高压断路器常见故障原因的分析与处理_刘松成

高压断路器常见故障原因的分析与处理_刘松成

中国新技术新产品

2012NO .20

China New Technologies and Products

中国新技术新产品

工业技术

高压断路器常见故障原因的分析与处理

刘松成

何正旭

(金华电业局,浙江金华321001)

要:通过对高压断路器拒分/合闸、误分/合闸、N2泄漏、液压机构压力异常以及液压机构漏油等故障的分析,指出了造成故障的

原因并提出了相应的处理措施。对电力系统高压断路器故障的诊断和排除有很好的借鉴意义。

关键词:高压断路器;N2泄漏;液压机构中图分类号:U224.2+3文献标识码:A 1概述

在电力系统中,高压断路器担负着接通正常工作电流和快速切断故障电流的双重职能,是十分重要的控制和保护设备,其工作性能的好坏,直接关系到电网的安全稳定运行。若按操作机构的类型分类,高压断路器可分为手动机构型、弹簧机构型、气动机构型、电磁机构型、永

磁机构型、

液压机构型等;若按绝缘和灭弧介质分类,可以分为少油型、

多油型、空气型、真空型、

SF6型等。根据多年的电网运行统计资料,高压断路器主要的故障类型有拒分/合闸、误分/合闸、弹簧机构储能异常、N2泄漏、液压机构压力异常以及液压机构漏油等。

2拒分/合闸及误分/合闸事故2.1拒分闸故障

断路器拒动故障会导致越级跳闸,即上一

级断路器跳闸。

这不仅会扩大事故停电范围,在严重时甚至有时会导致系统解列,造成大面积

恶性停电事故,对电力系统危害极大。

在发生拒分闸故障后,首先要检查跳闸回路是否完好、跳闸电源的电压是否过低。如果操作电压正常但跳闸铁芯不动,一般是出现了电器故障;跳闸铁芯动作良好但断路器拒动,则可判断为机械故

障;铁芯卡涩、

动作无力或线圈故障且电源良好造成拒跳,则是电气和机械方面同时出现了故障。电气故障的处理主要集中在对跳闸回路各元件接触是否良好、控制回路熔断器是否熔断以及跳闸线圈有无老化断路的检查。而对于机械故障,一般是由于分闸阀卡死、分闸弹簧失灵、

大量漏气以及触头发生焊接或机械卡涩、传动部分故障等原因造成的。

2.2拒合闸故障

拒合闸故障一般也分为电气故障和机械故障。

同拒分闸故障类似,首先要对合闸电源以及合闸控制回路进行检查,确定电气回路正常后再查看合闸铁芯是否动作,进而判断是否出现

了机械故障。

对于电气故障,需要检查控制电源以及整个控制回路上的元件是否正常。机械故障的原因一般为合闸铁芯卡涩导致带电后出力

不足、分闸后机构未复归到预合位置、合闸弹簧未储能、合闸顶杆空程或行程不合适等。

2.3误分闸事故电气方面,电流和电压互感器回路故障、保护整定不当或误动以及直流系统发生两点接地等都会造成误分闸事故;机械故障造成的误分闸则主要是由于液压机械异常所造成的。如果是由于运行人员误操作、误碰或保护盘受外力振动引起自动脱扣的误跳,在排除是开关故障的情况下可立即进行送电操作;而对于出现电气或机械故障的情况,则应停电转为检修处理。

2.4误合闸事故

误合闸故障表现为高压断路器未经操作就

自动合闸,其一般是由于直流系统两点接地、

自动重合闸继电器触点闭合粘死等原因造成的。

此外,当产生震动时弹簧操动机构的储能弹簧锁扣不可靠,也有可能自动解除导致断路器自行合闸。

3高压断路器N2泄漏故障

以西门子3AQ 型断路器为例,对N2泄漏故障的定位与处理进行介绍。其故障表现为油泵在液压机构压力降低后启动,液压系统压力

在电机打压过程中升高至355bar ,

使系统发N2泄漏闭锁信号,同时机构箱内漏氮闭锁继电器动作,漏氮延时闭锁继电器经3h 延时后闭锁分闸回路,导致断路器无法操作和正常使用。

2010年9月某天,某500kV 变电站220kV 侧一断路器在运行过程中依次发出N2泄漏报警、合闸闭锁、N2泄漏总闭锁、分闸闭锁信号,导致该断路器退出运行。检修人员到达现场后,通过复位旋钮复归上述信号,手动泄压至约315

bar 油泵开始打压,

10s 后又再次发出了N2泄漏报警、合闸闭锁以及N2泄漏总闭锁信号。经检查后发现,断路器N2筒的固定抱箍已经断

裂,据此初步判断有N2泄漏。

由于3AQ 型断路器的N2筒中也混合了部分SF6气体,

利用SF6泄漏报警仪对密封处检查同样发现有微量SF6泄漏。随后,现场停电进行最后确认,通过手动泄压进行N2预充,发现预充压力小于标准值200bar (155bar ),最终确认断路器N2筒发生物理泄漏。明确事故原因后随即联系西门子公司对故障设备进行了更换,为杜绝类似故障,还联合西门子公司对在运行的同一批次断路器进行了排查处理。

4液压操纵机构的故障分析

液压油渗漏是引起液压操纵机构的故障的

主要原因。

其中,液压油从相对运动的部件或固定连接的部件之间渗透出来被称为渗漏;通过活塞与缸体的配合间隙从高压腔流入低压室被称为内漏;由缸盖与活塞杆的配合间隙流入大气中被称为外漏。

4.1液压油泵频繁起动

高压断路器液压机构最常见的故障表现为液压油泵频繁起动。某220kV 变电站高压侧采用的220kV SF6断路器投运数年来发生了多次液压操动机构频繁打压的故障,给断路器的正常运行带来了很大的隐患。

①密封圈损坏。在液压系统中,密封圈起到

密封液压油的作用。

如果密封不良,就会增加泄漏而直接影响到系统和元件的正常工作。液压油工作压力过大导致密封圈被压至槽沟中受到磨损;密封圈受到液压油冲击力和粘度特性而

磨损;液压油中混入的水分、

空气及尘土杂质对密封件的腐蚀;密封圈由于安装不当造成的扭曲、裂缝和表面飞边;密封圈由于环境温度的剧烈变化而加速硬化和老化等原因都是造成密封

圈损坏的原因。

通过更换质量更好的密封圈;将缸壁或筒壁的毛刺打磨光滑以免划伤密封件;

对混有杂质的液压油进行过滤处理或更换;在温差过大的地区应做好通风或及时投入加热器等措施可以有效避免对密封圈的损伤。

②阀体密封不良。液压油中混入的灰尘、锈蚀颗粒等杂质进入到阀体间隙造成阀体磨损;阀体加工精度不够有毛刺等都会导致阀体密封不良。通过加强对分合闸一级阀、合闸二级阀、高压放油阀及逆止阀以及液压泵出口逆止阀的日常检修,可有效处理阀体密封不良的故障。

③各高压管路连接处密封不良。当安装时

卡套有灰尘、

安装不对中、液压油中有杂质等情况下,就会导致高压管路连接的卡套处密封不良,有液压油渗出。对此可以用钳子将其拧紧,注意不要用过大的力度,只要不再渗油即可;如果拧紧后还渗油,就要将卡套拆下并清洗干净后再重新对准装配。

