第五章 控制电机实验

第五章  控制电机实验
第五章  控制电机实验

第五章控制电机实验

实验一步进电动机实验

一.实验目的

1.加深了解步进电动机的驱动电源和电机的工作情况。

2.步进电动机基本特性的测定。

二.预习要点

1.了解步进电动机的驱动电源和工作情况。

2.步进电动机有基本特性?怎样测定?

三.实验项目

1.单步运行状态。

2.角位移和脉冲数的关系。

3.空载实跳频率的测定。

4.空载最高连续工作频率的测定。

5.转子振荡状态的观察。

6.定子绕组中电流和频率的关系。

7.平均转速和脉冲频率的关系。

8.矩频特性的测定及最大静力矩特性的测定。

四.实验设备及仪器

1.教学实验台主控制屏

2.电机导轨及测功机(NMEL-13A)

3.步机电机驱动电源(NMEL-10)

4.步进电机M10

5.双踪示波器

6.直流电流表

五.实验方法及步骤

1.驱动波形观察

a.合上控制电源船形开关,依次按下“连续”控制开关和“正转/反转”、“三拍/六拍”,“启动/停止”开关,使电机处于三拍正转连续运行状态。

b.用示波器观察电脉冲信号输出波形(CP波形),改变“调频”电位器旋钮,频率变化范围为5H Z~1KH Z,可从频率计上读出此频率。

c.用示波器观察环形分配器输出的三相A、B、C波形之间的相序及其与CP脉冲波形之间的关系。

d.改变电机运行方式,使电机处于正转、六拍运行状态,重复C的实验。(注意,每次改变电机运行,均需先弹出“启动/停止”开关,再按下“复位”按钮,再重新起动。)e.再次改变电机运行方式,使电机处于反转状态,重复C的实验。

2.步进电机特性的测定和动态观察。

按图6-1接线,注意接线不可接错,测功机和步进电机脱开,且接线时需断开控制电源。

a.单步运行状态

接通电源,按下述步骤操作:按下“单步”琴键开关,“复位”按钮,“清零”按钮,最后按下“单步”按钮。

每按一次“单步”按钮,步进电机将走一步距角,绕组相应的发光管发亮,不断按下“单步”按钮,电机转子也不断作步进运行,改变电机转向,电机作反向步进运动。

b.角位移和脉冲数的关系

按下“置数”琴键开关,给拔码开关预置步数,分别按下“复位”、“清零”按钮(操作以上步骤须让电机处于停止状态),记录电机所处位置。

按下“启动/停止”开关,电机运转,观察并记录电机偏转角度,填入表6-1。

再重新预置步数,重复观察并记录电机偏转角度,填入表6-1,并利用公式计算电机偏转角度与实际值是否一致。

进行上述实验时,若电机处于失步状态,则数据无法读出,须调节“调频”电位器,寻找合适的电机运转速度,使电机处于正常工作状态。

c.空载突跳频率的测定

电机处于连续运行状态,按下“启动/停止”开关,调节“调频”电位器旋钮使频率逐渐提高。

弹出“启动/停止”开关,电机停转,再重新起动电机,观察电机能否运行正常,如正常,则继续提高频率,直至电机不失步启动的最高频率,则该频率为步进电机的空载突跳频率,记为H Z。

d.空载最高连续工作频率的测定。

步进电机空载连续运转后,缓慢调节“调频”电位器旋钮,使电机转速升高,仔细观察电机是否不失步,如不失步,则继续缓慢提高频率,直至电机停转,则该频率为步进电机最高连续工作频率,记为为H Z。

e.转子振荡状态的观察。

步进电机脉冲频率从最低开始逐步上升,观察电机的运行情况,有无出现电机声音异常或电机转子来回偏转,即出现步进电机的振荡状态。

f.定子绕组中电流和频率的关系。

电机在空载状态下连续运行,用示波器观察取样电阻R波形,即为控制绕组电流波形,改变频率,观察波形的变化。

在停机条件下,将测功机和步进电机同轴联接,起动步进电机,并调节MEL-13的“转矩设定”电位器,观察定子绕组电流波形。

g.平均转速和脉冲频率的关系

电机处于连续运行状态,改变“调频”旋钮,测量频率f(由频率计读出)与对应的转速n,则n=f(f),填入表6-2中。

h.矩频特性的测定。

电机处于连续空载运行状态,缓慢顺时针调节“转矩设定”旋钮,对电机逐渐增大负载,直至电机失步,读出此时的转矩值。

改变频率,重复上述过程得到一组与频率f对应的转矩T值,即为步进电机的矩频特性T=f(f),记录于表6-3中。

i.静力矩特性T=f(I)

断开电源,将直流安培表(5A量程档)串入控制绕组回路中,将“单步”控制琴键开关和“三拍/六拍”开关按下,用起子将测功机堵住。

合上船形开关,按下“复位”按钮,使C相绕组通电,缓慢转动步进电机手柄,观察MEL-13转矩显示的变化,直至测功机发出“咔嚓”一声,转矩显示开始变小,记录变小前的力矩,即为对应电流I的最大静力矩T max的值。

改变“电流调节”旋钮,重复上述过程,可得一组电流I值及对应I值的最大静力矩T max 值,即为T max=f(I)静力矩特性。可取4-5组记录于表6-4中。

实验时,为提高精确度,同一电流下,可重复3次取其转矩的平均值,每次转动步进电机手柄前,应先前测功机堵转起子拿出,待测功机回零后,再重新将起子插入测功机堵转孔中。

六.实验报告

对上述实验内容进行总结,并加以分析。

1.步进电机处于三拍、六拍不同状态时,驱动波形的关系。

2.单步运行状态:步距角=

3.角位移和脉冲数关系:

4.空载突跳频率:

5.空载最高连续工作频率:

6.平均转速和脉冲频率的特性n=f(f)。

7.矩频特性T=f(f)。

8.最大静力矩特性T max=f(I)。

七.思考题

1.影响步进电机步距的因素有哪些?采用何种方法步距最小?

2.平均转速和脉冲频率的关系怎样?为什么特别强调是平均转速?

3.最大静力矩特性是怎样的特性?

4.如何对步进电机的矩频特性进行改善?

八.注意事项

步进电机驱动系统中控制信号部分电源和功放部分电源是不同的,绝不能将电机绕组接至控制信号部分的端子上,或将控制信号部分端子和电机绕组部分端子以任何形式连接。

实验二力矩式自整角机实验

一.实验目的

1.了解力矩式自整角机精度和特性的测定方法。

2.掌握力矩式自整角机系统的工作原理和应用知识。

二.预习要点

1.力矩式自整角机的工作原理。

2.力矩式自整角机精度与特性的测试方法。

3.力矩式自整角机比整步转矩的测量方法。

三.实验项目

1.测定力矩式自整角发送机的零位误差。

2.测定力矩式自整角机静态整步转矩与失调角的关系曲线。

3.测定力矩式自整角机比整步转矩(又称比力矩)及阻尼时间。

4.测定力矩式自整角机的静态误差。

四.实验设备及仪器

1.电机系统教学实验台主控制屏;

2.自整角机实验仪。

U N

T2

表中:T=G×R

式中 G──砝码重量,单位为(g ) R──园盘半径=2cm 3.力矩式自整角机比整步转矩T θ的测定

在力矩式自整角系统中,接收机与发送机在协调位置附近,单位失调角所产生的整步转矩称为力矩式自整角机比整步转矩,以T θ表示,单位为g·cm/deg 。

测定发送机或接收机的比整步转矩时,可将电机安装在分度盘上,轴伸端紧固带有指针的轮盘,在励磁绕组W f 两端上施加额定电压。实验接线如图6-3所示。

将接收机整步绕组T 1、T 3端短接,用细线将适当重量的砝码绕挂在指针园盘上,使指针偏转5?左右,测得整步转矩。

实验应在正、反两个方向各测一次,两次测量的平均值应符合标准规定。 比整步转矩T θ按下式计算

T T θθ

=2

式中 T=G R──整步转矩,单位为(g·cm); θ──指针偏转的角度,单位为deg ; G──砝码重量,单位为g ; R──轮盘半径,单位为cm 。

4.测定力矩式自整角机的静态误差?θjt

在力矩式自整角机系统中,静态协调时,接收机与发送机转子转角之差即静态误差?θjt,以角度表示。

实验接线仍如图6-3所示。将发送机和接收机的励磁绕组加额定励磁电压220V,待稳定后,把发送机和接收机调整在0?位置,缓慢旋转发送机刻度盘,每转过20?,测取接收机实际转过的角度并记录于表6-6中。

3.根据实验结果计算出该力矩式自整角机的比整步转矩Tθ的数值。

4.此次实验所用接收机的阻尼时间t n的实测数值是多少?

