基于声成像技术风力发电机噪声源识别

基于声成像技术风力发电机噪声源识别
基于声成像技术风力发电机噪声源识别

基于声成像技术风力发电机噪声源识别

杨炯明,范德功,唐新安,陆金红

金风科技股份有限公司

摘要声成像技术通过多个传声器获取声场信息,使用成像成原理对声场信号进行处理,能对宽带声源进行有效识别。利用基于声成像噪声源分析技术,研究了风力发电机组辐射噪声的频率特性和能量分布特性,通过与光学图像的自动重叠,获得了风力发电机最大噪声源的频率、空间位置和产生来源。试验结果表明,声成像术能够快速有效地进行噪声源诊断和声源空间定位,从而为低噪声电机优化设计提供了依据。

关键词风电机组,声阵列分析,噪声源识别,声成像技术

Abstract: Acoustic imaging technique through multiple microphones for sound field information, the use of imaging principle to the acoustic signal processing, can effectively to broadband noise source identification. Based on the acoustic imaging noise analysis technology, research the frequency characteristics and energy distribution characteristics of the wind power generators noise emission, through the optical image automatic overlap, get the frequency, space position and origin of the strongest noise. The test results show that the sound imaging technique is effective for the noise source diagnosis and sound spatial orientation, and provide foundation for the optimization design of low noise wind power generator.

Key Words: Wind turbine generator system, Noise array analysis, noise source identification, Acoustic imaging technique

1、前言

随着风力发电机组装机量的快速增长,机组噪声已成为一种重要的环境污染源,国内已出现多个发电场由于噪声过高导致影响当地居民生活的案例,同时机组噪声也很大程度上反应出生产厂家的设计水平和工艺水平,成为衡量风力发电机组质量的重要标志之一,因此有效的控制机组噪声,成为近年来风电行业的一种重要研究课题。

直驱风力发电机组在运行时是一个复合噪声源,由叶片气动噪声、发电机组机械结构噪声、冷却系统风扇噪声组成,直驱风力发电机直接裸露在空间中,且为外转子结构,其产生的机械结构噪声是总噪声的重要组成部分,更有甚者发电机噪声是机组噪声音调的唯一来源,因此机组整体降噪的关键在于降低风力发电机噪声水平。直驱风力发电机尺寸大,结构相对复杂,可能产生机械结构噪声的部件多,要控制噪声,首先要找出发电机内部的噪声源。本文采用声阵列技术,采用先进的声相仪CASI-200P64测试系统,对金风某型直驱发电机组噪声特性进行分析,找出主要噪声源的空间位置和频率特性,为进一步开展整机降噪工作奠定基础。

2、噪声源主要识别方法

噪声源的识别就是在同时又许多噪声源或包含许多振动发声部件的复杂声源情况下,为了确定各个声源或振动部件的声辐射性能,区分并确定主要噪声源并根据他们对声场的作用加以分析而进行的测量和研究。利用现代检测技术,准确识别主要声源的部位、频率等特征,从声源上有针对性的采取有效措施进行降噪,可大大减轻噪声治理的工作量,对促进低噪声产品研制、提高产品质量和寿命有直接的效果。所以,噪声源的识别是整个噪声控制的根本,噪声测量的一项内容就是要估计和寻找产生噪声的声源。

目前国内外进行噪声源识别的方法主要有声压法、声功率法、声强法、声场成像技术等。

声压法:声压是最基本的声学量,也是评价噪声的基本量,它是标量,不需要考虑方向,并且当前声压测量仪器发展成熟。但是从声压角度研究噪声的最大缺点是声压在测量中容易受到背景噪声和声反射的影响,对环境要求很高,只有在消声室中进行测量才能得到较满意的结果。

声功率法:声学测量中声功率测量占有重要地位,声功率的测量需要在特定的声环境里直接测量声压,在得到声功率级,对环境的要求也较高。

声强法:声强法的创新点在于注意并利用了被丢失的声压相位信息,利用声强的矢量特性,降低了对测量现象声学环境的要求,并能够反映声级的大小,声能的流动方向、主声源的位置、声辐射面声强分布规律等特征,这对于在现场作噪声源辐射声功率的测量具有很大的优越性。然而由于声强仪造价昂贵,目前声强测试只限于单点测量,对整个辐射面的噪声特性来说,测试完成需要相当长的时间,此外无法实现过渡工况或瞬态工况噪声特性的测量。

3、声成像设备主要原理及指标

声成像(acoustic imaging)是基于传声器阵列测量技术,通过测量一定空间内的声波到达各传声器的信号相位差异,依据相控阵原理确定声源的位置,测量声源的幅值,并以图像的方式显示声源在空间的分布,即取得空间声场分布云图——声像图,其中以图像的颜色和亮度代表声音的强弱。将声像图与阵列上配装的摄像实所拍的视频图像以透明的方式叠合在一起,就形成了可直观分析被测物产生噪声状态。这种利用声学、电子学和信息处理等技术,将声音变换成人眼可见的图像的技术可以帮助人们直观地认识声场、声波、声源,便捷地了解机器设备产生噪声的部位和原因,物体(机器设备)的声像反映了其所处的状态。声成像技术的应用对于噪声测量具有划时代的意义,对于促进工业设计和生产技术的提高具有深远的影响。

声成像设备叫声相仪,又名声学照相机,是一种轻型的模块化的便携设备,适用于开阔空间自由场、封闭空间混响环境等多种声学环境,可通过图像直观揭示声音来源,用声相图的形状和颜色标示声音的位置和强度,针对重点位置声源,可通过聚焦提取方法,增强被关注声源信号抑制其它声源影响,得到高信噪比的目标声音,从而从多个声源的环境中准确地定位关心声源的位置。

声相仪支持风力发电机组研制调试过程中的噪声分析工作,可以进行声源定位,分离分析,揭示分析噪声的频率、幅值、持续时间与设备运转规律的关系。本文采用CASI-200P64声相仪进行风力发电机组噪声源进行识别和定位,如图1,具体技术指标见表1。

图1 声成像现场测试图

表1 声相仪主要技术指标

4、风力发电机声成像测试

4.1实验目的

对试车台上风力发电机组的噪声源特性进行分析,找到主要噪声源的空间位置和频率特性,为进一步开展发电机组降噪工作奠定基础。

4.2实验地点及环境条件

声成像测试工作在北京金风科创风电设备有限公司车间进行;测试进行时,环境背景噪声的量级为60dB;室内温度约为20°。

4.3测试过程

直驱风力发电机转速较低,约为10RPM—20RPM,被测机组在转速为10RPM、15RPM两个工况下,用声像仪进行风力发电机组噪声源进行识别和定位。具体测试步骤如下:(1)启动发电机组,调定转速为10RPM;