4.2压力异常升高和降低

①油泵在打压过程中,由于微动开关失灵导致活塞杆上升到最高位置时仍继续上升,导致油泵一直打压;液压油由于储压筒的筒壁或活塞密封磨损而进入N2室致使N2室的压力大大增加;油泵打压过程中压力表失灵,当达到最高压力值时却无法发出停止油泵打压的闭锁信号;机构箱内温度过高致使液压油温度异常升高等原因都会导致液压系统压力异常升高。可以通过合理装配密封件或更换储压筒的密封

活塞;对接触不良和动作失灵的微动开关、

接触器触点进行打磨以消除金属锈层;增加加热器和加强通风以保持机构箱内空气干燥和对机构箱进行散热等措施可以有效消除压力异常升高。

②液压系统的压力会因为液压机构的大量漏油或N2泄漏而急剧下降。当单向逆止阀密封不严或储压罐活塞杆头部两个密封圈损坏就会导致N2进入液压油中,导致发出分合闸闭锁信

号,在严重时甚至会造成零压闭锁。

发生这种情况就一定要进行停电检修,以防断路器拒动、误动和越级跳闸故障而扩大事故范围。

结语

高压断路器是电力系统中的重要一次设备,多年的运行经验表明,充分了解和掌握高压断路器的故障规律和故障原因,就能够有针对性地采取相应措施对故障进行处理,及时恢复送电,有效降低事故和故障造成的损失。

参考文献

[1]崔猛.高压断路器常见故障的原因分析[J].河北

电力技术,

2007.[2]邱生、张焰、蒋伟毅.西门子3AQ 型断路器N2泄漏故障的定位及处理[J].高压电器,2011.

[3]周宣.高压断路器液压操动机构常见故障分析[J].电器应用,2011.

142--

配电设备故障分析与处理

1.低压框架断路器简介及故障排除 框架断路器适用于额定工作电压690V及以下,交流50Hz,额定工作电流6300A及以下的配电网络中,用来分配电能和保护线路及设备免受过载、短路、欠电压和接地故障等的危害,万能式断路器主要安装在低压配电柜中作主开关。额定工作电流1000A及以下的断路器,亦可在交流50Hz、400V网络中作为电动机的过载、短路、欠电压和接地故障保护,在正常条件下还可作为电动机的不频繁起动之用。 一.框架断路器的功能介绍 1.万能断路器保护模块有热-电磁和智能两种,我司常用智能断路器。 智能断路器的智能控制器分为以下三种:电子型、标准型、通讯型,其基本功能有过载长延时反时限保护;短路短延时反时限保护;短路短延时定时限保护;短路瞬时保护;接地故障保护功能;整定功能;过载报警功能;试验功能;电流显示功能;自诊断功能;热模拟功能;故障记忆功能;触头损耗指示;MCR功能;通讯型控制器通过RS485实现双向传输各功能 2.万能断路器有固定式和抽出式。 摇动抽屉座下部横梁上手柄,可实现断路器的三个工作位置(手柄旁有位置指示,国内的断路器指示是大概位置,国外的断路器指示都有位置联锁): 1)“连接”位置:主回路和二次回路均接通,此时隔离板开启; 2)“试验”位置:主回路断开。并由绝缘隔离板关闭隔开,仅二次回路接通。可进行必要的动作试验; 3)“分离”位置:主回路与二次回路全部断开,此时隔离板关闭。 抽屉式断路器具有可靠的机械联锁装置,只有在连接位置和试验位置时才能使断路器闭合。相同额定电流的抽屉式断路器(包括本体和抽屉座)具有互换性。 3.智能断路器的复位功能 当断路器发生保护动作后复位按钮会自动弹出来,此时断路器手动和电动都不能合闸,需把复位按钮按回去复位方可合闸。 二.框架断路器的常见故障 1.断路器不能合闸。可能原因如下: 1)没有操作电源或电源电压太低 2)断路器处在未储能状态 3)欠压脱扣器未接通额定电压或欠压脱扣器已烧坏 4)合闸线圈已烧坏导致电动不能合闸,但手动应可以合闸 5)抽屉式断路器所处位置不对,或不到位,断路器应在“试验”或“连接”位置方可合闸 6)断路器在“试验“位置能合闸而在“连接”位置不能合闸,因为是位置联锁有问题 7)合闸后又自动跳闸,这种故障有3类情况:1.欠压线圈未接通电源2.分闸线圈在合闸后接通电源3.过载和短路保护动作 8)保护动作后未复位 9)断路器之间有联锁 2.断路器不能电动分闸

发动机常见故障分析与处理

发动机常见故障分析与处理 一、故障分类:发动机控制电路故障,发动机自身故障,其它外部故障。排除故障思路:原则上先排除控制电路故障——再排除发动机自身故障——后排除其它外部故障。 二、常见故障现象及分析处理(以下疏理的是针对不同故障现象可能的原因,编者尽量按照排查故障的思路流程按照顺序罗列,考虑到不同检修人员的技术能力和对不同大机的熟悉程度等因素,仅为检修人员提供参考的流程): 1、启动困难或不能启动。(电气控制的原因见电气故障,这里不再叙述) 原因分析及处理:(前五项为操作人员自己可查,后面的需要经过发动机专业培训的人员进行检查) A、环境温度过低。处理:对燃油箱安装预热装置;更换燃油;检查预热火花塞状况。 B、电瓶无电或电瓶损坏。处理:给电瓶充电或更换新电瓶。 C、启动电机故障。原因:启动电机无动作,检查启动电机是否得电,如不得电,则检查或检查外部控制电路是否有电压进入,如得电,检查启动电机连线是否松动或锈蚀(电压标准:24V的电压测量应不低于22.18v)。启动电机仍然无动作,判断启动电机损坏。处理:启动电机一般损坏的原因可能是电磁阀损坏或电机碳刷磨损,修理或更换启动电机。现场临时应急处理启动电机损坏故障方法:手动拉起停机电磁阀开启;采用连接线或长螺丝刀连接启动电机的电磁离合器控制线桩头和电源线桩头2~3秒,带动发动机启动后立即断开(此方法操作不当对发动机有一定的伤害,为应急情况下使用)。 C、燃油不足导致无法吸上燃油或燃油质量及燃油供油管路问题。处理:⑴、检查油位并检查油箱排气孔是否堵塞造成吸油不到位。⑵、检查管路有否漏气情况。 ⑶、检查管路有无脏污。⑷、燃油滤芯的密封圈是否损伤,配合是否正确。⑸、燃油软管是否有损伤、老化和折叠现象。⑹、柴油管中空心螺丝的铜垫是否变形。 ⑺、柴油滤芯是否脏污。

