物催化燃烧、CO、NO氧化等。在新能源方面,贵金属催化剂是新型燃料电池开发中最关键的部分。 在电子、化工等领域贵金属催化剂被用于气体净化、提纯。催化技术是当今高新技术之一,也是能产生巨大经济效益和社会效益的技术。发达国家国民经济总产值的20%~30%直接来自催化剂和催化反应。化工产品生产过程中85%以上的反应都是在催化剂作用下进行的。 据分析表明,世界上70%的铑、40%的铂和50%的钯都应用于催化剂的制备。

碳封装非贵金属催化剂及其电催化特性

第十七次全国电化学大会1碳封装非贵金属催化剂及其电催化特性 邓德会*,包信和* (中科院大连化学物理研究所,辽宁,大连,116023,E-mail:dhdeng@https://www.360docs.net/doc/9f7897777.html,;xhbao@https://www.360docs.net/doc/9f7897777.html, ) 贵金属替代催化剂已成为电催化中一个重要的研究热点。然而,目前制约非贵金属电催化剂应用的一个最大问题就是催化剂的不稳定性。尤其是在过电位或强酸、强碱等苛刻环境下,非贵金属容易被过度氧化而腐蚀掉,如在质子交换膜燃料电池中,非贵金属如铁或钴基催化剂在电池工作的酸性环境下将会被迅速溶蚀,从而使电池很快失去催化活性。因此如何设计具有高活性且持续稳定的非贵金属催化剂成为电催化领域一个极具挑战的研究课题。 我们利用豆荚状碳纳米管封装的金属铁催化剂(Pod-Fe )作为模型,发现碳层封装的金属铁能够在酸性条件下有效地催化质子交换膜燃料电池的阴极氧还原反应,由于有了碳层的保护,避免了酸性介质对金属铁的腐蚀,而催化活性来自于“穿过”(Penetrating through )碳管管壁的金属d 电子。在此基础上,我们发现通过减少金属周围的碳层厚度或增加碳层上杂原子如氮原子的数目可以有效促进金属上的电子转移,进一步降低了碳层表面的功函并显著增强了碳层表面的氧还原活性。该类催化剂在质子交换膜燃料电池和电解水制氢上表现出了优异的催化活性和稳定性。由该工作发展出来的为催化剂“穿铠甲”(Chainmail for catalyst )的概念为未来对在苛刻条件下运行的非贵金属催化剂的设计和制备提供了新的研究思路。 a b c d Fig.1a-b)TEM images of Pod-Fe;c)PEMFC durability test of these catalysts in presence of 10ppm SO 2 in air;d)A schematic representation of the ORR process at the surface of Fe 4@SWNT model. 本研究为国家自然科学基金(No.21303191)和中科院大连化物所百人计划共同资助项目。参考文献: 1. Dehui Deng,Liang Yu,Xiaoqi Chen,Guoxiong Wang,Li Jin,Xiulian Pan,Jiao Deng,Gongquan Sun,and Xinhe Bao,Angew.Chem.Int.Ed.,2013,52,371–375(Highlighted on C&E news,90(2012)17).2. Lidong Wu,Dehui Deng,Xianbo Lu,and Jiping Chen,Biosensors and Bioelectronics ,2012,35,193–1993. Dehui Deng,Liang Yu,Xiulian Pan,Shuang Wang,Xiaoqi Chen,P.Hu,Lixian Sun,and Xinhe Bao,Chemical Communications ,2011,47,10016–10018.4. Dehui Deng,Xiulian Pan,Liang Yu,Yi Cui,Yeping Jiang,Jing Qi,Wei-Xue Li,Qiang Fu,Xucun Ma,Qikun Xue,Gongquan Sun,and Xinhe Bao,Chemistry of Materials ,2011,23,1188–1193(Most Read Articles for Q12011).5.Dehui Deng,Xiulian Pan,Hui Zhang,Qiang Fu,Dali Tan,and Xinhe Bao,Advanced Materials ,2010,22,2168-2171(Most accessed articles in Apr.2010). Non-Precious Metal Encap Encaps s u la lated ted in Carbon as Catalyst Catalysts s for Electrocatalysis Dehui Deng,Xinhe Bao (Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian,Liaoning,116023E-mail: dhdeng@https://www.360docs.net/doc/9f7897777.html,;xhbao@https://www.360docs.net/doc/9f7897777.html, )

核壳贵金属催化剂的组成(一):铂基二元催化剂

核壳贵金属催化剂的组成(一):铂基二元催化剂 2016-08-20 13:19来源:内江洛伯尔材料科技有限公司作者:研发部 铂金二元催化剂 最简单的核壳结构电催化剂体系是二元金属核壳结构。过去几年,研究者们在铂基二元催化剂方面做了大量的研究工作,发现核壳结构电催化剂较之于Pt/C催化剂有更高的催化活性。 Au@Pt核壳结构体系研究较多,与Pt相比,Au价格低且波动不大,并且具有优异的催化CO氧化的选择性,以Au粒子为基础的Au@Pt核壳结构有望在提高Pt利用率的同时利用Au、Pt的协同作用进一步提高复合纳米粒子的电催化性能。