(2)声相仪系统开启工作;

(3)发电机组运转平稳后,利用声相仪频谱分析功能,分别对产生声压级较高的频率段进行声成像,识别和定位噪声源;

(4)改变声相仪的位置,重复步骤(3),对噪声源进行识别和定位;

(5)调整机组转速为15RPM,重复步骤(2)、(3)、(4),对噪声源进行识别和定位。

4.4测试结果

(1)转速10RPM时的测试结果

转速10RPM时,风力发电机主要噪声源有两个,其频率分部为87Hz-119Hz(噪声源I)、187Hz-206Hz(噪声源II),频谱图见图2,噪声源的空间位置见图3。

图2 10RPM时噪声源频谱图

(a)噪声源I (b)噪声源II

图3 10RPM时噪声源空间位置分布

测得频率在87Hz-119Hz和187Hz-206Hz处出现峰值噪声,在阵列接收处测得谱峰分别为73dB和75dB,且噪声源位置在发电机组转子散热片间隙处。

(2)转速10RPM时的测试结果

转速为15RPM时,风力发电机主要噪声源有两个,其频率分部为127Hz-159Hz(噪声源I)、278Hz-300Hz(噪声源II),频谱图见图4,噪声源的空间位置见图5。

图4 15RPM 时噪声源频谱图

(a )噪声源I (b )噪声源II

图5 15RPM 时噪声源空间位置分布

测得频率在127Hz~159Hz 和278Hz-300Hz 处出现峰值噪声,分别在阵列接收处谱峰为85dB 和95dB ,且噪声源位置在发电机组转子散热片间隙附近。

(3)对比分析

通过改变转速测试结果的对比可以看出:

a ) 噪声源位置分布在发电机组转子散热片间隙附近,其特性并不随转速的变化而

变化,只不过由于现场空间的影响而可能在转子散热片圆周方向上略有差异; b ) 噪声源的频率随转速的变化而变化。

5、测试结论

声成像技术可有效识别风力发电机噪声源位置,并得到了噪声源的频率特性和声压级大小,为该型风力发电机组降噪提供了有力依据。

参考文献

[1]邓江华,顾灿松,刘献栋.基于声阵列技术的汽车噪声识别及贡献量分析[J].振动工程学报,

2010 ,23(6):631-635.

[2]王文勇,陆安南.阵列信号处理中几种关键技术的研究[J].杭州电子科技大学学报,2005,

25(4):16-18.

[3]汪晋宽,宋昕.鲁棒自适应阵列信号处理[M].北京:电子工业出版社,2009.12.

[4]邵怀宗,林静然,局太亮等.基于麦克风阵列的声源定位研究[J].云南民族大学学报,

2004 ,13(4):256-258.

发电机电磁噪音分析

发电机电磁噪音分析与措施 发电机型号为SF250—28/1730,水轮机型号为ZDT03一LM一140,于9月18日发电。在试运行过程中出现噪音过大现象。经测试,机组试运行时,在空转状态下,距离机座1 m处测量噪音值为60 dB;起励建压后,有刺耳的高频声,离机座1m处测量噪音值为95 dB;满负荷运行时离机座1m处测量噪音值为110 dB。 1、噪音分析 发电机的噪音种类大体上可分为:电磁噪音、机械噪音、空气动力噪音。电磁噪音是电磁力作用在定、转子间的气隙中,产生旋转力波或脉动力波,是定子产生振动而辐射噪音。它与电机气隙内的谐波磁场及由此产生的电磁力波幅值、频率和极数,以及定子本身的振动特性,如固有频率、阻尼、机械阻抗有密切的关系。机械噪音是由机械接触而引起的,如轴承、电刷等,跟接触部件材料、制造质量及装配工艺、配合精度有关。空气动力噪音由电机内的冷却风扇产生,主要由风扇形式、通风道风阻、挡风板等决定。 2、定子绕组谐波计算 设计时借用24极1730机座的冲片,槽数为144槽,冲片尺寸:外径D1:1 730mm,内径Di:1490mm;槽形尺寸:b =13 mm,h =48 mm。每极每相的槽数q=1—5/7,定子绕组接线循环序列: 2 2 1 2 2 1 2;2 2 1 2 2 1 2--利用计算机谐波分析得KYP=0.9397、KQPA=0.9552、KQPB=0.9552、KQPC= 0.9552、FP= 100、FPF=0,但是在谐波磁场极对数10对极上存在反转波FPF=10.78.谐波磁场极对数v=10很接近基波极对数P=14,力波节点对数M =v—P=10—14=一2很小,因为振动幅值与力波节点对数(M2—1)2成反比,所以引起铁心共振。 3、机组结构布臵 因本机组为在原有旧厂房基础上的增容改造机,受原厂房结构限制,本发电机组采用无机坑布臵形式,发电机直接裸露在厂房地面上,声波因无机坑屏蔽隔离就直接传送到厂房内,所以噪音比传统有机坑布臵形式的发电机组大。 由现场测量的噪音数据得出加励磁后电机噪音急剧增大,表明噪音主要为电磁噪音。通过分析发电机电磁噪音主要的由于定子绕组谐波分量过大引起,加上发电机组采用无机坑布臵形式,所以噪音越明显。 4、治理措施 (1) 采用扩相带来降低谐波分量。扩相带后并联支路数、线圈尺寸及技术数据不变,只是定子绕组接线循环序列改为:2 2 2 1 2 1 2;2 2 2 1 2 1 2--利用计算机程序分析得KYP=0.9 397,KOPA=0.948,KOPB=0.948,KQPC=0.948,FP=100,FPF=0,谐波磁场极对数10对极上反转波下降至FPF=1.5986.由此可见基波极对数P=14附近的谐波磁场极对数反转波幅值大幅降低,从而达到降低谐波分量目的。扩相带后绕组系数KQPA=0.948 KQPB=0.948 KQPC= 0.948较扩相带前KQPA=0.9552 KQPB=0.9552 KQPC=0.9552略有所低,但对机组的性能影响不大。 (2) 增加机座断面惯性矩来避开共振区。增加支撑圆钢12根沿圆周均布并焊接牢固,使得机座断面惯性矩增加,从而改变定子铁心固有频率,避开共振区。 (3) 加厚加固挡风板以降低因振动引起的机械噪音。挡风板厚度由原 2 mm 改为4 mm,把紧螺栓由6xM10改为12xM10。