高压开关柜的故障分析

高压开关柜的故障分析 摘要:其实高压开关柜在购买之前都是经过相关的验收检查的,但是投入运行先天性就存在质量问题的设备是不可避免的,另外,机器的老化,也导致高压开关柜安全使用状体不能永久保持。对此,用户除了要在管理制度方面加大力度,还可加强对高压开关柜的检测工作。从而对于高压开关柜存在的故障能够保证及时检测到,那么就能够避免高压开关柜的不安全运行。本文主要对高压开关设备的重要性、高压开关柜常见故障以及高压开关柜的故障检测进行分析。 关键词:高压;开关柜;故障 1.高压开关设备的重要性 一般情况下,我们所说的开关就是指高压断路器,在高压开关设备中,它的性能最广,对于电力系统中的关合、控制、保护、测量和调节,高压短路器都能够实现,其还担负着保证电力系统安全的重要任务。电力系统在正常运行时,对断路器和隔离开关来进行倒闸操作主要根据调度运行方式等指令来实现,从而达到电力系统安全和经济运行的目的。 2.高压开关柜常见故障 2.1开断与关合故障 产生开断与关和故障的原因主要是断路器本体。对于真空断路器而言,主要表现为真空度降低、陶瓷管破裂、灭弧室、切电容器组重燃;而对于少油断路器而言,主要表现为开断能力不足、喷油短路、关合时爆炸、灭弧室烧损等。

2.2拒动、误动故障 产生拒动、误动故障的原因主要有:(1)电气控制和铺助回路。其主要表现就是端子松动、二次接线接触不良、接线错误、辅助开关切换不灵、因机构卡涩或转换开关不良而导致分合闸线圈烧损等故障;(2)操动机构及传动系统的机械故障。其主要表现就是部件变形、损坏或者移位,机构卡涩,分合闸铁芯松动,脱口失灵等故障。拒动、误动故障是高压开关柜最主要的故障。 2.3绝缘故障 对作用在绝缘上的各种电压、绝缘强度、各种限压措施三者之间的关系进行正确处理,这就是绝缘水平的主要任务。最终使产品既安全又经济且获得最佳的经济效益,这就是绝缘水平的最终目的。其故障主要表现在内绝缘对地闪络击穿,外绝缘对地闪络击穿,相间绝缘闪络击穿等等。 3.高压开关柜的故障检测 3.1机械故障的检测、使用 很多统计资料表明,开关柜机械故障发生的比例最高。这是因为与机械操作相关联的元件非常多,包括合、分闸回路串联有很多环节。而且开关的操作是没有规律的,有时候很长时间也不操作一次,有时候却要连续动作。另外,还受一年四季环境变化的影响。所以机械故障特别是拒动故障是发生概率最高的。要保证开关设备的操作机构性的可靠性,需经过考验验证。其次,开关柜内所有部件,特别是动作的部件包括各处的紧固螺钉、弹簧和拉杆,强度要足够,结构要可靠,要经得住

计算机常见故障及处理方法

计算机常见故障及处理 方法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

计算机在使用了一段时间后,或多或少都会出现一些故障。总结出计算机使用和维护中常遇到的故障及简单的排除方法介绍给大家。也许有人会认为:“既然不是搞计算机专业维修的,当然不可能维修计算机!”这倒不一定。况且如果只是遇到一点小小的故障,就要请专业的维修人员来维修,不免有些“劳民伤财”。只要根据这里的计算机故障处理方法,就可以对简单的故障进行维修处理。 一、电源故障 电源供应器担负着提供计算机电力的重任,只要计算机一开机,电源供应器就不停地工作,因此,电源供应器也是“计算机诊所”中常见的“病号”。据估计,由电源造成的故障约占整机各类部件总故障数的20%~30%。所以,对主机各个部分的故障检测和处理,也必须建立在电源供应正常的基础上。下面将对电源的常见故障做一些讨论。 故障1:主机无电源反应,电源指示灯未亮。而通常,打开计算机电源后,电源供应器开始工作,可听到散热风扇转动的声音,并看到计算机机箱上的电源指示灯亮起。 故障分析:可能是如下原因: 1.主机电源线掉了或没插好; 2.计算机专用分插座开关未切换到ON; 3.接入了太多的磁盘驱动器; 4.主机的电源(Power Supply)烧坏了; 5.计算机遭雷击了。 故障处理步骤: 1.重新插好主机电源线。 2.检查计算机专用分插座开关,并确认已切到ON。 3.关掉计算机电源,打开计算机机箱。 4.将主机板上的所有接口卡和排线全部拔出,只留下P8、P9连接主板,然后打开计算机电源,看看电源供应器是否还能正常工作,或用万用表来测试电源输出的电压是否正常。 5.如果电源供应器工作正常,表明接入了太多台的磁盘驱动器了,电源供应器负荷不了,请考虑换一个更高功率的电源供应器。 6.如果电源供应器不能正常工作或输出正常的电压,表明电源坏了,请考虑更换。 故障2:电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变白而不能正常工作。 故障分析:可能是因为电源负载能力差,电源中的高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二极管已经损坏等。 故障处理:送修或考虑换用另外一种电源。 故障3:开机时硬盘运行的声音不正常,计算机不定时的重复自检,装上双硬盘后计算机黑屏。 故障分析:可能是硬盘或电源有故障。 故障处理步骤: 1.更换一个硬盘后,如果故障消失,说明是硬盘的问题,请考虑换一个硬盘。

高压断路器机械振动信号分析及故障诊断技术的研究

目录 第一章绪论 (1) 1.1 课题的研究背景及意义 (1) 1.2 国内外研究现状 (2) 1.3 断路器振动信号分析的重要性 (5) 1.4 研究内容及论文结构 (6) 1.4.1 研究内容 (6) 1.4.2 论文结构 (7) 第二章高压断路器特征信号的采集 (9) 2.1 在线监测系统设计 (9) 2.2 主要监测内容 (11) 2.2.1 监测内容及传感器选择 (11) 2.2.2 断路器触头行程 (11) 2.2.3 断路器机械振动信号 (14) 2.2.4 动作线圈电流 (17) 2.2.5 主回路电流 (18) 2.3 监测系统软件设计 (21) 2.4 监测系统的抗干扰措施 (22) 2.4.1 现场的电磁场干扰分析 (22) 2.4.2 抗干扰设计 (23) 2.5 本章小结 (26) 第三章断路器机械振动信号处理及统计特性研究 (29) 3.1 断路器机械振动信号的小波去噪 (29) 3.1.1 小波去噪原理 (29) 3.1.2 小波去噪方法 (30) 3.1.3 数据仿真分析 (32) 3.1.4 现场实例分析 (34) 3.2 小波包频带能量法分析断路器振动信号 (36) V

3.2.1 断路器振动信号的频谱分析 (36) 3.2.2 特征频带选取 (37) 3.3 断路器机械振动信号的统计性 (38) 3.4 本章小结 (41) 第四章断路器机械振动信号的功率谱估计分析 (43) 4.1 经典谱估计 (43) 4.2 AR功率谱估计 (48) 4.2.1 AR模型的功率谱估计原理 (48) 4.2.2 AR模型阶数的选取 (49) 4.2.3 数据仿真分析 (51) 4.2.4 参数求解算法 (55) 4.2.5 现场实例分析 (62) 4.3 外界噪声影响 (64) 4.4 本章小结 (65) 第五章基于支持向量机理论的断路器故障诊断技术 (67) 5.1 高压断路器故障诊断技术 (67) 5.2 支持向量机故障诊断方法 (70) 5.2.1 支持向量机 (70) 5.2.2 多分类支持向量机 (73) 5.3 高压断路器的支持向量机故障诊断方法 (76) 5.3.1 样本数据预处理 (77) 5.3.2 样本集构造 (78) 5.3.3 核函数及其参数的选择 (79) 5.4 高压断路器故障诊断实例 (82) 5.4.1 试验数据集描述及数据可视化 (82) 5.4.2 基于RBF核函数10-CV交叉验证法参数寻优 (84) 5.4.3 性能评估及结果分析 (85) 5.4.4 诊断实例 (87) 5.5 本章小结 (91) 第六章总结 (93) 6.1 主要结论 (93) 6.2 研究展望 (94) VI