Kristian等通过连续还原方法制备了壳层厚度可控的Au@Pt/C催化剂,Pt/Au摩尔比为1的Au@Pt/C的Au核粒径为4.8 nm,Pt层厚度约为0.6 nm,通过TEM、UV-vis、CV显示Au完全被Pt层覆盖,同传统的Pt/C催化剂相比,对甲醇氧化具有更高的比表面活性。Ma等通过两步胶体法成功合成了Au@Pt/C(Pt:Au=3:2,Pt+Au=4wt%)核壳结构纳米材料,表征结果显示Pt的利用率显著提高,对氧还原表现了高的催化活性,在电化学测试和单电池测试中总金属的比质量活性分别是商业用Pt/C催化剂的3.1-4.9倍和4.1倍。Guo等采用两步胶体法合成了中空的Au@Pt核壳结构电催化剂,相比于传统的Pt催化剂,Au@Pt核壳结构电催化剂对于甲醇氧化和氧气还原反应均表现出了更高的催化活性,作者认为由不规则的一维纳米结构组成的Pt壳覆盖在Au空心球表面所形成的特殊形状构造增加了催化剂的孔隙率,从而有效提高了Pt的利用率。 Ni在碱性电解质中具有较好的稳定性,可制备用于碱性燃料电池的核壳结构电催化剂。Fu等在乙二醇胶体中制备了Ni@Pt电催化剂,研究了不同原子比(Pt/Ni=1/10、2/10、5/10、10/10、20/10)时在碱性介质中对甲醇氧化的催化活性,所有的核壳结构催化剂均显示比纯铂催化剂更优异的Pt利用率和对含碳物种的抗毒化能力。 Kang等在有机金属镍复合物(NiPCTs)表面覆盖了一层Pt,制备了较少见报道的NiPCTs@Pt/C纳米粒子,这种纳米粒子(Pt:Ni=15.13:1)具有Pt的面心立方结构,与NiPCTs-Pt/C以及商用Pt/C催化剂相比,NiPCTs@Pt/C表现出优异的催化甲醇氧化能力。 Liu等制备了以金属氧化物为核的MoO x@Pt核壳结构催化剂,研究发现,MoO x核与Pt壳间的电子效应削弱了CO对Pt的吸附作用,因此,催化剂表现出了比PtRh合金和纯Pt 催化剂更优异的抗CO中毒能力。

贵金属催化剂及新材料大显身手

贵金属催化剂及新材料大显身手 铂族金属具有优良的催化活性,较高的选择性、较长的使用寿命和可回收再生等优点,其研究和开发对工业和社会发展意义重大,今后许多领域必将是铂催化剂大显身手的时代。 化学及石油化工用催化剂。80%以上的化学反应与催化有关,铂族金属催化剂在其中占有重要地位。如硝酸工业氨氧化用铂铑,或有铂钯铑催化网,70年来一直是硝酸工业核心。几乎年有的精细化工与贵金属催化剂有关使用载体催化剂,并向均相多功能催化剂方向发展。提高汽车油辛烷值的石油重整,一直离不开铂及铂及铂等基催化剂,另外,裂化、另氢等催化剂也多以铂或钯为基。 一碳化学用催化剂、一碳化学指以煤及燃气,即甲烷、一氧化碳、甲醇等分子内含一个碳原子的物质为原料,制备各种化学制品和新兴工业领域。这方面最前途的是铂族金属配合物或金属化物催化剂。 废气净化用催化剂,主要是汽车废气的处理,目前的发展趋势是:薄壁蜂窝和三元催化系统;采用氧传感器、电子计算机空燃比反馈控制系统,可以同时消除废气中的一氧化碳、碳氢化合物和氮氧化物;同时求降代催化剂中铂族金属含量。 某些粒小于1m的贵金属,其导电性、光学活性。、低温磁化率、比热、核磁张弛等方面出现能级断续性的异常现象,而且表面活性增大,着火点下降。可应用于催化剂、传感器、低温烧结、导电浆料、太阳能吸引膜、稀释冷冻绝热材料等方面。

将镀金的金属纤维和金属粉末混入高分子材料,如橡胶,制成各向导电性橡胶可用于发光二极管、液晶元件、混合集成电中中。用铂族金属有化合物使聚乙炔、石墨层间化合物导电化也可制面导电率与银铜相匹敌的导电性高分子材料。 目前研究的贵金属非晶态合金有铂、金、钯、铑、铱有合金系。主要用途是催化剂、磁电机材料、电极材料、储氢材料、高强度材料、焊料等。 在钛中加入0.2%的钯,大大地提高了钛的抗腐蚀能力。在不锈钢中加入0.1 ~ 3%的铂,使不锈钢的腐蚀量减少到原来的1/10。最近提出的耐蚀合金还有:Ti - Ru - W(mO或Ni)系合金。 不锈钢表面有0.003 m的钝化膜,因此导电性变差,不能钎焊,限制了在电子工业中的应用。但是只要在不锈钢表面镀0.1~0.5 m厚的金,就有了导电性和钎焊性,从而开辟了在电子工业中的应用。贵金属应用极广,在高新技术的发展中处于重要地位。随着科学技术的发展,其应用领域和用途还会扩大,起越来越重要作用。 【关于中国稀有金属网】简称中稀网,https://www.360docs.net/doc/9f7897777.html,,中国稀有金属门户网站,品种涵盖锗、铟、镓、硒、碲、锑、铋、钽、铌、铼、钨、钼、锰、钴、铍等稀贵金属,提供稀有金属价格、稀有金属资讯、稀有金属行情、稀有金属商机、稀有金属会议以及行业上下游生态链资讯信息服务。

2019年贵金属催化剂企业发展战略和经营计划

2019年贵金属催化剂企业发展战略和经营计划 2019年4月

目录 一、行业发展趋势 (5) 二、公司核心竞争力 (6) 1、技术研发优势 (6) 2、产品性能优势 (6) 3、服务响应优势 (7) 4、产品品牌优势 (7) 5、循环再生优势 (7) 三、公司发展战略 (8) 四、公司经营计划 (8) 五、风险因素 (9) 1、原材料价格波动的风险 (9) 2、市场风险 (10) 3、主要客户相对集中的风险 (10) 4、对供应商存在依赖的风险 (11)