5.根据实验结果,求出被试力矩式自整角接收机的静态误差?θjt。

实验三正余弦旋转变压器实验

一.实验目的

1.研究测定正余弦旋转变压器的空载输出特性和负载输出特性。

2.研究测定二次侧补偿、一次侧补偿的正余弦旋转变压器的输出特性。

3.了解正余弦旋转变压器的几种应用情况。

二.预习要点

1.正余弦旋转变压器的工作原理。

2.正余弦旋转变压器的主要特性及其实验方法。

3.了解正余弦旋转变压器应用中的注意事项。

三.实验项目

1.测定正余弦旋转变压器在空载时的输出特性。

2.测定负载对输出特性的影响。

3.二次侧补偿后负载时的输出特性。

4.一次侧补偿后负载时的输出特性。

5.正余弦旋转变压器作线性应用时的接线图。

四.实验设备及仪器

1.MEL系列电机系统教学实验台主控制屏

2.旋转变压器实验仪

3.400Hz稳压电源

4.三相可调电阻900Ω(NMEL-03)

5.波形测试及开关板(NMEL-05B)

五.实验方法

1.测定正余弦旋转变压器空载时的输出特性

接线如图6-7所示。

R、R L均采用NMEL-03上900Ω串联900Ω共1800Ω电阻,并调定在1200阻值。

开关S1、S2、S3采用MEL-05上单刀双掷开关。

D1、D2为激磁绕组,D3、D4为补偿绕组,Z1、Z2为余弦绕组,Z3、Z4为正弦绕组。

a.S1、S2、S3均断开。

b.定子激磁励磁绕组D1、D2两端施加额定电压U N(60V、400Hz)且保持恒定

c.用手柄缓慢旋转刻度盘,找出正弦输出绕组输出电压为最小值的位置,此位置即为起始零位,使刻度盘的0 对准该起始零位位置。

2.测定负载对输出特性的影响

在接线图7-7中,把开关S3闭合,开关S1、S2仍打开,使正余弦旋转变压器带负载电阻R L运行。

按上述实验1的方法测量正弦负载输出电压U R1与转角α的数值并记录于表6-10中。

3.测量二次侧补偿后负载时的输出特性

在接线图6-7中,开关S1断开,S3闭合接通负载电阻R L,S2闭合,使二次侧余弦输出绕组Z3、Z4经补偿电阻R闭合。

仍按上述实验1的方法测量正弦负载输出电压U r1与转角α的数值并记录于表6-11中。在实验时注意一次侧输入电流的变化。

4.测量一次侧补偿后负载时的输出特性

在接线图6-7中,开关S2断开,S3闭合接通负载电阻R L,S1闭合,使一次侧接成补偿电路。

仍按上述实验1的方法测量正弦负载输出电压U r1与转子转角α的数值并记录于表6-12中。在实验中注意一次侧输入电流的变化。

六.实验报告

1.根据表6-9的实验记录数据,绘制正余弦旋转变压器空载时输出电压U r10与转子转角α的关系曲线,即U r10=f(α)。

2.根据表6-10的实验记录数据,绘制负载时输出电压U r1与转子转角α的关系曲线,即U r1=f(α)。

3.根据表6-11的实验记录数据,绘制二次侧补偿后负载时的输出电压U'r1与转子转角α的关系曲线,即U r1=f(α)。

4.根据表6-12的实验记录数据,绘制一次侧补偿后负载时的输出电压U r1与转子转角α的关系曲线,即U r1=f(α)特性。

5.根据表6-13的实验结果,绘制一次侧补偿的线性旋转变压器带负载时的输出电压U r与转子转角α的关系曲线,即U r=f(α)特性。分析正余弦旋转变压器作一次侧补偿线性旋转

变压器运行情况。

实验四交流伺服电机实验

一.实验目的

1.掌握用实验方法配圆磁场。

2.掌握交流伺服电动机机械特性及调节特性的测量方法。

二.预习要点

1.为什么三相调压器输出的线电压U uw与相电压U vn在相位上相差90°?

2.二相交流伺服电动机在什么条件下可达到圆形旋转磁场?

3.对交流伺服电动机有什么技术要求?在制造与结构上采取什么相应措施。

4.交流伺服电动机有几种控制方式?

5.何为交流伺服电动机调节特性。

三.实验项目

1.观察伺服电动机有无“自转”现象。

2.测定交流伺服电动机采用幅值控制时的调节特性。

3.用实验方法配堵转圆形磁场

4.测定交流伺服电动机采用幅值――相位控制时的调节特性。

四.实验设备及仪器

1.NMEL-II电机系统教学实验台主控制屏

2.电机导轨及转速转矩测量(NMEL-13A)

3.交流伺服电机M13

4.三相可调电阻90Ω(NMEL-04)

5.旋转指示灯及开关板(NMEL-05B)

6.交流伺服电机电源(含单相起动电机电容NMEL-21)

7.万用表(自备)

8.示波器(自备)

五.实验方法

实验线路见图6-9。

图中,交流伺服电机采用M13,额定功率PN=25W, 额定控制电压UN=220V,额定激磁电压UN=220V,堵转转矩M=3000g.cm,空载转速=2700 r/min。

隔离变压器输出的固定电压(V相调压器的输入电压)UV′N接至交流伺服电机的励磁绕组。三相调压器输出的线电压Uuw经过开关S(NMEL—05B)接交流伺服电机的控制绕组。

1.观察交流伺服电动机有无“自转”现象

测功机和交流伺服电机暂不联接(联轴器脱开),调压器旋钮逆时针调到底,使输出位于最小位置。合上开关S。器,

接通交流电源,调节三相调压使输出电压增加,此时电机应启动运转,继续升高电压直到控制绕组U c=127V。

待电机空载运行稳定后,打开开关S,观察电机有无“自转”现象。

将控制电压相位改变180°电角度,观察电动机转向有无改变。

2.测定交流伺服电动机采用幅值控制时的调节特性

(1)测定调节特性

保持电机的励磁电压U f=220V。

调节调压器,使电机控制绕组的电压U c从220V逐渐减小至到0V,记录电机空载运行的转速n及相应的控制绕组电压U c,并填入表6-15中

3.用实验方法配堵转园磁场

实验线路见图6-10。

A1、A2选用交流电流表0.75A档。

V1、V2、V3选用交流电压表300V档。

R1、R2选用NMEL—04中90Ω并联90Ω共45Ω阻值,并用万用表调定在5Ω阻值。

可变电容选用电机电容箱,位于下组件NMEL-21。

调压器T2选用下组件NMEL-21。

示波器两探头的地线应接N线,X踪和Y踪幅值量程一致。

a.使电机堵转。

b.接通交流电源,调节T1、T2使V1、V2电压指示为220V。

c.改变电容C f(约为4Uf),使A1、A2电流接近相等,示波器显示的两个电流波形相位相差

90°(或Y2改接X端子,示波器显示为圆图)。

4.测定交流伺服电动机采用幅值――相位控制时的调节特性。

1)测定调节特性

接线仍如图6-10所示。

调节调压器T1,使U1=127V。

调节调压器T2,使U2=220V。

保持U1=127V,逐渐减小Uc值,记录电机转速n及控制绕组电压Uc并填入表6-19中。

六.实验报告

1.根据幅值控制实验测得的数据作出交流伺用电动机的调节特性n=f(Uc)曲线。2.根据幅值―相位控制实验测得的数据作出交流伺服电动机调节特性n=f(Uc)曲线。3.分析实验过程中发生的现象。