噪声测量噪声源识别与定位的方法简析

噪声测量:噪声源识别与定位的方法简析噪声测量的一项重要内容就是估计和寻找产生噪声的声源。 确定噪声源位置是实施控制噪声措施的先决条件。从声源上控制噪声可以大大减轻噪声治理的工作量,而且对促进生产低噪声产品研制,提高产品质量和寿命有直接效果,同时噪声源识别技术是声学测量技术的综合运用,具有很强的技术性。因此,噪声源识别有很大的现实意义。 噪声源识别的本质在于正确地判断作为主要噪声源的具体发声零部件,主要辐射部分。有时还要求对噪声源的特点及其变化规律有所了解。噪声源识别的要求有以下两个主要方面: ?确定噪声源的特性,包括声源类别,频率特性,变化规律和传播通道等。在复杂的机械中,用一种测量方法要明确区分声源的主次及其特性实际上往往是比较困难的。因此经常需要综合应用多种测量方法和信号处理技术,以便最终达到明确识别的目的。 ?确定噪声产生的部位、主要的发声部件等以及各噪声源在总声级中的比重。对多声源噪声,控制噪声的主要方法之一是找到

发声部件中占噪声总声级中比重最大的声源噪声,采取措施进行降噪,可达到事半功倍的效果。 噪声源识别方法很多,从复杂程度、精度高低以及费用大小等方面均有不少的差别,实际使用时可根据研究对象的具体要求,结合人力物力的可能条件综合考虑后予以确定。具体说来,噪声源识别方法大体上可分为二类: ?第一类是常规的声学测量与分析方法,包括分别运行法、分别覆盖法、近场测量法、表面速度测量法等。 ?第二类是声信号处理方法,它是基于近代信号分析理论而发展起来的,象声强法、表面强度法、谱分析、倒频谱分析、互相关与互谱分析、相干分析等都属于这一类方法。 在不同研究阶段可以根据声源的复杂程度与研究工作的要求,选用不同的识别方法或将几种方法配合使用。 声学测量法 人的听觉系统具有比最复杂的噪声测量系统更精确的区分不同声音的能力,经过长期实践锻炼的人,有可能主观判断噪声声

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

浅谈如何降低发电机噪音

浅谈如何降低发电机噪音 (西安中车永电金风科技有限公司刘英光)摘要:文章主要从发电机噪声的危害性出发,分析了电机噪声产生的原因,有针对性的归纳总结了降低发电机噪音的行之有效的措施方法,进而有效的提高了发电机质量,减少了噪音污染,改善了工作环境。 关键词:发电机噪音、噪音污染、机械噪音 引言 随着社会的发展,发电机的应用越来越广泛,但发电机工作时会产生噪音,且功率越大,发电机噪音越大,为此,从保护环境,维护人类健康的角度出发,如何降低电机的噪声,已引起各电机科研机构和生产企业的高度关注,并成为重点解决的问题之一。根据发电机噪声产生方式的不同,将电机噪声归纳为两大类:电磁噪声、机械噪声(包括空气动力噪声),其中机械噪声往往是发电机噪声的主角。 一、发电机噪声的危害 发电机发出异常噪声是发电机内部零件损坏的一个重要判断依据。发电机噪声轻则对电机安全运行产生一定影响,重则可能导致发电机的损坏,甚至造成安全事故和较大的经济损失。另外,长期或长时间在充满噪声的环境中工作或生活时,容易引起影响人的神经系统,使人急躁、易怒,影响睡眠,造成疲倦,降低工作质量和工作效率,有时甚至会直接导致职业病或工伤事故的产生。

总之,噪声污染已是当前国际社会公认的三大污染源之一,而发电机噪声是噪声污染的声源之一。发电机广泛地应用在日常的生活与生产中,与人们的生活有着紧密的联系。随着社会文明的进步,人们对噪声污染的认识逐步的增强。因此,降低发电机噪声已是摆在人们面前的一个重要课题。 二、发电机机械噪声产生的原因 发电机运行过程中转动部分的机械摩擦、变形以及机械共振会形成机械噪音,要如何降低发电机噪声,需分析其产生的原因: 1.转子变形引起的噪声 在发电机结构中,转子为刚性结构,但由于转子直接过大,运输路途较长,转子容易变形,装配后,轻则导致定转子间隙不均匀,重则导致定转子相互摩擦,进而产生较大的机械噪音。 2.轴承引起的噪声 轴承是发电机中重要的零部件之一。可将轴承噪音归纳为两类:轴承本身产生的噪声、轴承与发电机装配精度引起的噪声。 2.1轴承本身产生的噪声发电机选用的轴承为圆柱(圆锥)滚子轴承。圆柱(圆锥)滚子轴承有内圈、外圈,其间还有滚柱和保持架,在发电机旋转过程中,这些元件会有相对运动,导致不规则的摩擦和碰撞而产生噪声,特别是在发电机高速运转的情况下尤为明显。目前鉴别轴承的优劣有先进的轴承噪声测试仪,测量轴承噪声是否达到对应的标准要求和设计要求,这也是发电机生产厂较为关注的。 2.2轴承与电机装配精度引起的噪声在生产实践中,有时质量

2011005646_噪音振动分析系统在变速器校验台上的应用

噪音振动分析在变速器校验台上的应用 摘要:传统的变速器校验台使用声级计测量变速器的噪音并通过校验人员人工判别变速器校验是否合格,由于环境噪音的客观存在和操作人员的主观因素导致校验结果可靠性不高。在江铃变速器校验台使用噪音振动分析系统,此系统通过加速度传感器将变速器表面的振动信号通过一系列数学变换转换为噪音能量,并使用阶次分析和频谱图直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。噪音振动分析系统的引入大幅提高了变速器校验的科学性和可靠性。 关键词:噪音振动系统阶次分析频谱图变速器校验 1.概述 现代工程信号处理技术的高速发展,使得采用信号分析在变速器乃至汽车整车NVH(振动、噪音及舒适性)测试方面的应用也越来越广泛,其中频谱分析便是其中最常用的方法之一。频谱分析的数学基础是离散傅里叶变换(DFT)。该方法的一般过程是通过传感器以固定的采样频率采集时域信号,然后通过傅里叶变换得到频域信号,或者说频谱。由于平稳旋转机械中相关部件如齿轮、电动机等它们的工作频率(即特征频率)相对稳定,因此在频谱图可以很直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。然而,当旋转机械的转速不平稳时则难以在频谱上判断出各运动部件的状态。例如在变速器总成加载校验中,就存在加载的过程同时转速也在不断变化的校验过程,这就需要新的处理方法。阶次分析就是近些年发展起来的,针对非稳态旋转机械状态检测和故障分析有效方法之一。 在江铃变速器校验台上使用的是德国Discom公司的Rotas噪音振动分析系统,通过加速度传感器将变速器的振动信号通过一系列数学变换转换为噪音能量并使用阶次分析将变速器输入轴、中间轴、输出轴的噪音信号分离,便于变速器的诊断。 2.阶次分析的基本原理 2.1.阶次的概念 阶次概念的提出,是为区别于传统频谱分析概念。阶次分析的本质上是基于参考轴转速的频率分析。 阶次O、频率f与参考轴转速n1之间的关系为: O =f/ n1 (1) 齿轮啮合频率的计算公式为:

噪声源测量方法

噪声源测量方法 发布时间:2014-02-11 来源于:互联网 噪声源测量是一种多用途测量方法,这种方法能测量与次临界中子增殖因子相关的量。 噪声源测量 (1)主要是测量噪声源的辐射功率和指向性。测量方法有混响室法、消声室(或半消声室)法和比较法等。 混响室法只能测量噪声源的辐射声功率。将被测的噪声源放在混响室(见声学实验室)中,当噪声源辐射声功率W随时间的改变量不大时,即 在混响室的混响场中声压的均方根的平方: (2) 或声源辐射的声功率级(分贝): (3) 式中ρ为室内空气密度;c为室内声速;V为混响室的体积;A=S峞,S为混响室总面积;峞为平均吸声系数;岧p为混响场中的平均声压级。ρc值取温度为15℃时空气中的值为415。 在混响室的混响场中取n个点,在这些点上测声压级,取其平均值岧p代入(3)式。混响室的平均吸声系数可由混响时间的测量得到。 在实际测量时,声源应放在离开墙壁λ/4的距离以外,测点之间的距离不小于λ/2,各测点与墙壁之间的距离应大于λ/2。λ是相应于测量的频率的波长。 消声室法(或半消声室法)在消声室内,可以同时测量噪声源的辐射声功率和指向性。在自由场内,声强(I)与声压p之间的关系为: (4) 将被测的噪声源放在消声室内,以它为中心,作一球面,将球面等分为n个面元,在每个面元的中心测量声压级Lpj,取这些测量值的平均值岧p,按声强与声功率之间的关系计算声功率级LW: (5) 式中r为测量球面的半径,ρc值取温度为15℃时空气中的值。再按 (6) 计算指向性指数DI。θ和φ是以球心为中心的方位角。 在半消声室中的测量与在消声室中的测量相似。将被测的噪声源尽可能按实际的安装放置在半消声室的地面上,以声源为中心在自由场内作半球面,将半球面分成n个相等面元,在每个面元中心测声压级Lpj,取它们的平均值岧p,按下式计算辐射声功率级: (7) 及按(6)式计算指向性指数。 比较法是一种工程方法。对测量环境除要求安静、不影响声压级测量数据以及有一个用以比较的标准声源以外,没有其他要求。比较法可以在安装机器(设备)的现场,或在其他环境进行。测量时,以机器或设备为中心,在地面上作一半球面,将它分成n个相等的面元,在每个面元的中心测量一个声压级,计算其平均声压级岧p。机器或设备如能移开,将

车辆噪声源识别方法综述

文章编号:1006-1355(2012)05-0011-05 车辆噪声源识别方法综述 胡伊贤,李舜酩,张袁元,孟浩东 (南京航空航天大学能源与动力学院,南京210016) 摘要:在车辆产业中,噪声问题越来越突出,噪声源识别方法是车辆噪声控制的重要前提。近年来,车辆噪声源识别的方法得到快速发展,但仍需不断改进和完善。本文对车辆噪声源识别方法进行总结,将车辆噪声源识别方法分为传统方法、基于信号处理方法和基于声阵列技术方法三类,并描述和分析各种识别方法的特点。最后总结全文,展望未来车辆噪声源识别方法。 关键词:声学;车辆;噪声控制;综述;噪声源识别方法 中图分类号:V231.92文献标识码:A DOI编码:10.3969/j.issn.1006-1335.2012.05.003 Reviews of Vehicle Noise Source Identification Methods HU Yi-xian,LI Shun-ming,ZHANG Yuan-yuan,MENG Hao-dong (College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing210016,China) Abstract:In the vehicle industry,noise issues have become more evident.Vehicle noise source identification is an important prerequisite for noise control.In recent years,new methods of vehicle noise source identification have been developed,but it is necessary still for them to improve and optimize.The different methods for identifying noise sources are reviewed in this paper.All methods are divided into three categories,i.e.the traditional analysis method,the method based on signal processing,and method based on acoustic array technology.The features of various identification method are described and compared.Finally,some prospects of noise source identification method are given. Key words:acoustics;vehicle;noise control;review;noise source identification method 车辆噪声源识别是指在有许多噪声源或包含许多振动发声部件的复杂声源情况下,为了确定各个声源或振动部件的声辐射的性能,区分噪声源,并加以分等而进行的测量与分析。车辆的噪声主要分为发动机噪声、进排气噪声、传动噪声、轮胎噪声以及其他机械噪声[1,2]。 车辆噪声产生机理不同,针对不同噪声源有不同的识别方法[3]。本文将车辆噪声源识别方法分为三类:一类是传统噪声源识别方法,包括主观识别法、铅覆盖法、分部运行法、表面振速法和近场声压 收稿日期:2011-11-23;修改日期:2012-01-21 项目基金:江苏省普通高校研究生科研创新计划资助(基金编号:CX10B_094Z) 作者简介:胡伊贤(1986-),男,江苏,江苏宿迁泗阳县人,硕士,目前从事车辆噪声与振动控制研究。 E-mail:nuaayixian@https://www.360docs.net/doc/a012041309.html, 测试法等。这些方法可以简单的对车辆噪声源进行识别。第二类是以信号处理为基础的噪声源识别方法,典型的有时域平均法、相关分析法、相干分析法、倒谱分析法、阶次分析法、小波分析法以及盲源分离法等。其中时域平均与相关分析是描述幅值随时间变化的时域分析方法。相干分析、倒谱分析在频域内对噪声信号进行分析,主要针对平稳噪声信号;阶次分析、小波分析、盲源分离识别方法在时频域内对信号进行分析,一般用于非平稳噪声信号。第三类是以声阵列技术为基础的噪声源识别方法,主要包括声强测试、波束成形以及声全息测试技术,它们主要特征是以全息面来直观全面反映各声源对整车噪声贡献的大小。本文在对各种声源识别方法总结基础上,分析声源识别方法的使用特点、优点与不足,对车辆噪声源识别方法进行总结与展望。