贵金属催化剂的应用几乎涉及到各行各业,是国民经济发展的重要基础。催化剂作为新材料已经被纳入国家发展的重点和支持领域,贵金属催化剂以其优良的活性、选择性及稳定性而倍受重视,广泛用于加氢、脱氢、氧化、还原、异构化、芳构化、裂化、合成等反应,在化工、石油精制、石油化学、医药、环保及新能源等领域起着非常重要的作用,成为最重要的催化剂材料之一。 贵金属催化剂作为我国新材料的重要组成部分,是国家大力提倡和鼓励发展的产业,在我国经济发展中的地位非常重要。贵金属催化剂的下游行业主要是汽车尾气净化、石油化工、精细化工、原料药合成、环保化学等行业,作为下游行业重要的支撑性材料,下游行业的蓬勃发展为贵金属催化剂行业高增长奠定基础,特别是汽车尾气净化、燃料电池、精细化工等领域的发展将成为未来贵金属催化剂需求增长的主要动力。 我国贵金属催化剂生产企业起步较晚,2000年之前,国内贵金属催化剂基本依靠进口,目前国内贵金属催化剂行业发展处于成长期,技术处于追赶国际催化剂龙头企业的过程中。随着国内企业品牌效应的提升、研发能力的加强和产品质量的提高,及国家相关政策对国有大型石油化工企业使用国产贵金属催化剂的推动和支持,国内的贵金属催化剂产品将实现对国外产品的进口替代。公司主要产品汽车尾气净化催化剂质量稳定、性能良好,得到客户的认可,正逐步替代外资企业产品。 我国作为一个贵金属催化剂消费大国,每年产生大量的废弃贵金

核壳贵金属催化剂的组成(三):铂基四元及其它类型催化剂

核壳贵金属催化剂的组成(三):铂基四元及其它类型催化剂2016-08-20 13:25来源:内江洛伯尔材料科技有限公司作者:研发部 Pd@PtNWAs 四元金属核壳结构催化剂体系较复杂,制备和最佳比例的筛选较繁琐,目前,关于四元金 属核壳结构的催化剂研究较少。Wang等在乙二醇的溶剂中,分别以PdCl2,CuCl2,H2PtCl6·6H2O 和RuCl3为金属前驱物,以柠檬酸钠为稳定剂,制备了PdCu@PtRu四元催化剂,TEM和XRD 显示PdCu@PtRu催化剂分散均匀,具有较高的比表面积,对甲醇氧化的催化活性分别是Pt/C 和PtRu/C催化剂的15和3.4倍,作者将催化活性增强的原因归结于核壳之间的相互作用。Gong 等制备了以Pd为中间层的Pt-Pd-Ir-Co核壳纳米粒子,并且重点考察了Pd中间层的作用,认 为Pd层通过调节Pt壳与IrCo核间的电子相互作用,实现了电催化剂高的催化活性。 一些具有特殊形貌的核壳结构电催化剂表现了优异的电催化活性。Wang等通过电沉积法 和磁控溅射法制备了有序的Pd@Pt核壳结构纳米线阵列(Pd@PtNWAs),电化学测试表明, Pd@Pt NWA在酸性介质中表现出了很高的电化学活性面积和电催化活性,其对甲醇氧化的质 量峰电流密度为756.7 mA/mgPt,显著高于商品E-TEK PtRu/C催化剂。Zeis等制备了类似核 壳结构的铂纳米金叶(Pt-NPGL)形催化剂,使用低铂载量Pt-NPGL组装的膜电极与高铂载量传 统催化剂组装的膜电极性能相当。

非铂系的核壳结构催化剂具有显著的成本优势,在某些情况下也可以表现出较良好的活性。Jiang等通过置换方法,制备了Ag修饰的Pd催化剂(Pd@Ag),与传统的Pt/C催化剂相比,在碱性介质中其氧还原反应的比表面活性和质量比活性分别增强了3倍和2.5倍,但该催化剂的稳定性仍有待考察。

2014年贵金属催化剂行业分析报告

2014年贵金属催化剂行业分析报告 2014年7月

目录 一、行业监管体系 (4) 1、主管单位及监管体制 (4) 2、行业协会及监管体制 (5) 3、行业主要法律法规及政策 (6) 二、行业周期性、季节性与区域性特点 (8) 1、周期性特征 (8) 2、区域性特征 (8) 3、季节性特征 (9) 三、影响行业发展的因素 (9) 1、有利因素 (9) (1)产业政策的扶持推动行业发展 (9) (2)国家推行循环经济促进贵金属催化剂循环利用的发展 (10) (3)国产贵金属催化剂逐步替代进口产品的趋势已形成 (10) (4)下游行业的市场需求增长为贵金属催化剂行业高增长奠定基础 (11) 2、不利因素 (11) (1)国内企业的生产研发技术水平相对落后 (11) (2)企业规模普遍较小,资金实力相对偏弱 (12) (3)复合型人才相对匮乏 (12) 四、行业进入壁垒 (13) 1、技术壁垒 (13) 2、市场壁垒 (13) 3、资金壁垒 (14) 4、人才壁垒 (14) 五、行业市场规模 (14)

1、上游产业关系 (14) 2、下游产业关系 (15) 3、行业生命周期 (16) 4、行业市场规模 (17) 六、市场竞争状况 (19) 1、庄信万丰 (20) 2、优美克 (21) 3、贺利氏 (21) 4、贵研铂业 (21)