断路器常见故障及分析

高压断路器是电力系统中最重要的开关设备,它担负着控制和保护的双重任务,如断路器不能在电力系统发生故障时及时开断,就可能使事故扩大,造成大面积停电。为了满足开断和关合,断路器必须具备三个组成部分;①开断部分,包括导电、触头部分和灭弧室。②操动和传动部分,包括操作能源及各种传动机构。③绝缘部分,高压对地绝缘及断口间的绝缘。此三部分中以灭弧室为核心。 断路器按灭弧介质的不同可分为: 油断路器,利用绝缘油作为灭弧和绝缘介质,触头在绝缘油中开断,又可分为多油和少油断路器。 压缩空气断路器,利用高压力的空气来吹弧的断路器。 六氟化硫断路器,指利用六氟化硫气体作为绝缘和灭弧介质的断路器。 真空断路器,指触头在真空中开断,利用真空作为绝缘和灭弧介质的断路器。 断路器的分合操作是依靠操作机构来实现,根据操作机构能源形式的不同,操作机构可分为:电磁机构,指利用电磁力实现合闸的操作机构。 弹簧机构,指利用电动机储能,依靠弹簧实现分合闸的操作机构。 液压机构,指以高压油推动活塞实现分合闸的操作机构。 气动机构,指以高压力的压缩空气推动活塞实现分合闸的操作机构。 操作机构还有组合式的,例如气动弹簧机构是由气动机构实现合闸,由弹簧机构分闸。操作机构一般为独立产品,一种型号的操作机构可以配几种型号的断路器,一种型号的断路器可以配几种型号的操作机构。 下面就不同灭弧介质的断路器和不同型式操作机构分别介绍断路器在运行时最常见的故障,以及原因分析。 1.断路器本体的常见故障 1.1油断路器本体 序号常见故障可能原因 1 渗漏油固定密封处渗漏油,支柱瓷瓶、手孔盖等处的橡皮垫老化、安装工艺差和固定螺栓的不均匀等原因。 轴转动密封处渗漏油,主要是衬垫老化或划伤、漏装弹簧、衬套内孔没有处理干净或有纵向伤痕及轴表面粗糙或轴表面有纵向伤痕等原因。 2 本体受潮帽盖处密封性能差。 其他密封处密封性能差。 3 导电回路发热接头表面粗糙。 静触头的触指表面磨损严重,压缩弹簧受热失去弹性或断裂。 导电杆表面渡银层磨损严重。 中间触指表面磨损严重,压缩弹簧受热失去弹性或断裂。 4 断路器本体内部卡滞导电杆不对中。灭弧单元装配不当、传动部件及焊接尺寸不合格和灭弧单元与传动部件装配时间隙不均匀。 运动机构卡死。拉杆装配时接头与杆不在一条直线、各柱外拐臂上下方向不在一条直线上。 5 断口并联电容故障并联电容器渗漏油。 并联电容器试验不合格。 2真空断路器本体 序号常见故障可能原因 1 真空泡漏气真空泡密封性能差,漏气造成真空泡内部真空度下降,绝缘性能下降。

实验故障分析与处理

实验故障分析与处理 实验中常常会因为种种意想不到的原因而影响电路的正常工作,有可能会烧坏仪表和元器件。通过对电路故障的分析与处理,逐步提高分析问题与解决问题的能力。故障的分析需具备一定的理论知识和丰富的实践经验。 一、故障的类型与原因 实验故障根据其严重性一般可以分两大类:破坏性和非破坏性故障。破坏性故障可造成仪器设备、元器件等损坏,其现象常常是某些元器件过热并伴有刺鼻的异味、局部冒烟、发出吱吱的声音或炮竹似的爆炸声等。非破坏性故障的现象是电路中电压或电流的数值不正常或信号波形发生畸变等。如果不能及时发现并排除故障,将会影响实验的正常进行或造成损失。故障原因大致有以下几种: ⑴电路连接错误或操作者对实验供电系统设施不熟悉。 ⑵元器件参数或初始状态值选择不合适、元器件或仪器损坏、仪器仪表等实验装置与使用条件不符。 ⑶电源、实验电路、测试仪器仪表之间公共参考点连接错误或参考点位置选择不当。 ⑷导线内部断裂、电路连接点接触不良造成开路或导线裸露部分相碰造成短路。 ⑸布局不合理、测试条件错误、电路内部产生干扰或周围有强电设备,产生电磁干扰。 下面我们通过一个实例来分析问题。 在RLC串联谐振实验中,通常保持信号源输出电压一定,改变信号源的频率,用交流毫伏表或示波器监测电阻两端电压,通过监测发现,实验开始时电路中电流随频率升高而增加,后来电流迅速降至很低。这时,无论如何调节输出信号的频率范围或是改变其它元件的参数,均无法得到谐振现象,这说明 的谐振条件无法得到满足。分析其原因,由于电路中有电流存在,说明电路有可能短路而不是开路,用多用表检查电路中各元器件发现电容器被短路,根据现象判断电容器的短路是在实验过程中造成的。因为实验时信号源的输出电压取值偏高,而电路的品质因数Q很大,谐振时电容器上的电压可达到信号源电压的Q倍,超过了电容器的耐压值而被击穿。通过这个例子我们知道,实验前应对电路中的电压、电流的最大值有一个初步的估计,选用元器件时要考虑其额定值,确定测试条件时,应考虑到是否会引起不良的后果。 二、故障检测 故障检测的方法很多,一般按故障部位直接检测。当故障原因和部位不易确定时,可根据故障类型缩小范围并逐点检查,最后确定故障所在部位加以排除。在选择检测方法时,要视故障类型和电路结构确定。常用的故障检测的方法有以下两种: ⑴通电检测法。用多用表、电压表或示波器在接通电源情况下进行电压或电位的测量。当某两点应该有电压而多用表测出电压为零时说明发生了短路;当导线两端不应该有电压而用多用表测出了电压则说明导线开路。

10kV真空断路器常见故障及处理

10kV真空断路器常见故障及处理 随着真空断路器的广泛应用,不少10 kV 少油断路器已更换为真空断路器。由于生产厂家不同,一部分真空断路器性能较好,检修、维护工作量小,供电可靠性高;也有一部分真空断路器性能很差,存在的问题比较多;还有一些真空断路器缺陷极其严重,容易造成事故越级,导致大面积停电。 1 、真空泡真空度降低 1.1 故障现象 真空断路器在真空泡内开断电流并进行灭弧,而真空断路器本身没有定性、定量监测真空度特性的装置,所以真空度降低故障为隐性故障,其危险程度远远大于显性故障。 1.2 原因分析:真空度降低的主要原因有以下几点: (1) 真空泡的材质或制作工艺存在问题,真空泡本身存在微小漏点; (2) 真空泡内波形管的材质或制作工艺存在问题,多次操作后出现漏点; (3) 分体式真空断路器,如使用电磁式操作机构的真空断路器,在操作时,由于操作连杆的距离比较大,直接影响开关的同期、弹跳、超行程等特性,使真空度降低的速度加快。 1.3 故障危害