发电机

柴油发电机组降噪解决方案
柴油发电机组是一种把燃油的化学能转化为电能的机电一体化设备,在现代 化程度日益提高的今天,特别是随着计算机网络以及通信事业的蓬勃发展,设备对 于电力供应可靠性的要求也日益增强,因为 ups 电源存在供电时间短的问题。这样 就使得柴油发电机组有了广阔的发展空间,但是柴油发电机组在为人们提供便利的 同时,也因为机组的噪声直接影响着人们的身体健康、工作和生活。随着人们对环 境要求的逐渐提高,如何解决并克服上述问题就成为柴油发电机组应用和发展的关 键,在这里我们着重介绍一下柴油发电机组噪声的发生及解决方法。 根据柴油发电机组的工作原理,其噪声的产生非常复杂,从产生的原因和部 位上来分:1、排气噪声;2、机械噪声;3、燃烧噪声;4、冷却风扇和排风噪声;5、 进风噪声;6、发电机噪声。 下边分别就这六部分作一说明: 1、 排气噪声: 排气噪声是一种高温、高速的脉动性气流噪声,是发动机噪声中能量最大, 成分最多的部分。比进气噪声及机体辐射的机械噪声要高得多,是发动机总噪声中 最主要的组成部分。它的基频是发动机的发火频率。排气噪声的主要成分有以下几 种:周期性的排烟引起的低频脉动噪声、排烟管道内的气柱共振噪声、汽缸的亥姆 霍兹共振噪声、高速气流通过气门间隙及曲折的管道时所产生的噪声、涡流噪声以 及排烟系统在管道内压力波激励下所产生的再生噪声等,随气流速度增加,噪声频 率显著提高。 2、 机械噪声: 机械噪声主要是发动机各运动部件在运转过程中受气体压力和运动惯性力的 周期变化所引起的震动或相互冲击而产生的,其中最为严重的有以下几种:活塞曲 柄连杆机构的噪声、配气机构的噪声、传动齿轮的噪声、不平衡惯性力引起的机械 震动及噪声。柴油发电机组强烈的机械震动可通过地基远距离传播到室外各处,然 后再通过地面的辐射形成噪声。这种结构噪声传播远、衰减少,一旦形成很难隔绝。 3、 燃烧噪声: 燃烧噪声是柴油在燃烧过程中产生的结构震动和噪声。在汽缸内燃烧噪声声 压级是很高的,但是,发动机结构中大多数零件的钢性较高,其自振频率多处于中 高频区域,由于对声波传播频率响应不匹配,因为在低频段很高的汽缸压力级峰值 不能顺利地传出,而中高频段的汽缸压力级则相对易于传出。 4、 冷却风扇和排风噪声:

柴油发电机组噪音产生及解决方法

关于柴油发电机组噪声降噪的解决方案柴油发电机组是一种把燃油的化学能转化为电能的机电一体化抽湿机,在现代化程度日益提高的今天,特别是随着计算机石笼网以及通信事业的蓬勃发展,抽湿机对于电力供应可靠性的要求也日益增强,因为ups电源存在供电时间短的问题。这样就使得柴油发电机组有了广阔的发展空间,但是柴油发电机组在为人们提供便利的同时,也因为机组的噪声直接影响着人们的身体健康、工作和生活。随着人们对环境要求的逐渐提高,如何解决并克服上述问题就成为柴油发电机组应用和发展的关键,在这里我们着重介绍一下柴油发电机组噪声的发生及解决方法。 根据柴油发电机组的工作原理,其噪声的产生非常复杂,从产生的原因和部位上来分:1、排气噪声;2、机械噪声;3、燃烧噪声;4、冷却风扇和排风噪声;5、进风噪声;6、发电机噪声。 下边分别就这六部分作一说明: 1、排气噪声: 排气噪声是一种高温、高速的脉动性气流噪声,是发动机噪声中能量最大,成分最多的部分。比进气噪声及机体辐射的机械噪声要高得多,

是发动机总噪声中最主要的组成部分。它的基频是发动机的发火频率。排气噪声的主要成分有以下几种:周期性的排烟引起的低频脉动噪声、排烟管道内的气柱共振噪声、汽缸的亥姆霍兹共振噪声、高速气流通过气门间隙及曲折的管道时所产生的噪声、涡流噪声以及排烟系统在管道内压力波激励下所产生的再生噪声等,随气流速度增加,噪声频率显著提高。 2、机械噪声: 机械噪声主要是发动机各运动部件在运转过程中受气体压力和运动惯性力的周期变化所引起的震动或相互冲击而产生的,其中最为严重的有以下几种:活塞曲柄连杆机构的噪声、配气机构的噪声、传动齿轮的噪声、不平衡惯性力引起的机械震动及噪声。柴油发电机组强烈的机械震动可通过地基远距离传播到室外各处,然后再通过地面的辐射形成噪声。这种结构噪声传播远、衰减少,一旦形成很难隔绝。 3、燃烧噪声:

阵列信号识别声源相关总结_1002

阵列信号识别声源相关总结

1 阵列信号识别声源的方法归类 噪声源的识别方法可大致分为3类:传统的噪声源识别方法,如选择运行法、铅覆盖法及数值分析方法等,传统方法虽然陈旧、使用效率低,但目前仍有许多企业在应用。例如,为了测量汽车高速行驶时的车内噪声,需要将车门缝隙用铅皮封住;第二类,利用现代信号处理技术进行噪声源识别,如声强法、相干分析、偏相干分析适合与很多场合,能解决许多一般问题。如评价某些噪声源、某些频谱对场点(模拟人头耳朵处),这时采用相干分析就可以解决。第三类,利用现代图像识别技术进行振动噪声源识别,其分为两种,一种是近场声全息方法(NAH),一种是波束形成方法(Beamforming)。 相比于传统识别和现代信号处理方法,声阵列技术具有测试操作简单、识别效率高,以及可对声源进行量化分析并对声场进行预测等优点。 1.1 声全息方法 近场声全息技术经过很长时间的发展已经日趋成熟,广泛应用于近距离测量和对中低频噪声源的识别。 声全息方法,其基本原理是首先在采样面上记录包括声波振幅和相位信息的全息数据,然后利用声全息重建公式推算出重建面上的声场分布。该方法一方面可以获得车外声场分布的三维信息,另一方面可以进行运动车辆车外噪声源识别的研究,而且还具有在进行噪声测试时,抗外界干扰强的特点。按声场测量的原理可分为常规声全息、近场声全息和远场声全息三种。 常规声全息,全息数据是在被测物体的辐射或散射场的菲涅尔区和弗朗和费区(即全息接收面与物体的距离d远大于波长λ的条件下)采用光学照相或数字记录设备记录的,因为受到自身实用条件的限制,根据全息测量面重建的图像受制于声波的波长。它只能记录空间波数小于等于2π/λ的传播波成分,而且其全息测量面只能正对从声源出来的一个小立体角。因此,当声源辐射场具有方向性时,可能丢失声源的重要信息。并且通过声压记录得到的全息图,只能用于重建声压场,而不能得到振速、声强等物理量。 远场声全息NAH(Near-field Acoustical Holography),其特点是全息记录平面与全息重建平面的距离d远远大于声波的波长λ,即其全息数据是在被测声源产生声场的辐射或散射声场的菲涅尔区和弗朗和费区获得的。这种方法通过测量离声源很远的声压场来重建表面声压及振速场,由此可预报辐射源外任意一点的声压场、振速场、声强矢量场。由于进行全息数据记录的表面距离被测声源面较远,而全息记录的表面的面积是有限的。所以声源发出的声波有很大一部分不