实验五 交流测速发电机

一.概述

测速发电机是一种测量转速信号的元件,它将转入的机械转速变换为电压信号转出,且转出电压与转速成正比。在自动控制系统中用作测量元件和反馈元件,用以测量转速或调节和稳定转速。

测速发电机有交直流两大类,交流测速发电机有异步和同步之分,直流测速发电机根据励磁方式不同,又可分为永磁式和他励磁式之分。本处使用的是交流测速发电机。

二.实验设备及所选用组件箱

1.NMCL 系列电力电子与电机拖动教学实验台 2.电机导轨及测功机、转速转矩测量(NMEL-13A ) 3.直流并励电动机M03

4.直流电机仪表、电源(NMEL-18A )(位于实验台主控制屏的下部) 5.三相可调电阻900Ω(NMEL-03) 6.三相可调电阻90Ω(NMEL-04) 7.直流电压、毫安、安培表

8.波形测试板及开关板(NMEL-05B )

9.交流测速发电机M21

三.实验内容

1.按图7-2接线。图中直流电动机M 选用M03作他励接法,TG 选用导轨上的永磁式直流测速发电机,R f1选用NMEL-09上3000Ω阻值,R 1选用NMEL-09上100Ω阻值,R z 选用

NMEL-03上6只900Ω电阻串联共5400Ω阻值,并把R f1调至最小,R 1调至最大,R z 调至最大,A 表选用20mA 档,开关S 断开。

2.先接通励磁电源,再接通电枢电源,电动机M 运行后将R 1调至最小,并调节转速达2000r/min ,减小电枢电源输出电压并调节R 1和R f1逐渐使电机减速。记录对应的转速和输出电压。

3.共测取8-9组,记录于表1中。

交流测速发电机M21

图7-2 交流测速发电机实验接线图

4.合上开关S,重复上面步骤,记录8-9组数据于表2中。

表3

表4

四.实验报告

作出U=f(n)曲线。

实验六 直流伺服电机实验

一.实验目的

1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握起流伺服电动机的机械特性和调节特性的测量方法。 3.测直流伺服电动机的机电时间常数,求传递函数。

二.预习要点

1.对直流伺服电动机有什么技术要求。 2.直流伺服电动机有几种控制方式。

3.何隅直流伺服电动机的机械特性和调节特性。

三.实验项目

1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f =U fN =220V ,分别测取U a =220V 及U a =110V 的机械特性n=f(T)。 3.保持U f =U fN =220V ,分别测取T 2=0.8N.m 及T 2=0的调节特性n=f(Ua)。 4.测直流伺服电动机的机电时间常数。

四.实验设备及仪器

1.实验台主控制屏

2.电机导轨及测功机、转速转矩测量(NMEL-13A ) 3.直流并励电动机M03(作直流伺服电机) 4.直流电机仪表、电源

5.三相可调电阻900Ω(NMEL-03) 6.三相可调电阻

78

1接线原理图见图6-11U R :1800ΩV :直流电压表 A :直流安培表 M :直流电机电枢

(1)阻R

(2)按顺序按下主控制屏绿色“闭合”按钮开关,可调直流稳压电源的船形开关以及复位开关,建立直流电源,并调节直流电源至220V 输出。

调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行,如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U M 和电流I a 。将电机转子分别旋转三分之一和三分之二周,同样测取U M 、I a ,填入表6-21。

取三次测量的平均值作为实际冷态电阻值Ra=

3

13

2a a a R R R ++。

表中R a =(R a1+R a2+R a3)/3

(3)计算基准工作温度时的电枢电阻

由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值:

R aref =R a a

ref θθ++235235

式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω)

R a ——电枢绕组的实际冷态电阻。(Ω) θref ——基准工作温度,对于E 级绝缘为75℃。 θa ——实际冷态时电枢绕组的温度。(℃) 2.测直流伺服电动机的机械特性 实验线路如图6-12所示。

R 1:180Ω电阻(NMEL-04中两只90Ω相串联) R f :900Ω电阻(NMEL-03中两只900Ω相串联) R 2:采用NMEL-03最上端900Ω电阻,为电位器接法 开关S 选用NMEL-05B M :直流伺服电动机M03 G :涡流测功机

I S :电流源,位于NMEL-13A ,由“转矩设定”电位器进行调节。实验开始时,将NMEL-13A “转速控制”和“转矩控制”选择开关板向“转矩控制”,“转矩设定”电位器逆时针旋到底。

V 1:可调直流稳压电源自带电压表 V 2:直流电压表,量程为300V 档

DDSZ-1型电机及电气技术实验指南(doc 13页)(正式版)

DDSZ-1型电机及电气技术实验指导书 1 认识实验 一、实验目的 1、学习电机实验的基本要求与安全操作注意事项。 2、认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3、熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机转向与调速的方法。 二、预习要点 1、如何正确选择使用仪器仪表。特别是电压表电流表的量程。 2、直流电动机起动时,为什么在电枢回路中需要串接起动变阻器? 不串接会产生什么严重后果? 3、直流电动机起动时,励磁回路串接的磁场变阻器应调至什么位置? 为什么? 若励磁回路断开造成失磁时,会产生什么严重后果? 4、直流电动机调速及改变转向的方法。 三、实验项目 1、了解DD01电源控制屏中的电枢电源、励磁电源、校正直流测功机、变阻器、多量程直流电压表、电流表及直流电动机的使用方法。 2、用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3、直流他励电动机的起动、调速及改变转向。 四、实验设备及控制屏上挂件排列顺序 1 2、控制屏上挂件排列顺序 D31、D42、D51、D31、D44

五、实验说明及操作步骤 1、由实验指导人员介绍DDSZ-1型电机及电气技术实验装置各面板布置及使用方法, 讲解电机实验的基本要求,安全操作和注意事项。 2、用伏安法测电枢的直流电阻 图2-1 测电枢绕组直流电阻接线图 (1)按图2-1接线,电阻R 用D44上1800Ω和180Ω串联共1980Ω阻值并调至最大。A 表选用D31上的直流安培表。开关S 选用D51挂箱上的双刀双掷开关。 (2)经检查无误后接通电枢电源,并调至220V 。调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。将电机转子分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表2-1中。 (3)增大R 使电流分别达到0.15A 和0.1A ,用同样方法测取六组数据列于表2-1中。 取三次测量的平均值作为实际冷态电阻值 表中: )(3 13323133a a a a R R R R ++= (4)计算基准工作温度时的电枢电阻 由实验直接测得电枢绕组电阻值,此值为实际冷态电阻值。冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: 式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω)。 R a ——电枢绕组的实际冷态电阻。(Ω)。 θref ——基准工作温度,对于E 级绝缘为75 ℃。 )(311312111a a a a R R R R ++=)(312322212a a a a R R R R ++=) (1321a a a a R R R R ++=a ref a aref R R θ θ++=235235

控制电机(第四版)陈隆昌 阎治安 课后答案

第二章 1.为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势? 答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。 由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。 2. 如果图 2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、 B电刷的极性如何? 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。 当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。 4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给定值? 答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,

为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。基于上述分析,eL必正比转速的平方,即eL∝n2。同样可以证明ea ∝n2。因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。 5. 如果电刷通过换向器所连接的导体不在几何中性线上,而在偏离几何中性线α角的直线上,如图 2 - 29 所示,试综合应用所学的知识,分析在此情况下对测速机正、反转的输出特性的影响。(提示:在图中作一辅助线。)正反向特性不一致。 6. 具有 16 个槽, 16 个换向片的两极直流发电机结构如图 2 - 30 所示。 (1) 试画出其绕组的完整连接图; (2) 试画出图示时刻绕组的等值电路图; (3) 若电枢沿顺时针方向旋转,试在上两图中标出感应电势方向和电刷极性; (4) 如果电刷不是位于磁极轴线上,例如顺时针方向移动一个换向片的距离,会出现什么问题?