空度降低将严重影响真空断路器开断过电流的能力,并导致断路器kg。com的使用寿命急剧下降,严重时会引起开关爆炸。 1.4 处理方法 (1) 在进行断路器定期停电检修时,必须使用真空测试仪对真空泡进行真空度定性测试,确保真空泡具有一定的真空度; (2) 当真空度降低时,必须更换真空泡,并做好行程、同期、弹跳等特性试验。 1.5 预防措施 (1) 选用真空断路器时,必须选用信誉良好的厂家所生产的成熟产品; (2) 选用本体与操作机构一体的真空断路器; (3) 运行人员巡视时,应注意断路器真空泡外部是否有放电现象,如存在放电现象,则真空泡的真空度测试结果基本上为不合格,应及时停电更换; (4) 检修人员进行停电检修工作时,必须进行同期、弹跳、行程、超行程等特性测试,以确保断路器处于良好的工作状态。 2 、真空断路器分闸失灵 2.1 故障现象

高压断路器典型机械故障模拟与诊断

高压断路器典型机械故障模拟与诊断 发表时间:2019-11-19T17:06:19.517Z 来源:《河南电力》2019年5期作者:柳贡强 [导读] 本文分析了断路器操动机构分合闸操作中的机械运动过程,结合振动信号确定了以振动事件作为振动信号特征的提取方法,对高压断路器典型故障进行模拟,并利用振动事件时间特征参量对其进行诊断,建立断路器故障与振动图谱间的关系,为断路器状态监测技术的研究应用奠定了理论基础。 (国网黑龙江省电力有限公司黑龙江哈尔滨 150000) 摘要:本文分析了断路器操动机构分合闸操作中的机械运动过程,结合振动信号确定了以振动事件作为振动信号特征的提取方法,对高压断路器典型故障进行模拟,并利用振动事件时间特征参量对其进行诊断,建立断路器故障与振动图谱间的关系,为断路器状态监测技术的研究应用奠定了理论基础。 关键词:高压断路器;典型;机械故障;模拟;诊断 引言 高压断路器是电力系统的关键设备之一,当它发生故障时往往会带来严重的后果。许多断路器的故障率并不因为周期性检修而降低,而且有些断路器在被检修后可靠性反而大大降低,每台断路器的实际故障情况不能预测。国内外对断路器故障的统计分析表明,高达60%~70%的断路器故障(包括拒分、拒合和误动)源于机械原因,而操动机构和传动系统的故障是造成拒分、拒合和误动的主要原因;同时据统计在断路器严重和危机缺陷中,电气控制回路与机械故障是主要缺陷,占68%,其中传动机构松动变形、储能系统故障、弹簧机构弹簧出现裂纹等缺陷占主要缺陷的46%,因此加强断路器机械状态的检测和诊断对保证断路器安全稳定运行具有重要意义。 1 振动事件提取方法 断路器在操作过程中会产生一系列的撞击或摩擦,这些撞击和摩擦事件可以通过振动信号反映出来。通过对断路器机构动作原理的分析及关键部位的检测,就可以确定断路器动作过程中反映断路器机械状态的关键事件[1]。 测量系统测得振动信号后,需经过一定的信号分析处理方法,才能得到表征断路器机械状态的特征参量,综合使用小波分析方法、包络分析方法和突变信号起始点提取方法对振动信号进行处理,提取振动事件的起始点作为特征量[2]。 首先使用数据格式转换程序模块对采集到的信号进行格式转换以便于快速分析处理,然后对原信号进行小波去噪处理,处理掉试验现场噪声。而后对去噪后的数据进行希尔伯特变换、低通滤波等处理得到清晰的包络谱线,最后再使用突变信号起始点提取法,得到振动事件的发生时刻并以此作为断路器的振动信号的特征参量。图1为振动信号分析处理流程图。 图2 分闸电磁铁图3 分闸脱扣器 缺陷特征参量比较图缺陷特征参量比较图 2.2 脱扣器故障 断路器在合闸状态时,分闸电磁铁顶杆与脱扣器锁闩间隙正常值范围为0.8-1.0mm。分别调节顶杆与脱扣器锁闩间隙至0.5mm和 1.7mm,其他间隙距离不变,这样就可以模拟脱扣器锁闩松动造成的脱扣器故障。两种状态下,分别进行了5次合闸操作和5次分闸操作。图2为分闸脱扣器缺陷特征参量比较图,代表顶杆与锁闩间距小状态的上部曲线与标准状态的中间曲线相比,有20ms的延后。这是因为顶杆与锁闩的间距小,顶杆在运动速度较小时即有较大的反力,造成了振动事件发生时刻的延后和较大的发生时刻分散性(可达8ms以上)。下部曲线代表顶杆与锁闩间距大状态,该曲线与标准状态中间曲线相比,有1ms左右的提前,分散性也较小,较为稳定。分析原因为:顶杆与锁闩间距大,动铁芯所带动的顶杆有较长的加速运动距离,从而可以较快的带动锁闩完成分闸操作,致使分闸振动事件有提前的趋势。 2.3 传动机构故障 调节输出拉杆可以改变凸轮与主拐臂之间的距离,模拟断路器传动机构故障。断路器分闸状态下,凸轮与主拐臂间正常距离为 1.0mm,试验中分别调节此距离至0.4mm、和1.9mm,每种距离条件下分别进行了5次合闸操作和5次分闸操作。合闸操作中的前四个振动事

高压开关故障分析论文

高压开关故障分析论文 摘要:通过对户外高压负荷(隔离)开关故障多发原因的分析,找出解决的办法,杜绝因开关故障而引发的事故。 关键词:户外高压开关;故障;原因;危害;整改 从1998年开始,为适应变电所无人值班需要,杭州余杭局分别在110kV、35kV 变电所10kV#1出线杆上安装了FW□-12/630-16户外高压负荷(隔离)开关,因#1负荷开关质量和维护原因,给设备安全运行造成了一定的威胁。为解决#1杆负荷开关的高发故障,现提出如下解决方法。 1主要结构与维护规定 1.1主要结构 FW□-12/630-16户外高压负荷(隔离)开关,由隔离闸刀和灭弧室(由基座、安装抱箍、主闸刀、并联弧触头、灭弧室外壳)组成,隔离闸刀装有并联弧触头和撞块,撞块推动灭弧室分合闸,灭弧室内装有弹簧快速机构,保证负荷电流开断不受操作快慢影响。 1.2维护规定 运行5年后对产品的绝缘水平进行检查。 在满负荷开断100次后对灭弧室进行检查。 操作次数达2000次后,应对操纵机构进行检查。 2故障部位与形式 2.1故障部位 户外高压负荷(隔离)开关故障部位虽然有不确定性,但绝大部分都发生在传动机构的轴瓦、刀闸及灭弧装置上,使机构无法正常操作,造成事故多发,直接影响到设备的正常运行和电网、人身的安全。 2.2故障形式 户外高压负荷(隔离)开关故障形式常见的有以下几种:其一是操作机构轴承破裂,导致操作后开关指针在分位置,而闸刀实际在合上位置见图1。其二是因机械连锁装置的故障,造成指针在分位,而闸刀往往不能分离到位,分合操作无效,见图2。其三是因灭弧室烧毁而导致分、合失灵,