一、行业监管体系 1、主管单位及监管体制 本行业涉及到的政府监管部门包括国家发展和改革委员会、工业和信息化部、国家质量监督检验检疫总局、国家环境保护部等,这些部门按照国家相关规定对不同的环节进行监管。 国家发展和改革委员会:拟订并组织实施国民经济和社会发展战略、中长期规划和年度计划,统筹协调经济社会发展。负责制定产业政策,研究该产业的发展方向,并提出相关措施,指引行业的发展方向。承担规划重大建设项目和生产力布局的责任,拟订全社会固定资产投资总规模和投资结构的调控目标、政策及措施,衔接平衡需要安排中央政府投资和涉及重大建设项目的专项规划。 工业和信息化部:制定并组织实施工业、通信业的行业规划、计划和产业政策,提出优化产业布局、结构的政策建议,起草相关法律法规草案,制定规章,拟订行业技术规范和标准并组织实施,指导行业质量管理工作。对于本行业的管理主要包括研究工业发展战略,指导工业行业技术法规和行业标准的拟订,审批、核准国家规划内和年度计划规模内工业固定资产投资项目,监测分析工业运行态势,统计并发布相关信息。 国家质量监督检验检疫总局:组织起草有关质量监督检验检疫方面的法律、法规草案,研究拟定质量监督检验检疫工作的方针政策,

贵金属催化剂的应用说明及历史

贵金属催化剂的应用说明及历史 贵金属催化剂已经有很长的历史了,它的工业应用可以追溯到19世纪的70年代,以铂为催化剂的接触法制造硫酸的工业。1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到上世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。从上世纪70年代起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。贵金属催化剂的英文名称是precious metal catalyst,它主要是以铂族金属(Platinum Group Metal )为主的铂(Pt)、钯(Pd)、钌(Ru)、铑(Rh)、铱(Ir)、锇(Os)等为催化活性组分的载体类非均相催化剂和铂族金属无机化合物或有机金属配合物组成的各类均相催化剂。铂族金属由于其d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。按催化反应类别,贵金属催化剂可分为均相催化用和非均相催化用两大类。均相催化用催化剂通常为可溶性化合物(盐或络合物),如氯化钯、氯化铑、醋酸钯、羰基铑、三苯膦羰基铑、碘化铑等。非均相催化用催化剂为不溶性固体物,其主要形态为金属丝网态和多孔无机载体负载金属态。金属丝网催化剂(如铂网、铂铑合金网等)的应用范围及用量有限。绝大多数非均相催化剂为载体负载贵金属型,如Pt/A12O3、Pd/C、Rh/SiO2、Pt-Pd/Al2O3、Pt-Rh/Al2O3等。在全部催化反应过程中,多相催化反应占80%~90%。按载体的形状,负载型催化剂又可分为微粒状、球状、柱状及蜂窝状。按催化剂的主要活性金属分类,常用的有:铂催化剂、钯催化剂和铑催化剂、钌催化剂等。贵金属催化剂由于其无可替代的催化活性和选择性,在石油、化工、医药、农药、食品、环保、能源、电子等领域中占有极其重要的地位。在石油和化学工业中的氢化还原、氧化脱氢、催化重整、氢化裂解、加氢脱硫、还原胺化、调聚、偶联、歧化、扩环、环化、羰基化、甲酰化、脱氯以及不对称合成等反应中,贵金属均是优良的催化剂。在环保领域贵金属催化

核壳贵金属催化剂的组成(二):铂基三元催化剂

核壳贵金属催化剂的组成(二):铂基三元催化剂 2016-08-20 13:24来源:内江洛伯尔材料科技有限公司作者:研发部 PdPt@PtC试样的透射电镜图像二元或多元金属合金型电催化剂所表现出来的较好的催化活性,启发研究者将金属合金应用于核壳结构催化剂,使用合金作核或壳层,不仅可以进一步减少贵金属的用量,节约催化剂成本,还可以进一步提高催化剂的活性。 核壳型M@PtRu作为阳极催化剂具有如下优点:一方面Ru存在形成的氧化物种Ru-OH 使CO易于从Pt表面氧化脱附,增强催化剂的抗CO中毒性能,同时核与壳间的特殊效应可进一步提高催化剂的活性。 Lee等将PtRu沉积在Au纳米粒子上制备了Au@PtRu/C电催化剂,改善了PtRu的利用率,进一步提高了催化剂的比质量活性。Zhao等使用硼氢化钠和水合肼双还原剂结合置换法将PtRu沉积在Co核上制备了Co@PtRu/MWCNTs核壳催化剂,同样显示出了对甲醇氧化良好的催化活性。 与Pt相比,Pd的储量丰富且成本较低,同时Pd具有一定的耐酸腐蚀性,因此,被广泛用作金属核构筑核壳结构电催化剂。Adzic等制备了系列以Pd或Pd合金为核的Pd-M@Pt-M 电催化剂,其中Pd3Fe(111)@Pt电催化剂表现出与Pt(111)相近的氧还原动力学行为。进一步研究证实Pt壳层与Pd3Fe(111)核之间存在电子相互作用,导致Pt的d带中心和电子结构发生改变,减弱了-OH ads在Pt表面的吸附,从而提高了氧还原催化活性。廖世军等制备了一种以