控制电机第三版课后习题答案

控制电机第三版课后习题答案 第二章 1. 为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势? P25 2. 如果图 2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、 B 电刷的极性如何? P7 3. 为了获得最大的直流电势,电刷应放在什么位置? 为什么端部对称的鼓形绕组(见图 2 - 3)的电刷放在磁极轴线上? P9-10 4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给 定值? P23 5. 如果电刷通过换向器所连接的导体不在几何中性线上,而在偏离几何中性线α角的直线上,如图 2 - 29 所示,试综合应用所学的知识,分析在此情况下对测速机正、反转的输出特性的影响。(提示: 在图中作一辅助线。)正反向特性不一致。 6. 具有 16 个槽, 16 个换向片的两极直流发电机结构如图 2 - 30 所示。 (1) 试画出其绕组的完整连接图; (2) 试画出图示时刻绕组的等值电路图; (3) 若电枢沿顺时针方向旋转,试在上两图中标出感应电势方向和电刷极性; (4) 如果电刷不是位于磁极轴线上,例如顺时针方向移动一个换向片的距 离,会出现什么问题? 4321161514N514 a,,1A513B 6132第三章 67891011121. 直流电动机的电磁转矩和电枢电流由什么决定? 答

直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成正比的反电势(当?=常数时) 根据转矩平衡方程式,当负载转矩不变时,电磁转矩不变; 加上励磁电流If 不变,磁通Φ不变,所以电枢电流Ia也不变,直流电动机的电磁转矩和电枢电流由直流电动机的总阻转矩决定。 2. 如果用直流发电机作为直流电动机的负载来测定电动机的特性(见图 3 - 33),就会发现,当其他条件不变,而只是减小发电机负载电阻RL时,电动机的转速就下降。试问这是什么原因? RITTIn,,,,,,,,,,, La发发发电电1223. 一台他励直流电动机,如果励磁电流和被拖动的负载转矩都不变,而仅仅提高电枢端电压,试问电枢电流、转速变化怎样? 答:最终电枢电流不变,转速升高 4. 已知一台直流电动机,其电枢额定电压Ua=110 V,额定运行时的电枢电流Ia=0.4 A,转速n=3600 r/min, 它的电枢电阻Ra=50 Ω,空载阻转矩T0=15 mN?m。试问该电动机额定负载转矩是多少?

第五章第四节控制电机

1、交流电动传令钟的两套自整角同步传递系统的励磁绕组间的相互关系是______。 A.串联在单相交流电源上 B.并接在单相交流电源上 C.并接在单相直流电源上 D.并接在三相对称交流电源上 2、采用交流传令钟的船舶,为满足驾驶台传令和机舱回令功能,要用______。A.一套(两台)自整角机 B.两套(四台)自整角机 C.一套(两台)执行电机 D.两套(四台)执行电机 3、自整角机按使用方式分为______ 两种形式。 A.力矩式和控制式 B.接触式和无接触式 C.控制式和差动式 D.力矩式和差动式 4、舵角指示器是由______组成的同步跟踪系统。 A.两个执行电机 B.两个直流电动机 C.一对自整角机 D.两个异步电动机 5、控制式自整角机是将______信号转换成______信号。 A.电流/电压 B.转角/电流 C.转角/电压 D.转角/转角 6、力矩式自整角机,在船上常用在______场合。 A.车钟和舵角指示 B.测速机构 C.油门双位控制 D.水位双位控制 7、直流测速发电机的技术数据中列有“最小负载电阻和最高转速”的限制一项,其主要目的是______。 A.保证输出电压与转速间关系线性度 B.防止电机烧毁 C.防止发电机作电动机运行 D.减小能量损耗

8、为取得与某转轴的转速成正比的直流电压信号,应在该轴安装______。A.交流执行电机 B.自整角机 C.直流执行电机 D.直流测速发电机 9、交流执行电机的转子导体的电阻比普通鼠笼式异步电机转子导体的电阻______。 A.小 B.大 C.相同 D.无要求 10、伺服电动机,在船上常用于______场合。 A.电车钟 B.舵角同步指示装置 C.拖动发电机之柴油机油门开度控制 D.水箱水位控制 11、为满足电气系统的自动控制需要,常用到一些被称为“控制电机”的电器。控制电机的主要任务是转换和传递控制信号。下列不属于控制电机的是______。A.交流执行电动机 B.直流执行电动机 C.测速发电机 D.单相异步电动机 12、一般来说,交流执行电动机的励磁绕组与控制绕组轴线空间上相差______而放置。 A.60° B.30° C.90° D.120° 13、交流执行电动机的转向取决于______。 A.控制电压与励磁电压的相位关系 B.控制电压的大小 C.励磁电压的大小 D.励磁电压的频率 14、交流执行电动机的转子制成空心杯形转子的目的是______。 A.增加转动惯量,使之起、停迅速 B.拆装方便 C.减少转动惯量,使之起、停迅速 D.减少起动电流

《电力机车电机》实验指导书

《电力机车电机》实验指导书 实验一直流电机认识实验 一.实验目的 1.学习电机实验的基本要求与安全操作注意事项。 2.认识在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。 3.熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机方向与调速的方法。 二.预习要点 1.如何正确选择使用仪器仪表。特别是电压表、电流表的量程。 2.直流他励电动机起动时,为什么在电枢回路中需要串联起动变阻器?不连接会产生什么严重后果? 3.直流电动机起动时,励磁回路连接的磁场变阻器应调至什么位置?为什么?若励磁回路断开造成失磁时,会产生什么严重后果? 4.直流电动机调速及改变转向的方法。 三.实验项目 1.了解MEL系列电机系统教学实验台中的直流稳压电源、涡流测功机、变阻器、多量程直流电压表、电流表、毫安表及直流电动机的使用方法。 2.用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3.直流他励电动机的起动,调速及改变转向。 四.实验设备及仪器 1.MEL系列电机系统教学实验台主控制屏(MEL-I、MEL-IIA、B) 2.电机导轨及测功机、转速转矩测量(MEL-13)或电机导轨及校正直流发电机 3.直流并励电动机M03 4.220V直流可调稳压电源(位于实验台主控制屏的下部) 5.电机起动箱(MEL-09)。 6.直流电压、毫安、安培表(MEL-06)。 五.实验说明及操作步骤 1.由实验指导人员讲解电机实验的基本要求,实验台各面板的布置及使用方法,注意事项。 2.在控制屏上按次序悬挂MEL-13、MEL-09组件,并检查MEL-13和涡流测功机的连接。 3.直流仪表、转速表和变阻器的选择。 直流仪表、转速表量程是根据电机的额定值和实验中可能达到的最大值来选择,变阻器根据实验要求来选用,并按电流的大小选择串联,并联或串并联的接法。 (1)电压量程的选择

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术及电机控制实验装置实验指导书(doc 61页)