汽车变速箱噪声源识别及噪声控制

文章编号:1006-1355 (2006)03-0067-03 汽车变速箱噪声源识别及噪声控制 梁 杰1,王登峰1,姜永顺2,李冬妮2 (1.吉林大学测试科学实验中心,长春市130025;2.一汽集团公司技术中心,长春市130011) 摘 要:应用振动、噪声谱分析和相干函数分析技术,从理论上说明变速箱噪声源识别的依据。对一台重型卡 车的16档变速箱进行了振动噪声测试分析,找出该台变速箱产生强烈冲击噪声的主要原因在于其一轴弯曲,经过采取相应的降噪措施,最终整机噪声降低3dB (A )。 关键词:声学;变速箱;噪声源;噪声控制中图分类号:U46;TB535 文献标识码:A TheNoiseSourceIdentificationandNoiseControlofAutomobileGearbox LIANG Jie ,WANG Den g 2fen g ,JIANG Yon g 2sun ,LI Don g 2ni (1.JilinUniversit yTestCenter,Chan gchun130025,China; 2.FAWR&DCenter,Chan gchun130011,China ) Abstract:Thetheor yofcoherencefunctionands pectrumofvibrationandnoisesi gnalsisa pplied in gearboxnoiseanal ysisinthe paper.Thebasisofnoisesourceidentificationof gearboxistheoretical 2lyintroduced.Vibrationandnoiseanal ysisforaheav ydut ytruckwitha162speed gearbox.Afterfind 2ingthecauseofstron gstrikenoiseofthe gearboxisthebendof1stshaft,noisesu ppressionmeasure 2mentisado pted,Sound pressurelevelofthemachineisreducedb y3dB (A ). Ke ywords:acoustics;gearbox;noisesource;noisecontrol 收稿日期:2005207215 作者简介:梁杰(1965-),男,山东省肥城县人,博士,副教授,主要从事车辆振动与噪声的研究工作。 变速箱的变速、储能、增加扭矩等作用,使它成为动力机械中应用十分广泛的通用部件之一。它的工作是否正常涉及到整台机械或机组的工作性能。变速箱的噪声水平可以从客观上反映变速箱的工作状态,而成为其质量检测的指标之一。在设计变速箱时,就规定了其噪声标准。变速箱在工作中,内部构件,如齿轮、轴承等,不断产生振动冲击,当有故障存在时,其振动强度增大,噪声水平超标。本文根据所测变速箱的振动噪声谱,及其相关函数分析,找出了该变速箱产生冲击噪声的原因,采取了相应的降噪措施,使该机的振动和噪声都达到满意的效果。 1 振动、噪声测试及数据分析 1.1 试验装置与测量仪器 本试验是针对16挡变速器进行噪声测试和分 析,将16挡变速箱安装在半消声室内的弹性基础上,试验时,加速度传感器的安装参照国标GB8543-87《验收试验中齿轮装置机械振动的测定》中的相关规定,本文将传感器安装在Ⅱ轴轴承座孔处,以获得在径向水平、径向垂直和轴间三个方向的振动信号。噪声测点布置和测量工况参照国标GB6404《齿轮装置噪声声功率级测定方法》中相关规定。试验装置及噪声测点布置如图1所示 。 图1 试验装置及测点布置框图 振动噪声测试分析仪器用丹麦B&K 公司生产的B&K3560C 多功能振动噪声分析系统,它可以将振动、噪声信号同时记录下来,然后进行数据处理。所检测变速箱有16个变速档,模拟实际工况,我们测量其在各档下的振动、噪声信号。1.2 变速箱特征频率分析 特征频率也就是轴频、齿轮的啮合频率以及轴承的内外圈和滚动体的频率。它们和谐频、边频相结合,成为对故障判定的依据,表1列出轴和齿轮啮合的特征频率,其中在这里只对输入轴的最高转速2300r/min,最大扭矩工况的各档进行分析评定。1.3 振动、噪声谱及相干函数分析 分析对象为某型16挡(低速8挡、高速8挡)变速箱,设计噪声指标各档不超过92dB (A )。本文所 76 汽车变速箱噪声源识别及噪声控制

发电机噪声设计方案五篇

发电机噪声设计方案五篇 篇一:发电机房噪声治理工程设计方案 第一章概述 一、概况 该公司位于东莞市大朗镇,公司内有一发电机房,有5台发电机,分别为:1120kw 一台,880kw一台,550kw一台,330kw两台。发电机在运转的过程中,会产生高达110dB(A)左右的噪声污染,严重干扰和损害本厂及周边职工的工作和休息。为保证有个良好的工作环境和安静的外围环境,受贵厂委托,我公司着手对该发电机房的噪声进行综合治理,治理后达到国家环保标准《GB12348-90》中的Ⅲ类地区的规定,即噪声值昼间≤65dB(A),夜间≤55dB(A),并取得东莞市环保部门颁发的验收合格证明。 二、设计依据 1.中华人民共和国《环境保护法》; 2.《噪声污染源综合排放标准》(GB12348-90); 3.《空气调节设计手册》; 4.《噪声治理工程》 三、设计范围 第二章本设计范围包括:发电机排烟消声,发电机房进出风口消声,消声设备的安装,不包括发电机变配送电系统。 第三章治理措施及设计说明 一、治理措施