近年来,在实际操作中已连续发生了5起户外高压负荷开关合闸分闸时的障碍(事故),对安全生产造成了较大的危害。其中因操作机构引起的2起,机械连锁装置引起的有1起,灭弧装置烧毁的2次,2次为夜间操作。这些现象的发生,主观上有操作人员责任性不强的一面,但产品质量以及检修不到位,这两大问题也是不能忽视的原因之一。 3危害 目前余杭局在运行使用的户外高压负荷(隔离)开关是温州和湖州二家生产厂家的产品。发生的故障主要有以下几方面: 其一由于操作机构的轴承破裂,在手动操作时操作人员操作开关结束后,检查开关标示在合或分位置上,同时也发出了开关分开或合上的声响。操作人员很容易产生开关已操作到位的错觉。其实开关在发出声响的瞬间由于轴承的破裂,开关仍然处在原来位置。轴承属操作机构的内部件,平时检查也不在此范围。 其二由于隔离刀闸并联弧触头和撞块的烧毁,导致单相分、合失灵,也有可能影响三相分、合不到位,但它的指示标识会在分或合的位置上,给操作人员带来了视觉观察上错觉。 开关的分与合不到位给安全生产带来了很大的影响,同时也留下了事故的隐患。像这类设备故障由于涉及线路停送电,极易造成人身伤亡事故。 4故障原因与整改措施 4.1故障原因 户外高压负荷(隔离)开关故障的原因很多,从以上分析来看,总的有以下原因:一是在设备选材上存在一定的问题,如轴承外壳的破裂;二是设计上有不合理的一面,在手动操作时一人往往无法分、合闸,转动机构转动不灵活;三是由于出厂说明书对该产品的维护要求不高,运行单位忽略了对该开关的日常维护和检修。 4.2运行管理 一是要加强对#1杆高压负荷(隔离)开关的巡视检查,建立运行管理档案。 二是要加强运行人员的培训,提高其运行人员的技术业务素质,及时召开运行分析会对故障开关进行分析,提出管理要求和操作上需注意的事项,制定#1杆高压负荷(隔离)开关的运行规程。

汽车电源系统常见故障及原因分析

汽车电源系统常见故障及原因分析 【摘要】随着汽车技术的不断发展,现代汽车上相关电气设备的应用越来越多,而汽车电源系统作为全车电气设备的电源,其正常工作与否直接决定了汽车电气设备能否正常工作。本文介绍了汽车电源系统的结构组成及各部件功能等,并在此基础上分析了汽车电源系统的常见故障及原因。 【关键词】汽车电源系统常见故障诊断流程 随着汽车技术的进步,同时为了满足人们对汽车驾驶安全性、舒适性及经济性要求的不断提高,在现代汽车上应用的汽车电气设备越来越多。而作为全车电气设备电源的汽车电源系统,其工作性能的好坏直接影响到全车电气设备的正常工作。 1 汽车电源系统的组成及各部分功能 汽车电源系统主要由蓄电池、交流发电机及电压调节器、充电指示灯、点火开关等几部分组成。其中,各部件的主要功能为: 发电机——汽车的主要电源。发动机怠速转速以上,发电机向汽车上所有用电设备(除起动机外)供电,并向蓄电池充电; 调节器——使发动机在转速变化时保证发电机输出稳定的电压; 蓄电池——在发动机起动时,向起动机和点火系统供电;在发电机不发电或电压较低的情况下向用电设备供电;当发电机超载时,协助发电机供电;在发电机正常工作时,蓄电池将发电机发出的多余电能储存起来;相当于一个大容量电容器,缓和电气系统中的冲击电压,保护汽车上的电子设备; 充电指示灯——用来指示蓄电池充放电状况,充电指示灯亮表明蓄电池向外放电,充电指示灯灭表明发电机向蓄电池充电,汽车起动后指示灯由亮变灭。 2 蓄电池的常见故障及原因分析 2.1 自放电 (1)故障现象:充足电或前一天使用良好的蓄电池,第二天使用时电压明显降低很多或几乎没有电,从而使起动机不转、p(1)蓄电池长期充电不足或放电后不及时充电,温度变化时,硫酸铅发生再结晶; (2)蓄电池液面过低,极板上部发生氧化后与电解液接触,也会生成粗晶粒硫酸铅;

电气高压断路器中高压断路器的机械故障监测研究

电气高压断路器中高压断路器的机械故障监测研究 随着用电需求的规模不断增长,使得我国的电网规模越来越大。如何保障供电网络的安全性和可靠性是电力行业发展面临的重要问题。断路器断路器机械检修系统可以有效保障供电网络的安全性和可靠性,但是在实际运行过程中可能存在着机械故障,因此本文在此基础上重点分析了电气高压断路器中高压断路器的机械故障的相关问题,从而更好促进我国电力行业的发展。 标签:电力行业;电网系统;漏电器隐形故障;电力系统连锁故障;稳定性 前言 近些年,随着信息技术不断发展,电力系统的自动化水平取得了很大的发展,为保障国民经济发展做出了重要的贡献。但随着我国对于电力需求越来越大,使得电力网络的规模越来越大,电力系统的结构越来越复杂,在电力系统工作的各个环节容易出现各种机械事故,给电力系统的人员造成一定的伤害。因此如何开展断路器断路器机械故障技术对于电力系统的安全运行至关重要,也保障了工作人员的生命财产安全,从而保障了电力系统的安全稳定的运行。 1.断路器断路器机械检修的重要性 断路器断路器机械检修的主要原理是通过相关的断路器断路器机械检修装置来切断相关的故障电路,从而保护相关电力人员和电力高压断路器的安全,因此断路器断路器机械检修技术对于保护相关人员的安全具有重要的意义。随着我国不断电力技术的不断发展,我国在断路器断路器机械检修技术方面也取得了很大的发展,目前在电力行业常用的主要有四种断路器断路器机械检修类型:1.零序电流互感器;2.总开关;3.分离脱扣线圈;4.脱扣装置。当电力工程人员在使用断路器断路器机械检修装置是,相关高压断路器能够检测电力系统相关的电力参数,主要通过检测电压电流参数的异常,通过一定的放大措施,如果发现异常就进行相关的切断电源处理,从而实现断路器断路器机械检修。 在我国电力行业的发展过程中,电力工程师在电力工程项目中常使用的断路器断路器机械检修装置主要是两种类型:第一种是电流动作保护器,第二种是电源动作保护器。同时在保护方式上也可以分为直接保护和间接保护的方式。直接保护是通过覆盖的技术直接来保护电路,而间接保护采用的是通过隔离的措施来进行相关电路的保护。断路器断路器机械检修对于保护电力系统人员安全和电力高压断路器具有重要的意义,能够有效降低电力事故的破坏范围,有效降低企业的经济损失,同时也能够最大程度保障电力系统的安全性。 2.机械振动信号的监测 高压断路器依靠其机械部件的正确动作来发挥其功能,因此各部件的机械可靠性极为重要。加强对机械故障的监测,提前发现潜在故障,对于降低高压断