电力电子技术实验指导书武夷学院机电工程学院

目录 第一章DJDK-1型电力电子技术及电机控制实验装置简介 (1) 1-1 控制屏介绍及操作说明 (1) 1-2 DJK01电源控制屏 (1) 1-3 各挂件功能介绍 (4) 第二章电力电子及电机控制实验的基本要求和安全操作说明 (80) 1-1 实验的特点和要求 (81) 1-2 实验前的准备 (82) 1-3 实验实施 (83) 1-4 实验总结 (85) 1-5 实验安全操作规程 (87) 第三章电力电子技术实验 (89) 实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 (89) 实验二锯齿波同步移相触发电路实验 (95) 实验三单相桥式半控整流电路实验 (100) 实验四直流斩波电路原理实验 (108) 实验五单相交流调压电路实验 (116) 实验六三相半波可控整流电路实验 (124) 1

第一章DJDK-1 型电力电子技术及电机控制实验装置简介 1-1 控制屏介绍及操作说明 一、特点 (1)实验装置采用挂件结构,可根据不同实验内容进行自由组合,故结构紧凑、使用方便、功能齐全、综合性能好,能在一套装置上完成《电力电子技术》、《自动控制系统》、《直流调速系统》、《交流调速系统》、《电机控制》及《控制理论》等课程所开设的主要实验项目。 (2)实验装置占地面积小,节约实验室用地,无需设置电源控制屏、电缆沟、水泥墩等,可减少基建投资;实验装置只需三相四线的电源即可投入使用,实验室建设周期短、见效快。 (3)实验机组容量小,耗电小,配置齐全;装置使用的电机经过特殊设计,其参数特性能模拟3KW 左右的通用实验机组。 (4)装置布局合理,外形美观,面板示意图明确、清晰、直观;实验连接线采用强、弱电分开的手枪式插头,两者不能互插,避免强电接入弱电设备, 1

控制电机 课后答案

控制电机课后答案 第二章 1.为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势?答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。 由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。 2.如果图2-1中的电枢反时针方向旋转,试问元件电势的方向和A、B电刷的极性如何? 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。 3.为了获得最大的直流电势,电刷应放在什么位置?为什么端部对称的鼓形绕组(见图2-3)的电刷放在磁极轴线上? 答:放在磁极轴线上。 具体见P9-10 4.为什么直流测速机的转速不得超过规定的最高转速?负 载电阻不能小于给定值? 答:转速越高,负载电阻越小,电枢电流越大,电枢反应的 去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远, 线性误差越大,为了减少电枢反应对输出特性的影响,直流 测速发电机的转速不得超过规定的最高转速,负载电阻不能 低于最小负载电阻值,以保证线性误差在限度的范围内。而 且换向周期与转速成反比,电机转速越高,元件的换向周期 越短;e L正比于单位时间内换向元件电流的变化量。基于上述分析,e L必正比转速的平方,即e L∝n2。同样可以证明e a∝n2。因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。 5.如果电刷通过换向器所连接的导体不在几何中性线上,而在偏离几何中性线α角的直线上,如图2-29所示,试综合应用所学的知识,分析在此情况下对测速机正、反转的输出特性的影响。(提示:在图中作一辅助线。)正反向特性不一致。 思路:假设是逆时针转,图见P7图2-1。 本来中性面是没有切割磁感线的,但是现在偏一个角,虽然还是没有切割磁感线但是却有电流通过,根据右手定则判断在偏角直线产生的感应磁场与原来的磁场方向相比较判断影响。 6.具有16个槽,16个换向片的两极直流发电机结构如图2-30所示。

第五章电机与拖动基础课后习题答案全解 第二版 徐建华

第五章 5 . 1 什么是直流伺服电机的电枢控制方式?什么是磁场控制方式? 答: 将直流伺服电机的电枢绕组接控制电压,励磁绕组接恒定电压的控制方式称为电枢控 制方式;将励磁绕组接控制电压, 电枢绕组接恒定电压的控制方式称为磁场控制方式。 5 . 2 为什么直流伺服电机常采用电枢控制方式而不采用磁场控制方式? 答: 直流伺服电机采用电枢控制方式时, 控制电压加在电枢绕组上, 励磁绕组接恒定电压, 控制精度高,线性度好; 采用磁场控制方式时, 电枢绕组接恒定电压, 控制电压加在励磁绕组 上,由于磁路的非线性, 控制精度较差,性能较差,所以直流伺服电机常采用电枢控制方式而不 采用磁场控制方式 5 . 3 直流伺服电机采用电枢控制方式时,始动电压是多少?与负载大小有什么关系? 答: 直流伺服电机采用电枢控制方式时,始动电压 0C U = T C RT ,与负载大小成正比。 5 . 4 常有哪些控制方式可以对交流伺服电机的转速进行控制? 答: 或通过改变控制电压的幅值,或改变控制电压的相位,或同时改变控制电压的幅值和相 位,都可以对交流伺服电机的转速进行控制,所以常有幅值控制、相位控制和幅值—相位控制 等三种控制方式对交流伺服电机的转速进行控制。 5 . 5 何谓交流伺服电机的自转现象?怎样消除自转现象?直流伺服电机有自转现象吗? 答: 转动中的交流伺服电机在控制电压为零时继续转动而不停止转动的现象,称为交流伺 服电机的自转现象。增加交流伺服电机的转子电阻可以消除自转现象。直流伺服电机没有自

转现象。 5 . 6 幅值控制和相位控制的交流伺服电机,什么条件下电机气隙磁动势为圆形旋转磁 动势? 答: 当控制电压C U 与励磁电压f U 大小相等、相位差为090时, 幅值控制和相位控制的交 流伺服电机,其气隙磁动势为圆形旋转磁动势。 5 . 7 为什么交流伺服电机常采用幅值-相位控制方式? 答: 幅值-相位控制方式只需要电容器和电位器,不需要复杂的移相装置, 控制设备简单;而 幅值控制方式或者相位控制方式都需要移相装置,所以交流伺服电机常采用幅值-相位控制 方式。 5 . 8 为什么直流测速发电机的转速不宜超过规定的最高转速?为什么所接负载电阻不 宜低于规定值? 答: 直流测速发电机的转速愈高,感应电动势就愈大,当负载不变时,电枢电流也愈大, 电枢 反应的去磁作用就愈强,输出的端电压下降愈多,误差愈大。负载电阻愈小, 电枢电流也就 愈大, 电枢反应的去磁作用就愈强, 误差愈大。所以直流测速发电机的转速不宜超过规定

电机及电气技术实验指导书修改(DDSZ-1型)(1)

Tianhuang Teaching Apparatuses 天煌教仪 电机系列实验 DDSZ-1型 电机及电气技术实验装置Motor And Electric Technique Experimental Equipment 实验指导书 天煌教仪

DDSZ-1型电机及电气技术实验装置受试电机铭牌数据一览表

DDSZ-1型电机及电气技术实验装置交流及直流电源操作说明 实验中开启及关闭电源都在控制屏上操作。开启三相交流电源的步骤为: 1)开启电源前。要检查控制屏下面“直流电机电源”的“电枢电源”开关(右下角)及“励磁电源”开关(左下角)都须在“关”断的位置。控制屏左侧端面上安装的调压器旋钮必须在零位,即必须将它向逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“关”按钮指示灯亮,表示实验装置的进线接到电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“开”按钮,“开”按钮指示灯亮,表示三相交流调压电源输出插孔U、V、W及N上已接电。实验电路所需的不同大小的交流电压,都可适当旋转调压器旋钮用导线从这三相四线制插孔中取得。输出线电压为0-450V(可调)并可由控制屏上方的三只交流电压表指示。当电压表下面左边的“指示切换”开关拨向“三相电网电压”时,它指示三相电网进线的线电压;当“指示切换”开关拨向“三相调压电压”时,它指示三相四线制插孔U、V、W和N输出端的线电压。 4)实验中如果需要改接线路,必须按下“关”按钮以切断交流电源,保证实验操作安全。实验完毕,还需关断“电源总开关”,并将控制屏左侧端面上安装的调压器旋钮调回到零位。将“直流电机电源”的“电枢电源”开关及“励磁电源”开关拨回到“关”断位置。 开启直流电机电源的操作: 1)直流电源是由交流电源变换而来,开启“直流电机电源”,必须先完成开启交流电源,即开启“电源总开关”并按下“开”按钮。 2)在此之后,接通“励磁电源”开关,可获得约为220V、0.5A不可调的直流电压输出。接通“电枢电源”开关,可获得40~230V、3A可调节的直流电压输出。励磁电源电压及电枢电源电压都可由控制屏下方的1只直流电压表指示。