经综合考察分析,噪声主要从烟管,排风口以及进风口,门、窗等传播到外界。因此,我们采取以下相应的治理措施: 1.发电机排烟管排放噪音为最大污染源,因此,发电机排烟管需安装消声器后再排空,共做5套。 2.在排风口做排风井,排风井内采取消音措施,里面安装100mm厚消声片,间隔为0.1m,同时为防止雨淋,影响消声效果,在出风口处加百页窗,百页窗外形尺寸为2000×3000(mm)、2000×2500(mm)、1700×3000(mm)、2400×1000(mm)、2400×1000(mm)。 3.同理,进风口做进风井,进风井内采用消音措施和出风井类似,并设有百页窗,百页窗尺寸分别为2000×3200(mm)、2000×3000(mm)。 4.将发电机房的两个大门做成隔声门。外面是3mm钢板,内有100mm厚玻璃棉,内为穿孔板。 5.因采取了消音措施,可能导致阻力增大,使得风量不能满足发电机通风需要时,故增设4台6#风机进行强制通风,确保发电机的正常运行。 二、设计说明 1.尺寸确定 (1).取烟管消声器消声段长L=2.0m (2).排风井的净空尺寸为:22.0m×1.5m,有效高度2.5m。 (3).进风井的净空尺寸为:7.5m×2.5m,有效高度2.5m。 2.消声量计算 拟定排风口现有噪声估计为105DB(A)排烟管辐射到地面噪声为85DB(A)。(1)烟管消声量计算

近场声全息方法识别噪声源的实验研究

近场声全息方法识别噪声源的实验研究Ξ 于 飞 陈 剑 李卫兵 陈心昭 (合肥工业大学机械与汽车工程学院 合肥,230009) 摘 要 根据近场声全息(NA H)的原理,建立了全息实验所需要的采集、分析系统。针对影响重建精度较大的截止波数的选取问题,给出了较为详细的讨论,并提出一种不需先验知识的截止波数选取方法。最后通过对实测数据进行全息变换,重建结果表明:在采用提出的截止滤波选取方法后,NA H技术可以精确地对噪声源进行定位与识别,并且可以得到三维空间内的声压、质点振速和声强矢量等声学信息。 关键词:声源识别;近场声全息;实验研究;截止波数 中图分类号:TB532;TB533+.2 进行空间声场的可视化和噪声源的识别与定 位,对于噪声测量和控制工程具有非常重要的意义。上世纪80年代初提出的近场声全息技术(NA H),便是可视化空间声场和定位噪声源的一种强有力工具。近场声全息可以由一个测量面的声压标量数据,反演和预测另一面上的声压、质点振速、矢量声强等重要声场参量,受到了各国研究人员及一些相关公司的重视。近场声全息技术真正地将丰富的声学理论同噪声测量、控制工程紧密地结合起来[1~2]。20世纪80年代末,国内一些学者逐渐对此方法进行了研究:中科院武汉物理所对编磬表面振动模态做了研究[3~4];哈尔滨工程大学对基于边界元法的水下近场声全息也做了研究[5];清华大学汽车工程系对非近场声全息确定噪声源进行了研究[6~7];合肥工业大学机械工程学院对近场声全息方法识别噪声源作了一定的研究[8~9]。 近场声全息可以不受波长分辨率限制重建声场,但在此种全息过程中截止波数的选取对重建分辨率的影响非常大。文献[3]提出一种需要测量先验知识的优化滤波方法,而这种先验知识一般是不易获得的。本文根据截止波数的大小对重建结果的影响趋势,提出一种不需要先验和后验知识的截止波数选取方法。并根据近场声全息的原理,建立了全息实验所需要的采集、分析系统。采用提出的滤波参数选取方法后,对数据进行全息变换,得到了令人满意的重建结果。该优化截止波数选取方法的提出,有助于在实际工程中推进近场声全息技术在高分辨率识别噪声源、可视化声场等方面的应用。1 理论背景 由文献[1,8]可知,在稳态的三维空间声场中,一个平面(全息面)上声压的波数谱与另一个更靠近声源的平行面(声源面或重建面)上声压和质点法向振速的波数谱之间的关系为 P(k x,k y,z S)=P(k x,k y,z H)e-i k z(z H-z S)(1) V(k x,k y,z S)=k z P(k x,k y,z H)e-i k z(z H-z S) Θ0ck(2)式中 z H和z S分别为全息面和重建面的z坐标;k 为声波数;k x和k y分别为对应坐标x和y的波数;而k z与波数k x,k y之间的关系为 当k2x+k2y≤k2时 k z=k2-(k2x+k2y)(3)当k2x+k2y>k2时 k z=i(k2x+k2y)-k2(4) k z取值为式(3)时,对应的声波传播方式是以幅值不变、相位改变的传播波方式传播;当取值为式(4)时,对应的声波传播方式是以相位不变、幅值减小的倏逝波方式传播。倏逝波随全息面与重建面之间距离的增加,成指数倍地迅速衰减,对应的是高波数成分的声波。在非近场的声全息中,由于测量点位置与声源面之间距离过大造成倏逝波信息的丢失或被测量噪声所掩盖,全息重建的结果也就失去高频信息,这种高频信息类似于小波变换处理图像中的细节信息。 近场声全息技术除了能够由全息声压数据重建源面上的声压和法向振速之外,由Eu ler公式还能 第17卷第4期2004年12月 振 动 工 程 学 报 Jou rnal of V ib rati on Engineering V o l.17N o.4 D ec.2004 Ξ国家自然科学基金资助项目(编号:50275044)及高等学校博士点科研基金资助项目(编号:20020359005)收稿日期:2004203203;修改稿收到日期:2004205231

柴油发电机噪音分析及解决方案

优普利公司对金动公司柴油发电机噪音分析及 解决方案 需求方:金动发电机有限公司(甲方) 方案商:深圳市优普利环保材料有限公司(乙方) 主题:柴油发电机噪音分析及解决方案 1.柴油发电机噪音分析 内容: 柴油发电机是一个多噪声源的设备, 其中包括发动机运转引起的机械噪声、进、排气及风扇的运转形成气流噪声, 而排气噪声是主要的噪声源, 它比其它噪声源高10Db(A)以上, 因此, 控制排气噪声, 是降低柴油机噪声的首要任务。而柴油机排气噪声的总声压级, 主要取决于发动机的功率、转速、气缸内平均有效压力等因素。200GF-78-P一了一柴油机发电机, 功率为200KW, 转速为1500r/min, 它的总声压级Lp用下式可近似估算。 Lp=30lgn-12lgN-7.4(dB)式中:n=柴油机转速(r/min),w=柴油机功率(KW),Lp=115.5(dB) 经采用ND2精密声级计在发电机房内, 距机身1M的周围, 跨地面1.2M处分别设置6个点, 测得运转时噪声值如表。 机房噪声平均值为107dB(A) 噪声频谱 柴油发电机运行时, 机房内混响声级较强,运用ND2声级计在2#及4#点进行频谱分析, 测 量结果见表2, 可见, 低频噪声比较突出,与柴油机发电机排气噪声峰值频率理论计算相近