PdPt合金为核的二元低铂催化剂PdPt@Pt/C,该催化剂对甲醇氧化的催化活性比商业Tanaka50wt%Pt/C高3倍,且I f:I b值高达1.05(一般Pt催化剂该比值约为0.70),表明该催化剂在催化阳极甲醇氧化和抗中间产物毒化方面均具有良好的性能。作者认为高活性可归因于该催化剂具有较高的Pt利用率,同时,XPS结果表明核与壳之间存在着电子相互作用,这种相互作用也利于催化活性的提高。Wang及其合作者利用两步胶体法也制备了以Pd-M合金为核的氧还原反应电催化剂,PdSn@Pt/C、PdNi@Pt/C、Pd3Fe@Pt/C,三种电催化剂较商用的Pt/C 催化剂,均表现出了高的氧还原催化活性。此外,作者发现,Pd3Fe@Pt/C催化氧还原是按照四电子途径进行的。Shao等采用化学镀法联合欠电位沉积法在Co-Pd核壳结构粒子上覆盖了单层Pt,制备了Pt-Co-Pd三元核壳结构催化剂。此催化剂直径为3-4 nm,并且总金属的质量比活性是商用Pt/C电催化剂的3倍。 Gustavo等运用量子化学方法研究了二元X@(X=Ir,Au,Pd,Rh,Ag,Co,Ni,Cu)和三元Pd3X@Pt(X=Co,Fe,Cr,V,Ti,Ir,Re)模型电催化剂的氧还原反应活性。计算表明,在核壳结构催化剂中,核可有效调变Pt壳层的d空轨道和表面Pt-Pt距离,从而减弱了氧化物种在表面的吸附,促进氧还原反应的进行。采用理论计算对深化理解核壳结构之间相互作用、电催化剂活性和反应机制具有十分重要的意义。但需指出的是,目前,核壳结构之间相互作用研究工作仍较为初步,尚无法建立起核壳结构电催化剂的野构-效冶关系,相关研究工作待深入发展。

2017年贵金属催化剂行业市场分析报告

2017年贵金属催化剂行业市场分析报告

目录 贵金属催化剂是化工新材料发展的基础 (4) 铂钯铑等是最常用的贵金属催化剂 (4) 2021 年全球催化剂规模预计达 220 亿美元以上 (5) 多因素驱动贵金属催化剂行业发展 (5) 催化技术作为一种绿色环保技术,其发展得到国家大力支持 (5) 国产贵金属催化剂正逐步实现进口替代 (6) 贵金属催化剂回收利用开启新的生产渠道 (7) 贵金属催化剂下游应用持续增长 (8) 汽车尾气排放标准升级带动贵金属催化剂需求上升 (8) 燃料电池领域是贵金属催化剂的潜在市场 (11) 庞大的精细化工市场对贵金属催化剂的需求强劲 (13) 国际巨头垄断,国内贵金属催化剂企业处于成长中 (14) 西安凯立( 834893.OC):国内技术领先的贵金属催化剂供应商 (15) 公司简介 (15) 公司的竞争优势 (18) 未来的成长性 (18) 凯大催化( 830974.OC):均相催化剂行业的领导者 (19) 公司简介 (19) 公司的竞争优势 (22) 未来的成长性 (23) 陕西瑞科( 430428.OC):贵金属催化技术整体解决方案供应商 (23) 公司简介 (24) 公司的竞争优势 (26) 未来的成长性 (27) 风险提示 (28)

图表目录 图表 1:贵金属催化剂的类型 (4) 图表 2:多项政策助推催化剂产业的发展 (6) 图表 3:2016 年全球铂矿产量为 172 吨 (7) 图表 4:我国汽车保有量逐年提高, 2017 年一季度达到 3 亿辆 (8) 图表 5:国 V 及以上标准的汽车占比仅 10.5% (9) 图表 6:不同排放标准汽车的污染物排放量分担率 (10) 图表 7:燃料电池的主要类型 (12) 图表 8:燃料电池堆的成本构成 (12) 图表 9:我国的精细化工市场规模呈逐年增长趋势 (13) 图表 10:2016 年公司实现营业总收入 3.42 亿元 (15) 图表 11:2016 年公司归母净利润同比增长 31.55% (16) 图表 12:贵金属催化剂销售占公司营收的 76.3% (17) 图表 13:公司产品综合毛利率相对稳定 (17) 图表 14:2016 年公司收入大增,达到 1.73 亿元 (20) 图表 15:2016 年公司归母净利润 449 万元 (20) 图表 16:2016 年汽车尾气净化用催化剂占比大幅提高 (21) 图表 17:2016 年公司产品综合毛利率下降至 8.02% (21) 图表 18:2016 年公司实现营业收入 1.81 亿元 (24) 图表 19:2016 年公司归母净利润同比增长 60.6% (25) 图表 20:公司的销售收入主要来自贵金属催化剂销售 (25) 图表 21:2016 年公司综合毛利率达到 21.69% (26)

贵金属催化剂

贵金属催化剂 贵金属催化剂(precious metal catalyst)一种能改变化学反应速度而本身又不参与反应最终产物的贵金属材料。几乎所有的贵金属都可用作催化剂,但常用的是铂、钯、铑、银、钌等,其中尤以铂、铑应用最广。它们的d电子轨道都未填满,表面易吸附反应物,且强度适中,利于形成中间“活性化合物”,具有较高的催化活性,同时还具有耐高温、抗氧化、耐腐蚀等综合优良特性,成为最重要的催化剂材料。 简史1831年英国菲利普斯(philips)提出以铂为催化剂的接触法制造硫酸,到1875年该法实现工业化,这是贵金属催化剂的最早工业应用。此后,贵金属催化剂的工业化应用层出不穷。1913年,铂网催化剂用于氨氧化制硝酸;1937年Ag/Al2O3催化剂用于乙烯氧化制环氧乙烷;1949年,Pt/Al2O3催化剂用于石油重整生产高品质汽油;1959年,PdCl2-CuCl2催化剂用于乙烯氧化制乙醛;到本世纪60年代末,又出现了甲醇低压羰基合成醋酸用铑络合物催化剂。从1974年起,汽车排气净化用贵金属催化剂(以铂为主,辅以钯、铑)大量推广应用,并很快发展为用量最大的贵金属催化剂。贵金属催化剂开发应用百余年(1875~1994年)来,其发展势头长盛不衰。新的品种、新的制备方法、新的应用领域不断出现,有关基础理论也在不断完善。随着科学技术的不断进步,贵金属催化剂将会在一些新领域中继续发挥重要作用。当然,由于贵金属资源稀少、价格昂贵,人们也在不断研究开发非贵金属或低含量贵金属催化剂。 主要性能指标 (1)活性。是衡量催化剂效能大小的标准。工业上通常以单位体积(或重量)催化剂在一定条件下,单位时间内所得到的产品数量来表示。(2)选择性。是指催化剂作用的专一性,即在一定条件下,某一催化剂只对某一化学反应起加速作用。选择性通常以反应后所得指望产物的克分子数与参加反应的原料克分子数之比的百分数表示。(3)稳定性。是指催化剂在使用过程中保持其活性及选择性不变的能力,通常以使用寿命来表示。催化剂的良好性能不仅取决于活性金属的固有特性(原子的电子结构等),而且取决于其结晶构造、粒子大小、比表面积、孔结构及分散状态等因素。此外,助催化剂及载体对催化剂的性能也有重要影响。 分类及应用按催化反应类别,贵金属催化剂可分为均相催化用和多相催化用两大类。均相催化用催化剂通常为可溶性化合物(盐或络合物),如氯化钯、氯化铑、醋酸钯、羰基铑、三苯膦羰基铑等。多相催化用催化剂