高压断路器的常见故障分析和维修分析

高压断路器的常见故障分析和维修分析 摘要:电作为人们生活最必不可少的能源之一给人们的生活带来便捷。在经济发展迅猛的时代里,电力需求不断的增加,但高负荷也带来一定的危险,在实际过程中常出现因电网负载量过高而产生的不安全事件。国家十分重视电网安全问题,并不断对电网进行相应的工程改造,以保障其符合现代人的用电需求。在改造过程中,断路器作为重要的设备,需加以重视与维护。 关键词:高压断路器;故障;维修 为了符合现时代的发展,电力企业不断的更新改革,以求提升服务质量,保障电力系统的顺利运行。断路器的应用对于维护电力系统安全具有至关重要的作用,一方面可以轻松变换电网运行状态,在发生故障后可对电路进行紧急切换,使得电网能够无故障的运行;另一方面,在出现较大的故障时,可以控制故障范围不被扩大,减少对整个电网所造成的影响。然而在实际运行期间,高压断路器常发生故障,因此对高压断路器的常见故障作分析,同时制定出相应的对策有利于维护电网的稳定。 1断路器的常见故障分析和处理方法 1.1拒绝合闸故障 拒绝合闸故障所产生的原因一方面出自机构本身,如自身电源电压不足,亦或操作回路出现断线等。除上述原因外,另一种原因则多操作机构未锁于合闸位置,这时高压状态下合闸时则会受到冲击,也无法锁住。 针对上述情况,首先需对操作机构进行检修,保障操作电源的电压值属于正常范围内再合闸。其次还需对操作回路或熔断器进行检修,发现故障时及时的确定故障原因,而后再及时解决,并应当将操作电压设为额定值,以减少后期出现相同的故障。 1.2 拒绝分闸故障 拒绝分闸故障的原因也较多,其所涉及的设备、原件种类也较多,如因继电保护故障而导致拒绝分闸故障;也可能是因为分闸线圈无电压而导致故障。诸如此类因素在此不一一介绍。 针对上述原因,首先需明确故障原因,而后再进行针对性的修理。 1.3断路器误动作故障 该故障的形成原因则可分为两类,一方面是因为人员操作失误;另一方面则是绝缘体受损、挂钩故障等因素而引发。 针对上述情况,应当按照正确的、规范的流程对其进行重新投入,仔细检查电气与机械故障部位,对其进行仔细筛查与修理。 1.4 断路器缺油故障 若出现断路器缺油,仅需仔细查看是否存在漏油情况即可。 针对该种情况,首先需将操作电源切断,同时在周围放置警告牌,确保在检修期间无人拉闸以保障安全。在加油前需将先转移该线路的全部负载,同时需关闭所有的电源,避免出现安全事故。若故障断路器所连接的线路不可另行供电时,则需将断路器所供负载全部拉断而后再加油处理。 1.5 断路器着火故障 断路器着火可能原因如下:(1)外部套管受潮后未能及时进行干燥处理,从而导致地闪络或相间闪络;(2)内部的油中有杂质不纯或同样受潮,使得断路器内部闪络;(3)在切断断路器时较为缓慢,不能及时将其切断;(4)过多的油量造成油面上的缓冲空间不足。 对上述因素,可进行如下的处理:立即断开断路器线路与电源,并将断路器两侧的开关拉开。在使用灭火器进行扑火前需保障电源被切断,而后再进行灭火,必要时以泡沫灭火器进行灭火。 2 断路器的维护修理 2.1灭弧室的检修方法 2.1.1 常规检修项目

高压开关柜故障分析及处理

高压开关柜故障分析及处 理 Prepared on 24 November 2020

高压开关柜故障分析及处理 摘要 高压开关柜是指用于电力系统发电、输电、配电、电能转换和消耗中起通断、控制或保护等作用,高压开关柜按作电压等级在~550kV的电器产品。目前运用广泛,主要适用于发电厂、变电站、石油化工、冶金轧钢、轻工纺织、厂矿企业和住宅小区、高层建筑等各种不同场。因此对高压开关柜进行正确的日常维护和故障分析及处理是相当重要的事情,保证人员及设备的安全,减少不必要的财产损失,避免引发蝴蝶效应。 关键词:高压开关柜,电力系统,日常维护,故障分析及处理,安全 目录 第一章绪论 概述 称套配电装置又叫成套配电柜,也是以开关为主的成套电器,故也俗称开关柜。它用于配电系统,作为接受与分配电能之用。据电压高低,它可分为高

压开关柜和低压开关柜两大类:按装置地点的不同,又分户外式与户内式( 10 kv 及以下的多采用户内式);按开关电器是否可以移动,又可分为固定式和手车式。可见,高压开关柜是成套配电设备的一种,是有由制造厂成套供应的高压配电装置。在这种封闭或半封闭的柜中可装设各种高压电器、测量仪表、保护电器和控制开关等等。通常一个柜就构成一个单元回路(必要时也可用两个柜),所以一个柜也就成为一个间隔。使用时可按设计的主回路方案,选用适合各种电路间隔的开关柜,然后使可组成整个高压配电装置。也具有占地少、安装使用及维护检修方便,适于大量生产等特点,故应用很广泛。 高压开关柜类型 高压开关柜种类较多,分类方法亦有多种:按断路器的安装方式可分为固定式和手车式两大类;按柜体结构型式可分为开启式与封闭式两种;还可分为一般环境和特殊环境用(后者包括矿用、化工用、高海拔地区用等)。 按电力行业标准DL/T404-1997的定义,高压开关柜(high-voltage switchgear panel)是指由高压断路器、负荷开关、接触器、高压熔断器、隔离开关、接地开关、互感器及站用电变压器,以及控制、测量、保护、调节装置,内部连接件、辅件、外壳和支持件等组成的成套配电装置。这种装置的内部空间以空气或复合绝缘材料作为介质,用作接受和分配电网的三相电能。 由于国内外市场需求的日益多样化和国外代以先进技术的不断引进,20世纪80年来。国内电器制造行业推出了几十种型号的高压开关柜产品,打破了高压开关柜过去几十年一直以少油断路器为主开关的GG-1和有限的几种手车式开关柜的落后局面。新推出的高压开关柜所配的主开关元件有真空断路器、SF6断路器、负荷开关、接触器和熔断器。 高压开关柜按柜内主元件的安装方式分为固定式和移开式,简称固定柜和手车柜。移开式高压开关柜又根据手车的位置分落地式和中置式两种。按安全等级分为铠装式、间隔式和箱式。按柜内主绝缘介质分为空气绝缘柜和气体绝缘柜(充气柜)。 按柜内主元件的种类分为以下几类: (1)通用型高压开关柜:以空气为主绝缘介质,主开关元件为断路器的成套金属封闭开关设备,既断路器柜。