2.柴油发电机组静音箱的设计及静音箱体里吸音棉的选用 2.1静音箱的设计 摘要:静音箱在噪声控制中有良好的降噪效果。根据噪声源的分布及控制特点,把箱体内噪声控制分为四个控制区。根据不同分区内噪声的特点,在不同控制区分别采用隔声、吸声和消声等噪声控制技术。在箱体尺寸受限制的条件下,利用有限的空间实现了较大的降噪量,取得了良好效果。 噪声分析和控制分区 根据燃机发电机组的工作原理,其噪声的产生非常复杂。从产生的原因和部位上来分,燃机发电机组的噪声可以包括以下几部分:(1)排烟噪声;(2)机械噪声;(3)燃烧噪声;(4)冷却风扇和排风噪声;(5)进风噪声;(6)发电机噪声。 :;: 噪声控制区间分配 由于存在多种类型的噪声,且分布范围较广,单纯某一种噪声控制方式很难有效解决机组的噪声污染问题。 综合利用噪声控制技术设计静音箱使机组放置于箱体之中,可有效地把噪声局限于小范围内并分别处理。 由于机组在运行时要产生大量的热,若箱体内温度过高将影响设备的正常运转,为此,根据机组对通风面积的要求,要在箱体上留出相应面积的进、排风口及内燃机排气通道。根据箱体基本结构和噪声的分布及其产生部位,把静音箱内空间主要分为四大噪声区域以方便噪声的控制,分别为进气噪声区、排气噪声区、内燃机排气噪声区和箱体机舱噪声区。 对每一部分有针对性地分别处理,根据这个观点设计静音箱结构简图如图!所示。图! 箱体噪声控制分区及基本结 图1 箱体噪声控制分区及基本结构简图 各分区噪声分析 (1)内燃机排气噪声区即内燃机排烟通道,排烟噪声是一种高温、高速的脉动性气流噪声,是机组噪声中能量最大,成分最多的部分,比进气噪声及机体辐射的机械噪声要高得多,是机组总噪声中最主 要的组成部分,也是噪声控制的重点。它的基频是内燃机的点火频率。 (2)进气噪声区进气噪声区主要存在机组机械噪声、发电机噪声和气流噪声等。由于进气是被动进气,且所处位置远离主噪声源,噪声级与其他几个区相比相对较低,相对要求的降噪量就小。 (3)机舱噪声控制区机舱噪声区主要有机械噪声、发电机噪声及内燃机燃烧噪声。但区

发动机台架振动噪声试验规范

发动机台架 振动噪声 试验规范 湖南大学 先进动力总成技术研究中心

1.适用范围 本标准适用于缸径100mm以内,功率在150kW以内的往复活塞式发动机。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 2.1 GB/T 1859-2000 往复式内燃机辐射空气噪声测量工程法及简易法。 2.2 GB/T 6072.1-2000 往复式内燃机性能第1部分:标准基准状况,功率、燃油消耗和机油消耗的标定及试验方法。 2.3 GB/T 6072.3-2008 往复式内燃机性能第3部分:试验测量。 3.试验目的 在发动机消声室试验台架上进行发动机振动噪声测试,评价发动机振动噪声水平。 4.测试设备 4.1传声器应该符合GB/T3785规定的1级仪器要求,其测量装置必须至少覆盖 20Hz~20000Hz的频率范围。 4.2加速度传感器应该符合GB/T3785规定的1级仪器要求,其测量仪器频率范围至少为10Hz~2000Hz,并应包括发动机最低稳定转速到lO倍最高转速的激励频率。 4.3 传声器、加速度传感器在测量前必须进行标定。 4.4测量前后,仪器应该按照规定进行校准,两次校准值不应超过1dB。 4.5 发动机转速的测试仪器的准确度应优于1%。 5.安装条件和运转工况 5.1发动机工作条件 测试前确保发动机为工作正常且油位、水位正常。 在测量过程中,发动机的所有运行条件,应该符合制造厂家的规定。测量开始前,发动机应该稳定在正常工作温度范围内。 5.2 发动机状态

危险源辨识和风险评价方法

危险源辨识和风险评价方法 一、目的为了准确的辨识出危险源,进行风险评价,以便采取控制措施。 二、适用范围适用于本项目所有施工生产、管理、辅助生产、生活场所。 三、危险源的辨识内容: 1、工作环境:包括周围环境、工程地质、地形、自然灾害、气象条件、资源交通、抢险救灾支持条件等; 2、平面布局:功能分区(生产、管理、辅助生产、生活区);高温、有害物质、噪声、辐射、易燃、易爆、危险品设施布置;建筑物、构筑物布置;风向、安全距离、卫生防护距离等; 3、运输路线:施工便道、各施工作业区、作业面、作业点的贯通道路以及与外界联系的交通路线等; 4、施工工序:物资特性(毒性、腐蚀性、燃爆性)温度、压力、速度、作业及控制条件、事故及失控状态; 5、施工机具、设备:高温、低温、腐蚀、高压、振动、关键部位的备用设备、控制、操作、检修和故障、失误时的紧急异常情况;机械设备的运动部件和工件、操作条件、检修作业、误运转和误操作;电气设备的断电、触电、火灾、爆炸、误运转和误操作,静电、雷电;

6、危险性较大设备和高处作业设备:如提升、起重设备等; 7、特殊装置、设备:锅炉房、危险品库房等; 8、有害作业部位:粉尘、毒物、噪声、振动、辐射、高温、低温等; 9、各种设施:管理设施(指挥机关等)、事故应急抢救设施(医院卫生所等)、辅助生产、生活设施等; 10、劳动组织生理、心理因素和人机工程学因素等。 四、危险源辨识的程序 五、危险源辨识方法为了便于进行危险源辨识和分析,首先应对危险因素与危害因素进行分类。分类可任选以下两种方法中的一种: 1、按导致事故和职业危害和直接原因进行分类,共分为六类: A、物理性危险源: (1)设备、设施缺陷(强度不够、刚度不够、稳定性差、密封不良、应力集中、外形缺陷、外露运动件、制动器缺陷、设备设施其他缺陷);如:脚手架、支撑架强度、刚度不够、起吊钢丝绳磨损严重。 (2)防护缺陷(无防护、防护装置和设施缺陷、防护不当、支撑不当、防护距离不够、其他防护缺陷)。

相关文档
最新文档