铂基纳米材料电催化剂研究进程

铂基纳米材料电催化剂研究进程 对于各种燃料电池的实际应用具有重要的促进作用。从载体负 载的纯铂颗粒、组分调节、晶面控制和三维结构构建等几方面详细 介绍了铂基纳米材料电催化剂制备合成和性质研究的最新进展。 关键词:铂基纳米材料;燃料电池;电催化剂;合成方法 铂(Pt)材料因具有独特而丰富的电子结构和高的结构稳定性,在很多反应中显示出优异的催化性能,在石油催化重整、有机 合成、硝酸生产等现代工业的重要领域中具有不可替代的作用。伴 随着能源需求的日益增长、传统化石能源的逐渐消耗和生态环境的 持续恶化,寻求更加充足和清洁的能源变得非常急迫。燃料电池具 有能量转化效率高、有害气体排放少、燃料来源广泛、噪声低等优点,近几十年来一直受到人们的大量关注,相关研究也获得了极大 的进展。在燃料电池中,铂对阴极氧还原反应和阳极小分子(氢气、甲醇、乙醇、乙二醇、甲酸等)氧化反应都具有优异的催化作用, 是已知性质最好的单金属燃料电池电极催化剂。但是铂储量稀少, 价格非常昂贵,寻找有效的途径以提高铂的利用率显得非常重要。 相对于块体材料,铂基纳米材料具有较高的比表面积、丰富的活性 位点,其催化活性较前者有很大的增强,铂的利用率也得到了提高。构建高比表面积的铂基纳米材料有两种主要途径,一是将尺寸很小 的铂纳米颗粒负载或生长在导电载体上,另一个是设计合成“三维”结构,如空心、多孔、框架结构等。催化剂材料所暴露的晶面决定 了表面的原子构型和电子结构,直接影响反应物分子的电化学吸附 和分解反应。因此,控制铂基催化剂纳米颗粒具有不同的晶面,或 具有不同的几何外形,是探索高性能铂基催化剂的一种有效途径。 另外,将铂与其他组分结合在一起,构建合金、异质和核壳等纳米

电解水制氢中的非贵金属催化剂

电解水制氢中的非贵金属催化剂 一、常见非贵金属HER催化剂简介 图1常用于构建电催化剂的元素 上图展示了常用于构建电催化剂的元素。根据其物理和化学性质,大致将这些元素分为三组:①贵金属铂(Pt)——目前常见的贵金属HER电催化剂;②用于构建非贵金属电催化剂的过渡金属元素,主要包括铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、钼(Mo)和钨(W);③用于构建非贵金属电催化剂的非金属元素,主要包括硼(B)、碳(C)、氮(N)、磷(P)、硫(S)和硒(Se)。截至目前,已用上述十二种非贵金属元素合成了几乎所有有效的非贵金属HER催化剂。

功能仿生催化剂的开发是一个重要的进展,为大规模可持续的氢气生产开辟了道路。尽管自然界存在的固氮酶和氢化酶可以催化析氢反应,但是酶基器件难以为高水平的氢气生产做出重大贡献。这些精妙的生物催化剂具有出色的催化选择性,能够在自然环境中运作,但在极端条件下(如强酸性和碱性介质)将迅速失活。受到固氮酶和氢化酶的结构和组成启发,研究人员利用一系列的金属硫化物(Mo(W)S2、FeS2、NiS2、CoS2等)作为高效HER电催化剂,这在非贵金属HER电催化剂领域是一个意义深远的成就。近来,研究人员利用电化学原位XAS谱研究了过渡金属硫化物NiS2在碱性溶液中电催化析氢的活性位点,加深了在碱性条件下过渡金属硫化物HER反应机理的理解,并在此基础上设计出性能优异的电催化剂以用于构筑全分解水装置。 图2原位表征技术揭示NiS2电催化析氢的活性位点