基站常见电源故障处理手册

基站常见电源故障处理手册 电源系统作为基础网络,其正常工作是通信网络安全可靠运行的基础。基站作为通信网络的组成单元,其安全工作同样要求电源系统的正常运行作为支撑,尽管不同的基站系统配置不尽相同,但电源系统主要由交流配电、开关电源、蓄电池、空调和接地系统组成或者由其中的一部分组成。基站电源系统的常见故障也基本类同。现将基站电源的常见故障和处理方法进行归类说明,作为维护人员处理基站电源故障的参考。 一、交流配电故障 基站的交流配电部分主要包括:业主(电力局)配电房分路开关、市电进线电缆、基站计量电度表、基站电源进线总开关、三相分路开关、单相分路开关等设备。部分郊线基站还配有变压器。常见的交流配电故障主要有: 1.基站交流断电:基站交流断电是指整个基站没有交流输入。对于此类故障首先判断是否电力局市电停电。(1)如果市电停电,对于VIP基站则采用移动油机进行应急发电。发电时必须将交流输入空开断开,油机电缆接入基站电源总开关的下桩头,保证油机电源不会倒送进入市电电网。根据油机的容量,切断空调开关、蓄电池的熔断器避免油机输出过载保护。注意:油机发电时必须保证通风和接地,避免操作人员的安全事故。(2)如果市电正常而基站内没有交流电源,则检查基站电源总开关是否跳闸、业主配电房内送往移动基站的开关是否跳闸。 2.空开跳闸:空开跳闸往往是由于负载或线路短路、空开容量与负载电流不匹配或空开损坏造成。此类故障的检查步骤一般为:(1)检查开关、分路电缆和设备是否存在短路烧焦的痕迹,如果存在,则首先排除设备和线路故障;(2)如果线路正常,可以试着合上跳闸的开关,如果开关立即跳闸,这说明负载侧存在短路现象或开关损坏。(3)如果开关合上后负载工作正常,测量负载电流与开关容量进行比较并观察一段时间。如果空开仍然跳闸,这说明开关损坏需要更换。 3.电源缺相:电源缺相是指三相电源中有一相或两相的电压为0V,电源缺相将造成开关电源、空调保护停机。产生的原因主要有:市电输入缺相或开关损坏。电源缺相的检查可用万用表从末级开始逐级向上测量三相电源的电压,根据

计算机系统故障分析报告与处理

课程设计报告书 设计名称:论计算机系统故障分析与处理 课程名称:计算机系统故障诊断与维护 学生姓名: 专业: 班别: 学号: 指导老师: 日期:2016 年 6 月 1 日

论计算机系统故障分析与处理 摘要:计算机发展迅速,越来越多的问题也随之而来,本文以计算机的浅层知识为框架,分析了计算机的常见故障,并介绍简单处理方法。对于计算机操作方面也做了相关的简单介绍,还有操作系统,安装软件等方面。本文对于各方面知识全部只是简单介绍,只是有一个快速了解的过程,如果要精通,还得自己下点真功夫。只有掌握硬件和软件的基本知识和技术,才能搞好计算机的维护和维修工作。 关键词:硬件、软件 一、计算机硬件组成 电脑分为台式机和笔记本,台式机由显示器,主机箱,键盘,鼠标,音箱等几部分组成。而主机箱又是由电源、主板、光驱、硬盘、软驱等组成。而主板又是由内存显卡、声卡、网卡、CPU组成。笔记本和台式机组成一样,只是笔记本是为了携带方便,把各个硬件排列的更为紧密,但整体上,相同配置的台式和笔记本,台式机的性能要优于笔记本。 下面对各硬件做简单介绍 1.显示器:电脑的主要输出设备,用电脑操作产生的文字图像等都是由显示器显示出来。 2.键盘:键盘是最常用也是最主要的输入设备,通过键盘,可以将英文字母、数字、标点符号等输入到计算机中,从而向计算机发出命令、输入数据等。 3.鼠标: 是计算机输入设备的简称,分有线和无线两种。也是计算机显示系统纵横坐标定位的指示器,因形似老鼠而得名“鼠标”(港台作滑鼠)。“鼠标”的标准称呼应该是“鼠标器”,英文名“Mous e”。鼠标的使用是为了使计算机的操作更加简便,来代替键盘那繁

变电站常见故障分析及处理方法

变电站常见故障分析及处理方法 变电所常见故障的分析及处理方法一、仪用互感器的故障处理当互感器及其二次回路存在故障时,表针指示将不准确,值班员容易发生误判断甚至误操作,因而要及时处理。 1、电压互感器的故障处理。电压互感器常见的故障现象如下:(1)一次侧或二次侧的保险连续熔断两次。(2)冒烟、发出焦臭味。(3)内部有放电声,引线与外壳之间有火花放电。(4)外壳严重漏油。发现以上现象时,应立即停用,并进行检查处理。 1、电压互感器一次侧或二次侧保险熔断的现象与处理。(1)当一次侧或二次侧保险熔断一相时,熔断相的接地指示灯熄灭,其他两相的指示灯略暗。此时,熔断相的接地电压为零,其他两相正常略低;电压回路断线信号动作;功率表、电度表读数不准确;用电压切换开关切换时,三相电压不平衡;拉地信号动作(电压互感器的开口三角形线圈有电压33v)。当电压互感器一交侧保险熔断时,一般作如下处理:拉开电压互感器的隔离开关,详细检查其外部有元故障现象,同时检查二次保险。若无故障征象,则换好保险后再投入。如合上隔离开关后保险又熔断,则应拉开隔离开关进行详细检查,并报告上级机关。若切除故障的电压互感器后,影响电压速断电流闭锁及过流,方向低电压等保护装置的运行时,应汇报高度,并根据继电保护运行规程的要求,将该保护装置退出运行,待电压互感器检修好后再投入运行。当电压互感器一次侧保险熔断两相时,需经过内部测量检查,确定设备正常后,方可换好保险将其投入。(2)当二次保险熔断一相时,熔断相的接地电压表指示为零,接地指示灯熄灭;其他两相电压表的数值不变,灯泡亮度不变,电压断线信号回路动作;功率表,电度表读数不准确电压切换开关切换时,三相电压不平衡。当发现二次保险熔断时,必须经检查处理好后才可投入。如有击穿保险装置,而B相保险恢复不上,则说明击穿保险已击穿,应进行处理。 2、电流互感器的故障处理。电流互感器常见的故障现象有:(1)有过热现象(2)内部发出臭味或冒烟(3)内部有放电现象,声音异常或引线与外壳间有火花放电现象(4)主绝缘发生击穿,并造成单相接地故障(5)一次或二次线圈的匝间或层间发生短路(6)充油式电流互感器漏油(7)二次回路发生断线故障当发现上述故障时,应汇报上级,并切断电源进行处理。当发现电流互感器的二次回路接头发热或断开,应设法拧紧或用安全工具在电流互感器附近的端子上将其短路;如不能处理,则应汇报上级将电流互感器停用后进行处理。二、直流系统接地故障处理直流回路发生接地时,首先要检查是哪一极接地,并分析接地的性质,判断其发生原因,一般可按下列步骤进行处理:首先停止直流回路上的工作,并对其进行检查,检查时,应避开用电高峰时间,并根据气候、现场工作的实际情况进行回路的分、合试验,一般分、合顺如下:事故照明、信号回路、充电回路、户外合闸回路、户内合闸回路、载波备用电源6-10KV的控制回路,35KV以上的主要控制回路、直流母线、蓄电池以上顺应根据具体情况灵活掌握,凡分、合时涉及到调度管辖范围内的设备时,应先取得调度的同意。确定了接地回路应在这一路再分别分、合保险或拆线,逐步缩小范围。有条件时,凡能将直流系统分割成两部分运行的应尽量分开。在寻找直流接地时,应尽量不要使设备脱离保护。为保证个人身和设备的安全,在寻找直流接地时,必须由两人进行,一人寻找,另一人监护和看信号。如果是220V直流电源,则用试电笔最易判断接地是否消除。否认是哪极接地,在拔下运行设备的直流保险时,应先正极、后负极,恢复时应相反,以免由于寄生回路的影响而造成误动作。三、避雷器的故障处理发现避雷器有下列征象时,

相关文档
最新文档