电机传动与控制实验指导书

实验一步进电机基本原理实验 一、实验目的 1、了解步进电动机的基本结构和工作原理。 2、掌握步进电机驱动程序的设计方法。 二、实验原理 步进电动机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动、反转和 制动的执行元件。其功能是将电脉冲转换为相应的角位移或直线位移。步进电动机的运 转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一 个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步。步进电机旋转的角度由 输入的电脉冲数确定,所以,也有人称步进电动机为一个数字/角度转换器。 当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子 和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点, 转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转 的原因。 四相步进电动机以四相单四拍、四相双四拍、四相八拍方式工作时的脉冲分配表如 表1,表2和表3 表1 四相单四拍脉冲分配表表2 四相双四拍脉冲分配表 时,若用手旋转它,感觉很难转动。

三、实验步骤: 1.将DRYDC-A型运动控制台的电源线和串行通信接口线连接好。 2.打开DRMU-ME-B综合实验台的电源总开关,开关电源的开关,采集仪开关。 启动硬件设备。 3.打开计算机,从桌面或程序组运行DRLink主程序,然后点击DRLink快捷 工具条上的“联机注册”图标,选择“DRLink采集主卡检测”进行注册。 没有使用信号采集主卡的用户可选择:“局域网服务器”进行注册,此时,必需在对话框中填入DRLink服务器的主机IP地址。 4.点击DRLink快捷工具条上“文件夹”图标,出现文件选择对话框,在实验 目录中选择“步进电机基本原理”实验,并启动该实验。 5.点击该实验脚本中的“开关”按钮,向运动控制卡下载实验程序。 6.本实验中先做步进电机的驱动实验:选择运行方式为“连续驱动”,依次选 择步进电机的工作方式为:四相单四拍、四相双四拍、四相八拍;方向可以是任意的;脉冲间隔参数可用5~10ms。点“电机驱动”按钮,驱动电机工作。观察电机的工作情况。(对于四相八拍的工作方式,脉冲间隔最小可以到2ms)终止电机运行请在运行方式中选择“停止保持”或“停止不保持”。 7.步进电机的自锁实验:运行方式选择“停止保持”,其它参数不变,点“电 机驱动”按钮。可以使步进电机某相通电,处于“自锁”状态。此时,用手转动电机的皮带轮,可以感到转动比较困难。 8.步进电机的步距角演示:运行方式选择“单步驱动”,点“电机驱动”按钮。 每点击一次“电机驱动”按钮,步进电机旋转一个角度,这个角度就是步距角。对于本实验台步距角为1.8o。 除了可以使用DRLink平台下的实验脚本进行本实验外,还可以使用C-51的C语言程序进行本实验。本运动控制平台在内部使用了DRMC-A型运动控制卡,其CPU是ADUC842,关于ADUC842的硬件的详细信息,请参考我们提供的pdf 文档。在DRMC-A型运动控制台,步进电机的端口地址:0x8000,用低4位表示电机的4相,1表示发送脉冲,0表示空。根据步进电机的工作方式的脉冲分配表(表1~3),逐步向端口的低4位写入0和1就可以了。具体的程序请参考StepMotor1.c~StepMotor5.c。在生成执行代码后,按运动控制台的“PRG”+“RST”按钮后,使用Windows Serial Downloader将执行程序下载到单片机内。 四、实验报告要求 1.简述步进电机的工作原理。 2.简述步进电机的四相八拍工作方式的优、缺点。 五、思考题 根据四相双四拍脉冲分配表(表2),参考StepMotor1.c,设计四相双四拍工作

控制电机实验指导书

安徽工程大学 《控制电机》课程实验指导书 专业:自动化 安徽工程大学电气工程学院 2013年12月

目录 步进电动机使用说明 (2) 实验一步进电动机(2学时) (5) 实验二交流伺服机电动机(2学时) (10)

步进电动机说明 步进电动机又称脉冲电机,是数字控制系统中的一种重要的执行元件,它是将电脉冲信号变换成转角或转速的执行电动机,其角位移量与输入电脉冲数成正比;其转速与电脉冲的频率成正比。在负载能力范围内,这些关系将不受电源电压、负载、环境、温度等因素的影响,还可在很宽的范围内实现调速,快速启动、制动和反转。随着数字技术和电子计算机的发展,使步进电机的控制更加简便、灵活和智能化。现已广泛用于各种数控机床、绘图机、自动化仪表、计算机外设,数、模变换等数字控制系统中作为元件。 一、使用说明 D54步进电机实验装置由步进电机智能控制箱和实验装置两部分构成。 (一)步进电机智能控制箱 本控制箱用以控制步进电机的各种运行方式,它的控制功能是由单片机来实现的。通过键盘的操作和不同的显示方式来确定步进电机的运行状况。 本控制箱可适用于三相、四相、五相步进电动机各种运行方式的控制。 因实验装置仅提供三相反应式步进电动机,故控制箱只提供三相步进电动机的驱动电源,面板上也只装有三相步进电动机的绕组接口。 1、面板示意图(见附录) 2、技术指标 功能:能实现单步运行、连续运行和预置数运行;能实现单拍、双拍及电机的可逆运行。 电脉冲频率:5Hz~1KHz 工作条件:供电电源AC220V±10%,50Hz 环境温度-5℃~40℃ 相对湿度≥80% 重量:6kg 尺寸:390×200×230mm3 3、使用说明 (1)开启电源开关,面板上的三位数字频率计将显示“000”;由六位LED数码管组成的步 进电机运行状态显示器自动进入 “9999→8888→7777→6666→5555→4444→3333→2222→1111→0000”动态自检过程,而 后停显在系统的初态“┤.3”。 (2)控制键盘功能说明 设置键:手动单步运行方式和连续运行各方式的选择。

控制电机与特种电机课后答案第4章

控制电机与特种电机课后答案第4章思考题与习题 1. 旋转变压器由_________两大部分组成。( ) A.定子和换向器 B.集电环和转子 C.定子和电刷 D.定子和转子 2. 与旋转变压器输出电压呈一定的函数关系的是转子( )。 A.电流 B. 转角 C.转矩 D. 转速 3(旋转变压器的原、副边绕组分别装在________上。( ) A(定子、转子 B.集电环、转子 C.定子、电刷 D. 定子、换向器 4(线性旋转变压器正常工作时,其输出电压与转子转角在一定转角范围内成________。 5、试述旋转变压器变比的含义, 它与转角的关系怎样? 6、旋转变应器有哪几种?其输出电压与转子转角的关系如何, 7、旋转变压器在结构上有什么特点?有什么用途。 8、一台正弦旋转变压器,为什么在转子上安装一套余弦绕组?定子上的补偿绕组起什么作用? 9、说明二次侧完全补偿的正余弦旋转变压器条件,转子绕组产生的合成磁动势和转子转角α有何关系。 10、用来测量差角的旋转变压器是什么类型的旋转变压器? 11、试述旋转变压器的三角运算和矢量运算方法. 12、简要说明在旋转变压器中产生误差的原因和改进方法。 答案 1. D 2. B 3. A 4. 正比