硒(Se)和硫(S)都是元素周期表VIA族的元素,硫在第三周期,硒在第四周期。因此这两个元素不仅一些有相似之处,也有不同点。类似的是,它们最外层都有6个电子和相似的氧化数。元素的最外层电子排布往往决定了这些元素形成的化合物的化学性质,这意味着相对于金属硫化物,金属硒化物对HER 也有相似的活性。 随着对金属硫化物材料HER活性的研究,各种金属硒化物材料的HER活性也受到了大量关注。另一方面,位于元素周期表不同周期的Se和S有一些区别的特征:①硒的金属性明显的强于硫,表现出更好的导电性;②硒的原子半径比硫大;③硒的电离能小于硫。因此,金属硒化物相比于金属硫化物可能拥有一些独特的活性。 MoSe2是一种优良的非贵金属催化剂,但是块状粉末2H相MoSe2颗粒是宽带隙半导体,电导率偏低,且催化活性中心少,使得HER效率低下。近来,研究人员对其进行氨气热处理改性,通过N掺杂引发MoSe2内部的2H到 1T相转,最终形成2H-1T复合相。1T相的MoSe2具有窄的能带宽度,表现出金属性质,极大改善了催化过程中的电子传输。同时,N引入进一步增加了MoSe2片层边缘位置析氢活性位点。

贵金属催化剂失活的三个主要原因

贵金属催化剂失活的三个主要原因 2016-04-16 12:31来源:内江洛伯尔材料科技有限公司作者:研发部 汽车尾气废催化剂 催化剂失活指催化剂在使用中会因各种因素而失去活性的现象,贵金属催化剂的失活原因一般分为中毒、烧结和热失活、结焦和堵塞三大类。 1、中毒引起的失活 (1)暂时中毒(可逆中毒) 毒物在活性中心上吸附或化合时,生成的键强度相对较弱可以采取适当的方法除去毒物,使催化剂活性恢复而不会影响催化剂的性质,这种中毒叫做可逆中毒或暂时中毒。 (2)永久中毒(不可逆中毒) 毒物与催化剂活性组份相互作用,形成很强的的化学键,难以用一般的方法将毒物除去以使催化剂活性恢复,这种中毒叫做不可逆中毒或永久中毒。 (3)选择性中毒 催化剂中毒之后可能失去对某一反应的催化能力,但对别的反应仍有催化活性,这种现象称为选择中毒。在连串反应中,如果毒物仅使导致后继反应的活性位中毒,则可使反应停留在中间阶段,获得高产率的中间产物。 2、结焦和堵塞引起的失活 催化剂表面上的含碳沉积物称为结焦。以有机物为原料以固体为催化剂的多相催化反应过程几乎都可能发生结焦[7]。由于含碳物质和/或其它物质在催化剂孔中沉积,造成孔径减小(或孔口缩小),使反应物分子不能扩散进入孔中,这种现象称为堵塞。通常含碳沉积物可与水蒸气或氢气作用经气化除去,所以结焦失活是个可逆过程。 3、烧结和热失活(固态转变) 催化剂的烧结和热失活是指由高温引起的催化剂结构和性能的变化。高温除了引起催化剂的烧结外,还会引起其它变化,主要包括:化学组成和相组成的变化,半熔,晶粒长大,活性组分被载体包埋,活性组分由于生成挥发性物质或可升华的物质而流失等。

2017年贵金属催化剂行业分析报告

2017年贵金属催化剂行业分析报告 2017年7月

目录 一、贵金属催化剂是化工新材料发展的基础 (5) 1、铂钯铑等是最常用的贵金属催化剂 (5) 2、2021年全球催化剂规模预计达220亿美元以上 (6) 二、多因素驱动贵金属催化剂行业发展 (7) 1、催化技术作为一种绿色环保技术,其发展得到国家大力支持 (7) 2、国产贵金属催化剂正逐步实现进口替代 (9) 3、贵金属催化剂回收利用开启新的生产渠道 (9) 三、贵金属催化剂下游应用持续增长 (11) 1、汽车尾气排放标准升级带动贵金属催化剂需求上升 (11) 2、燃料电池领域是贵金属催化剂的潜在市场 (13) 3、庞大的精细化工市场对贵金属催化剂的需求强劲 (16) 四、国际巨头垄断,国内贵金属催化剂企业处于成长中 (17) 1、西安凯立:国内技术领先的贵金属催化剂供应商 (18) (1)公司简介 (18) (2)公司竞争优势 (19) (3)未来成长性 (20) 2、凯大催化:均相催化剂行业的领导者公司简介 (21) 3、陕西瑞科:贵金属催化技术整体解决方案供应商公司简介 (25) 五、主要风险 (28) 1、贵金属价格波动风险 (28) 2、下游市场需求不及预期的风险 (29)

3、新产品替代风险 (29) 4、产业政策风险等 (29)

贵金属催化剂是化工新材料发展的基础。催化剂作为新材料已经被纳入国家发展的重点和支持领域,其中贵金属催化剂凭借较高的催化活性和选择性,以及耐高温、抗氧化、耐腐蚀等综合优良特性,在石油化工、医药、农药、食品、环保、能源、电子等领域占有极其重要的地位,成为最重要的催化剂材料之一,铂、钯、铑等是最常用的贵金属催化剂品种。 据Ceresana预测,2021年全球催化剂的总市场价值将增加到220亿美元以上。根据贵研铂业年报中的数据,2015年,全球贵金属催化剂及化合物材料的市场规模为165.2亿美元,其中中国的贵金属催化剂及化合物材料的市场规模为36.7亿美元。根据市场研究机构Ceresana公司发表的最新研究成果显示,到2021年催化剂的总市场价值将增加到220亿美元以上,其中中国市场的增长率较高。 多因素驱动贵金属催化剂行业发展:1)国家政策大力推动催化剂产业发展;2)进口替代为国产贵金属催化剂提供成长机遇;3)贵金属催化剂回收利用开启了新的生产路径。 贵金属催化剂下游应用持续增长:1)我国是汽车消费大国,尾气排放是空气污染治理的重中之重,铂钯铑三种贵金属构成的催化剂是目前汽车尾气净化的主要选择,随着排放标准的升级,必将带动汽车尾气催化剂需求上升;2)质子交换膜燃料电池是现阶段用于燃料电池汽车的主要技术,而贵金属催化剂是其中最大的成本构成之一,根据《节能与新能源汽车技术路线图》,到2030年,中国燃料电池汽车的规模将达到百万辆,预计将会带来大量的铂金属催化剂需求;3)