5. 旋转变压器的工作原理和一般变压器基本相似,从物理本质来看,旋转变压器可以看成是一种能转动的变压器。区别在于对于变压器来说,其原、副边绕组耦合位置固定,所以输出电压和输入电压之比是常数,而旋转变压器的原、副边绕组分别放置在定、转子上,由于原边、副边绕组间的相对位置可以改变,随着转子的转动,定、转子绕组间的电磁耦合程度将发生变化,电磁精确程度与转子的转角有关,因此,旋转变压器能将转角转换成与转角成某种函量关系的信号电压。输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。 6. 按着输出电压和转子转角间的函数关系,旋转变压器主要可以分:正、余弦旋转变压器(代号为XZ)和线性旋转变压器(代号为XX)、比例式旋转变压器(代号为XL),矢量旋转变压器(代号为XS)及特殊函数旋转变压器等。其中,正余弦旋转变压器当定子绕组外加单相交流电流激磁时其输出电压与转子转角成正余弦函数关系;线性旋转变压器的输出电压在一定转角范围内与转角成正比,线性旋转变压器按转子结构又分成隐极式和凸极式两种;比例式旋转变压器则在结构上增加了一个固定转子位置的装置,其输出电压也与 转子转角成比例关系。 按旋转变压器在系统中用途可分为解算用旋转变压器和数据传输用旋转变压器。根据数据传输用旋转变压器在系统中的具体用途,又可分为旋变发送机(代号为XF),旋变差动发送机(代号为XC),旋变变压器(又名旋变接收器)(代号为XB)。 若按电机极对数的多少来分, 可将旋转变压器分为单极对和多极对两种。采用多极对是为了提高系统的精度。

第五章 控制电机

第五章 控制电机 控制电机一般是指用于自动控制、自动调节、远距离测量、随动系统以及计算装置中的微特电机。它是构成开环控制、闭环控制、同步连接等系统的基础元件。根据它在自动控制系统中的职能可分为测量元件、放大元件、执行元件和校正元件四类。 控制电机是在一般旋转电机的基础上发展起来的小功率电机,就电磁过程及所遵循的基本规律而言,它与一般旋转电机没有本质区别,只是所起的作用不同。 传动生产机械用的传动电机主要用来完成能量的变换,具有较高的力能指标(如效率和功率因数等);而控制电机则主要用来完成控制信号的传递和变换,要求它们技术性能稳定可靠、动作灵敏、精度高、体积小、重量轻、耗电少。当然传动用电机与控制电机也没有一个严格的界线,本章所介绍的力矩电动机、第十一章介绍的步进电动机等控制电机也起传动电机的作用。至于旋转变压器与感应同步器等信号检测元件将在“数控机床”课程中介绍。 5.1 交流伺服电动机 伺服电动机也称为执行电动机,在控制系统中用作执行元件,将电信号转换为轴上的转角或转速,以带动控制对象。 伺服电动机有交流和直流两种,它们的最大特点是可控。在有控制信号输入时,伺服电动机就转动;没有控制信号输入,则停止转动;改变控制电压的大小和相位(或极性)就可改变伺服电动机的转速和转向。因此,它与普通电动机相比具有如下特点: 1. 调速范围广,伺服电动机的转速随着控制电压的改变而改变,能在很广的范围内连续调节; 2. 转子的惯性小,即能实现迅速启动和停转; 3. 控制功率小,过载能力强,可靠性好。 一、两相交流伺服电动机的结构 定子:定子绕组与单相电容式异步电动机的结构相类似。 定子用硅钢片叠成,在定子铁心的内圆表面上嵌入两个相差090电角度(即p /900 空间角)的绕组,一个叫励磁绕组FW ,另一个叫控制绕组CW ,如图5.1所示,这两个绕组通常是分别接在两个不同的交流电源(两者频率相同)上,这一点与单相电容式异步电动机不同。

实验指导书(7)-步进电机控制

实验七步进电机控制 一、实验目的 1、掌握PLC功能指令的用法 2、掌握用PLC控制步进电机的方法 二、实验器材 1. DICE-PLC01型可编程序控制器实验台/箱l台 2. 编程电缆l根 3. 连接导线若干 三、实验内容及步骤 1、步进电机的工作原理 步进电也称为脉冲电机,它可以直接接收来自计算机的数字脉冲,使电机旋转过 相应的角度。步进电机在要求快速启停,精确定位的场合做为执行部件,得到了广泛采 用。 四相步进电机的工作方式: *单相四拍工作方式,其电机控制绕组A、B、C、D相的正转通电顺序为: A→B→C→D→A;反转通电顺序为:A→D→C→B→A。 *四相八拍工作方式,正转的绕组通电顺序为:A→AB→B→BC→C→CD→D→ DA→A;反向的通电顺序为:A→AD→D→DC→C→CB→B→BA→A。 *双四拍工作方式,正转的绕组通电顺序为:AB→BC→CD→DA→AB;反向的通 电顺序为:AB→AD→DC→CB→BA。 步进电机有如下特点:给步进脉冲电机就转,不给步进脉冲电机就不转;步进脉 冲的频率越高,步进电机转得越快;改变各相的通电方式,可以改变电机的运行方式; 改变通电顺序,可以控制电机的正、反转。 2、设计要求 (1)控制模块中的步进电机工作方式为四相八拍,电机的四相线圈分别用A、B、C、D表示,公共端已接地。 当电机正转时,其工作方式如下:A→AB→B→BC→C→CD→D→DA→A。 当电机反转时,其工作方式如下:A→-AD→D→DC→C→CB→B→BA→A。 设计程序,要求能控制步进电机正反转,并能控制它的转速。 (2)设置以下控制按钮:启动、停止按钮;正、反转控制按钮;快速、慢速控制 按钮。步进电机的脉冲可用逐位移位指令循环移位来实现,其脉冲频率可通过控制逐位 移位指令的移位脉冲来调节,而移位脉冲可用两个定时器组合来完成,要改变脉冲频率, 只要改变定时器设定值即可。 (3)程序运行后,首先选择正、反转按钮,然后选择快、慢速按钮,最后按下“启 动”按钮,电机便会按照按钮的选择控制来工作。步进电机在工作过程中可实时改变电 机的转速、正反转,也可按下停止按钮结束电机的工作。 3、程序修改和讨论 (1)修改程序,改变步进电机的工作方式,上机调试通过;讨论步进电机的几种 工作方式有何区别? (2)通过修改程序,改变步进电机工作的脉冲频率,即改变步进电机的转速,并 观察步进电机的工作情况? (3)仔细阅读源程序,掌握如何控制步进电机的正反转,即改变各相的通电顺序, 在程序中如何实现?