质子交换膜燃料电池铂基催化剂层降解的综述

质子交换膜燃料电池铂基催化剂层降解的综述 摘要:催化剂层退化已成为质子交换膜(PEM)燃料电池发展中的一个重要的问题。本文对近期的催化剂层的降解和耐用性问题的研究进行了综述,包括:(1)铂催化剂(2)碳载体(3)全氟磺酸离聚物和界面退化。目的是对催化剂层的微观/宏观结构变化和正常工作或加速应力条件下的氢为燃料的质子交换膜燃料电池的性能退化(降低)之间的联系提供一个清晰的认识。在每一部分中,对不同的降解机制及其相应的有代表性的缓解措施进行了介绍。此外,还对一般的实验方法进行了分类,并且对评估催化剂降解的各种研究技术进行了讨论。 关键词:质子交换膜燃料电池(PEMFC);耐久性;催化剂层;降解机理 1 引言 除了成本,耐久性是质子交换膜(PEM)燃料电池商业化的另一个关键问题。到目前为止,现实生活中的电池的寿命不符合国家最先进的技术要求,例如汽车为5000小时,巴士为20000小时,和40,000小时的固定应用。为了提高质子交换膜(PEM)燃料电池的寿命,迫切需要深刻认识每个成分的失效行为以及相应的缓解措施。在过去的几年中,人们发表了许多重点研究质子交换膜燃料电池退化问题的论文。研究表明,有几种因素可以影响PEM燃料电池的耐久性,这些因素包括质子交换膜变薄和由于Pt颗粒烧结或碳载体受到腐蚀,以及气体扩散层(GDL)的降解导致催化剂层(CL)的降解。在这些之中,催化剂层(CL)退化是最关键的因素之一。在汽车和固定应用方面,越来越多的实验结果表明催化剂的降解很严重。增加催化剂层(CL)的耐久性成为一个重大的挑战,越来越多的研究重点放在质子交换膜燃料电池的耐久性研究上。 在质子交换膜燃料电池的催化剂层(CL),基于活性成分,催化剂可被分为三组:铂基催化剂(Pt负载在碳或其他载体); Pt基改性催化剂,或由其它金属如铬、铜、钴、和钌形成的合金和非铂基催化剂如非贵金属和有机金属配合物。图1列出了常用的或用于研究的质子交换膜燃料电池的催化剂以及他们的优点和缺点。目前为止,虽

2013年贵金属催化剂行业分析报告

2013年贵金属催化剂行业分析报告 2013年12月

目录 一、行业监管体系和政策 (4) 1、行业主管部门及监管体制 (4) (1)主管单位及监管体制 (4) (2)行业协会及监管体制 (5) 2、行业主要法律法规及政策 (6) (1)《产业结构调整指导目录(2011年本)》 (7) (2)《高新技术企业认定管理办法》 (7) (3)《中华人民共和国循环经济促进法》 (8) (4)《农药产业政策2010年》 (8) 二、行业周期性、季节性与区域性特点 (8) 1、周期性 (8) 2、区域性 (9) 3、季节性 (9) 三、行业壁垒 (9) 1、技术壁垒 (9) 2、资金壁垒 (10) 3、市场进入壁垒 (11) 4、规模与高效的生产能力壁垒 (11) 5、跨行业生产壁垒 (11) 6、人才资源壁垒 (12) 四、影响该行业发展的有利因素和不利因素 (12) 1、有利因素 (12) (1)宏观经济持续向好有利于公司下游市场需求增长 (12) (2)产业政策的扶持为行业发展提供良好的软环境 (13) (3)国家区域政策为本行业发展保驾护航 (14) (4)国家推行循环经济为贵金属催化剂行业发展提供良好宏观环境 (15) (5)精细化工行业广阔的市场需求为贵金属催化剂行业高增长奠定基础 (15)

(6)本土贵金属催化剂成本优势实现对进口贵金属催化剂的替代 (16) 2、不利因素 (17) (1)规模较小,资金实力较弱 (17) (2)在整体技术水平上与国外存在一定差距 (17) (3)人才竞争的加剧 (18) 五、行业市场规摸 (18)

一、行业监管体系和政策 1、行业主管部门及监管体制 (1)主管单位及监管体制 本行业涉及到的政府监管部门包括国家发展和改革委员会、工业和信息化部、国家质量监督检验检疫总局、国家环境保护部等,这些部门按照国家相关规定对不同的环节进行监管。 国家发展和改革委员会:拟订并组织实施国民经济和社会发展战略、中长期规划和年度计划,统筹协调经济社会发展。负责制定产业政策,研究该产业的发展方向,并提出相关措施,指引行业的发展方向。承担规划重大建设项目和生产力布局的责任,拟订全社会固定资产投资总规模和投资结构的调控目标、政策及措施,衔接平衡需要安排中央政府投资和涉及重大建设项目的专项规划。 工业和信息化部:制定并组织实施工业、通信业的行业规划、计划和产业政策,提出优化产业布局、结构的政策建议,起草相关法律法规草案,制定规章,拟订行业技术规范和标准并组织实施,指导行业质量管理工作。对于本行业的管理主要包括研究工业发展战略,指导工业行业技术法规和行业标准的拟订,审批、核准国家规划内和年度计划规模内工业固定资产投资项目,监测分析工业运行态势,统计并发布相关信息。 国家质量监督检验检疫总局:组织起草有关质量监督检验检疫方

相关文档
最新文档