电机系统实验指导书

电机学实验指导书 电气信息工程学院 2017年07月

前言 1、电机实验是学习研究电机理论的重要环节,其目的在于通过实验验证和研究电机理论,使学生掌握电机实验的方法和基本技能,培养学生严肃认真事实求是的科学作风。所设置的实验项目均为验证性实验。 2、本实验主要介绍电气自动化和电力系统自动化中常用的直流电机、变压器、异步电机的相关实验和实验原理,学生可以掌握实验方法,学会选择仪表,测取实验数据等基本实验研究技能。通过实验,加深对电机学理论知识的理解。 3、本实验指导书可作为电气工程及其自动化和自动化等强电方向专业的辅助教材和参考书。 4、本次修订工作主要针对电机学教学大纲并结合教仪设备进行了必要的调整。

目录 本实验课程的说明 (2) 实验一他励直流电机的工作特性与调速性能测定(Ⅰ) (3) 实验二他励直流电机的工作特性与调速性能测定(Ⅱ) (9) 实验三单相变压器空载、短路和负载实验 (17) 实验四三相异步电动机工作特性 (24)

本实验课程的说明 1、电机学实验是将课堂上所讲电机理论进一步深化的必备环节,通过实验验证和电机理论相结合,能使学生掌握电机实验的分析方法和基本技能,培养学生解决问题能力。 2、电机实验课是《电机学》和其相近课程的重要组成部分,本实验讲义只侧重于掌握实验方法,并运用课堂上学到的电机理论知识来分析研究实验中的各种问题,得出必要的结论,从而达到培养学生在电机这门学科中具备分析问题和解决问题的初步能力。 3、所设置的实验项目类型均为验证性实验。

实验一他励直流电机的工作特性与调速性能测定(Ⅰ) 一、实验类型 验证性实验 二、实验目的与要求 1.学习电机实验的基本要求与安全操作注意事项。 2.认识在直流电机实验中所用的电机、仪表、变阻器等部件及使用方法。 3.熟悉他励电动机(即并励电动机按他励方式)的接线、起动、改变电机方向与调速的方法。 三、实验内容与任务 1.了解电机系统教学实验台中的直流稳压电源、涡流测功机、变阻器、多量程直流电压表、电流表、毫安表及直流电动机的使用方法。 2.用伏安法测直流电动机和直流发电机的电枢绕组的冷态电阻。 3.直流他励电动机的起动,调速及改变转向。 四、实验条件 1.直流电动机电枢电源(NMEL-18/1) 2.直流电动机励磁电源(NMEL-18/2) 3.可调电阻箱(NMEL-03/4) 4.电机导轨及测功机、转速转矩测量(NMEL-13)

《电机与拖动基础》实验指导书

电机系统教学实验台使用说明 概述 MEL—Ⅰ型电机系统教学实验台总体外观结构如图1所示。图中序号5为涡流测功机及其导轨,序号8为安装在电机工作台上得被试电机。被试电机可以根据不同得实验内容进行更换。为了实验时机组安装方便与快速得要求,实验台得各类电机均设计成相同得中心高。同时,各电机得底脚采用了与普通电机不同得特殊结构形式。在机组安装时,将各电机之间通过联轴器同轴联结,被试电机得底脚安放在电机工作台得导轨上,只要旋紧两只底脚螺钉,不需做任何调整,就能准确保证各电机之间同心度,达到快速安装得目得。当测量被试电动机输出转矩时,可从序号4得测功机力矩显示窗中直接读取。被试电机得转速就是通过与测功机同轴联接得直流测速发电机来测量得。转速高低可以从图4得转速表直接读取。 图1电机系统教学实验台总体外观 序号2为电源控制屏,通过调压器输出单相或三相连续可调得交流电源。 序号1为仪表屏,根据用户得需要配置指针式与数字式表。

序号3为实验桌,内可放置各种组件及电机,桌面上放置测功机及导轨。 序号6为实验时所需得仪表,可调电阻器,可调电抗器与开关箱等组件。这些组件在 实验台上可任意移动。组件内容可以根据实验要求进行搭配。 第一章主要结构部件 2.电压表。可指示实验台输入得电压与交流电源输出得线电压,通过指针表旁边得开关切换。 3.三相主电源U、V、W输出。 4.保险丝座。3只3A保险丝分别就是u、v、w三相电源输出得保险丝,进行电源得短路保护,一旦电网电压对称输入,而电源输出不对称,则有可能烧毁保险丝。 5.调压器。 三相调压器得容量为1、5KVA,线电压0~430V连续可调,为了保证实验者得实验,电网与三相调压器之间接有隔离变压器或漏电保护器。三相调压器可调节单相或三相电压输出。当沿逆时针旋到底输出电压最小,改变旋钮位置,即可调节输出交流电源电压得大小。 6.主电源控制开关。当按下此开关时,红灯灭绿灯亮,主电路接触器闭合,U、V、W输出交流电。

电动机控制实训指导书

电动机控制线路的安装与调试 实验指导书 班级:电工电子班 姓名:___________________ 2016.7.11

目录 项目一:三相异步电动机接触器点动控制线路 (5) 项目二:三相异步电动机接触器连续运行控制线路 (6) 项目三:三相异步电动机既能点动又能连续实验 (7) 项目四:三相异步电动机正反转实验 (8) 项目五:两台电动机的顺序启动同时停止实验 (9) 项目六:三相异步电动机的星三角降压起动实验 (10) 项目七:小车自动往返控制实验 (11)

低压电器简介 一.继电器 继电器:是一种根据电量(电流、电压)或非电量(时间、速度、温度、压力等)的变化自动接通和断开控制电路,以完成控制或保护任务的电器。继电器一般由3个基本部分组成:检测机构、中间机构和执行机构。 与接触器的区别:继电器可以对各种电量或非电量的变化作出反应,而接触器只有在一定的电压信号下动作。继电器用于切换小电流的控制电路,而接触器则用来控制大电流电路,因此,继电器触头容量较小(不大于5A),且无灭弧装置。 继电器种类很多,按输入信号可分为:电压继电器、电流继电器、功率继电器、速度继电器,压力继电器、温度继电器等;按工作原理可分为:电磁式继电器、感应式继电器、电动式继电器、电子式继电器、热继电器等;按用途可分为控制与保护继电器;按输出形式可分为有触点和无触点继电器。 1、中间继电器 电磁继电器主要包括电流继电器、电压继电器的中间继电器。选用时主要依据继电器所保护或所控制对象对继电器提出的要求,如触头的数量、种类,返回系数,控制电路的电压、电流、负载性质等。出于继电器触头容量较小,所以经常将触头并联使用。有时为增加触头的分断能力,也有把触头串联起来使用的。其工作原理和内部结构与交流接触器基本相似。其外观如图3.9所示。 适用于交流500V以下的控制线路,线圈电压为交流12V、36V、127V、220V及380V 五种。继电器有八对触点,额定电流为5A,最高操作频率为1200次/h。 图3.9中间继电器外形 2、时间继电器

直流电机控制实验指导书

实验一直流电机速度控制与PID参数校正 一、实验目的 1、掌握调整直流伺服驱动器PID参数的方法 2、理解不同转动惯量对系统性能指标的影响 二、实验要求 通过simulink对电机进行仿真,确定合适的PID参数。随后对直流电机进行电流环、速度环、位置环的PID控制,通过改变系统转动惯量,根据期望性能指标整定直流伺服驱动器的电流环、速度环、位置环PID参数,确保理论曲线与实际曲线尽量拟合。进一步地分析直流电机控制精度的影响因素。 三、实验设备 1、直流伺服系统控制平台,GSMT2012; 2、PC、Easy Motion Studio软件; 四、实验原理 转动惯量是刚体转动时惯量的度量,其量值取决于物体的形状、质量分布及转轴的位置。转动惯量在旋转动力学中的质量,所以当系统转动惯量增大后,相同的控制器参数情况下,系统的性能指标一定下降。为保持原有的性能指标,必须重新整定PID参数。 五、实验步骤 1、Easy Motion Studio软件对直流电机进行测试 Easy Motion Studio是针对直流电机控制器进行参数调整的专业软件,它能够实时在线的对电机的参数进行调整,并通过编码器对电机参数进行测试,并通过软件界面观测调试结果,最终成功选择合适的PID参数。首先,对Easy Motion Studio软件进行了解。 点击图标,进入软件界面,选择“Open”,并点击“OK”。如下图所示。

进入软件界面后,在“View”菜单下,选择“Project”即可得到以下界面。 选择在左列的下拉菜单选择“Setup”,并选择“Edit”,在这里对直流电机的参数可以方便地进行调整,并可对调整后的结果进行实时观测。需要注意的是,在这里电机应选择T54。并 选择“Save to User Database”。

相关文档
最新文档