波形信号分析

波形信号分析
波形信号分析

波形分析系统的设计

摘要

本设计根据要求制作一个波形分析系统。此系统是能够提取方波的高次谐波,并进行测量的装置。系统主要采用89S52单片机产生频率为1KHz的方波,通过硬件实现带通滤波器分别滤出1、3、5次谐波分量,再通过峰值检波电路测量各分量的最大值,最后测量其有效值并与理论值进行误差观测与分析。其主要由信号源,显示部分和滤波部分组成.信号源部分由89S52通过软件产生1KHz的单极性的方波,显示部分由实验板的LCD部分组成,滤波部分由针对1、3、5次谐波所设计的带通滤波器组成。本装置能够实现对1KHz的方波进行峰值和平均值的检测,并分别对其1、3、5次谐波部分测量其振幅的有效值,并进行误差分析.本装置电路复杂程度低,成本较低,实用性好,性能优越,效率高。

关键词:波形分析单极性方波谐波分量误差分析

目录

一.方案论证与比较 (3)

(一)总体方案论证 (3)

(二)各模块方案论证 (3)

二. 理论分析和计算 (4)

三. 电路设计 (4)

(一)滤波器电路设计 (4)

(二)峰值检波器电路设计 (5)

四. 仿真测试 (6)

五. 测试方法与仪器 (7)

一、方案论证与比较

(一) 总体方案论证

本系统以89S52单片机作控制器,由FPGA开发板产生1KHz的方波信号经过带通滤波器后,可以分别滤出该方波信号的1、3、5次谐波分量,再通过峰值检波器测出各谐波分量的最大值,通过显示部分来比较其有效值与峰峰值和实际方波信号傅氏级数理论值进行误差比较。根据我们的设计思路,可得如图1所示的总体设计框图:

图1 总体方案设计框图

(二)各模块方案论证

1、1KHz的方波发生模块

方案一:采用555芯片产生。由555芯片组成占空比为50%

的多谐振荡器电路,该波形的频率可以通过调节555定时器电路的放点电阻来进行调节。

但波形输出不稳定,容易失真。

方案二:采用FPGA开发板产生。由软件编程来控制开发板上的晶振直接产生1KHz的方波,此方案更简单,产生的波形稳定。

通过以上比较分析,我们选用方案二。

2、带通滤波器部分

方案一:无源带通滤波器实现。可以直接利用RLC谐振原理来形成无源带通滤波器电路。其电路简单易实现,但滤出的波形不稳定,对于要求较精确的测量电路中不适宜应用。

方案二:有源带通滤波器实现。利用LM324带有差动输入的四运放放大器加上合适的阻容原件来形成二阶有源带通滤波器。该电路可控性良好,适用于较精确测量电路中,而且可以通过改进电路的阶数来改进对高次谐波的测量准确度。

通过以上比较分析,我们选用方案二。

3、峰值检波器部分

方案一:二极管峰值检波器实现。二极管峰值检波器由二极管和阻容原件构成。需要输入信号电压幅度大于0.5V,检波器输出、输入之间是线性关系,电路组成较简单,但是测量范围有限且稳定性不好。

方案二:单运放峰值检波器实现。单运放峰值检波器由运放、二极管和阻容元件构成。该电路可测范围较宽,电路稳定性好。

通过以上比较分析,我们选用方案二。

二、理论分析与计算

任何电信号都是由各种不同频率、幅度和初相的正弦波叠加而成的。对周期信号由他的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。对于方波信号的分解,可以采用性能较佳的有源带通滤波器作为选频网络,若方波信号的频率为w 。,电压幅值为E 则按照傅里叶级数展开式如下所示:

??

????+++++=

)sin(1

)sin(51)3sin(31)sin(4)(0000t n n t t t E t f ωωωωπ 可知,方波的1、3、5次谐波的幅度比应为1:31:5

1

,且相位与基波相同。

又公式可知,根据设定值则测出的1、3、5次谐波的峰峰值和平均值应分别为:

三、电路设计

(一)滤波器电路设计

1.1次谐波带通滤波器

2.3次谐波带通滤波器

3.5次谐波带通滤波器

(二)峰值检波器电路设计

四、仿真测试

1、一次谐波频谱及波形仿真图

2、三次谐波频谱及波形仿真图

3、五次谐波频谱及波形仿真图

4、峰值检波器波形仿真图

五、测试方法与仪器

1、测试使用的仪器设备

测试使用的仪器设备如表2所示:

表2 测试使用的仪器设备

2、测试方法

(1)将设计的方波发生程序下载到电子综合设计实践平台上,并接入数字示波器测量其峰峰值和平均值,与LCD显示屏显示的数据进行比较分析,考察输入方波的周期准确度和幅度范围。

(2)将方波信号作为输入,分别接到一、三、五次谐波滤波器上,再通过峰值检波器电路,并在液晶屏上读取数据,用示波器观察波形有无失真,数据是否一致。

(3)改进部分:将方波改成三角波和正弦波,步骤同上。

3、测试数据

(1)方波测试

理论值做的是1kHZ,占空比为50%,幅度为1.5v的单极性方波

表3 方波测试结果

(2)谐波测试

表4 谐波测试结果

方波信号的产生是通过FPGA的查表数据产生的,接上滤波电路和实验箱后负载发生变化会导致增益发生变化。进而影响峰峰值,导致偏低。另外由于采样频率和个数有限,对于最大值和最小值不一定能够完全采样到,也会使得峰峰值和平均值的幅度偏小。

对于一次谐波,三次谐波和五次谐波,由于采用的是二阶滤波器和四阶滤波器,对于一次谐波来说,由于本身通过滤波器的增益是π/3比较大,而三次谐波和五次谐波的幅值是基波的1/3和1/5,所以对一次谐波的影响较小,而四阶滤波器设计不能完全的滤除基波和其他高次谐波的影响,会导致波形会有些许的失真,幅度影响会相对明显,因而三次和五次谐波的幅度会有影响。同时由于实验箱的方波产生不是特别稳定的波形,对于滤波的结果也有影响。综合起来,采样和影响比较大,而其余的影响相对来说较小,导致显示的幅值和示波器比较起来偏小。

wav音频格式

多媒体技术近年来发展很快,较好品质的声卡可以提供16位的立体声及44KHZ的播放录制能力,它不仅可以提供原音逼真的取样,其合成的音质也十分理想,有的声卡还加入了数字信号处理器,可编程控制的DSP具有强大的运算能力,它可以用来作声音信息的压缩和一些特殊效果的处理。具有此功能的声卡提供的WAV文件提供的语音信息可以满足语音特征识别的要求。 RIFF概念 在Windows环境下,大部分的多媒体文件都依循着一种结构来存放信息,这种结构称为"资源互换文件格式"(Resources lnterchange File Format),简称RIFF。例如声音的WAV 文件、视频的AV1文件等等均是由此结构衍生出来的。RIFF可以看做是一种树状结构,其基本构成单位为chunk,犹如树状结构中的节点,每个chunk由"辨别码"、"数据大小"及"数据"所组成。 图一、块的结构示意图 辨别码由4个ASCII码所构成,数据大小则标示出紧跟其后数据的长度(单位为Byte),而数据大小本身也用掉4个Byte,所以事实上一个chunk的长度为数据大小加8。一般而言,chunk本身并不允许内部再包含chunk,但有两种例外,分别为以"RIFF"及"L1ST"为辨别码

的chunk。而针对此两种chunk,RIFF又从原先的"数据"中切出4个Byte。此4个Byte 称为"格式辨别码",然而RIFF又规定文件中仅能有一个以"RIFF"为辨别码的chunk。 图二、RIFF/LIST块结构 只要依循此一结构的文件,我们均称之为RIFF档。此种结构提供了一种系统化的分类。如果和MS一DOS文件系统作比较,"RIFF"chunk就好比是一台硬盘的根目录,其格式辨别码便是此硬盘的逻辑代码(C:或D:),而"L1ST"chunk即为其下的子目录,其他的chunk则为一般的文件。至于在RIFF文件的处理方面,微软提供了相关的函数。视窗下的各种多媒体文件格式就如同在磁盘机下规定仅能放怎样的目录,而在该目录下仅能放何种数据。 WAV文件格式 WAVE文件是非常简单的一种RIFF文件,它的格式类型为"WAVE"。RIFF块包含两个子块,这两个子块的ID分别是"fmt"和"data",其中"fmt"子块由结构PCMWAVEFORMAT所组成,其子块的大小就是sizeofof(PCMWAVEFORMAT),数据组成就是PCMWAVEFORMAT结构中的数据。

wav信号的波形分析与合成

教学实验报告 电子信息学院_____ 专业通信工程2011年月19_日 实验名称wav信号的波形分析与合成指导教师_________ 姓名年级学号一成绩 ________ 预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具)

部分组成: 1 ?声音的采集 Matlab 提供了读入、录制和播放声音以及快速傅里叶变换的函数,分别是 wavread 、wavrecord 、wavplay 和fft 。阅读这几个函数的帮助文档,熟练使用。 2. 持续音的频谱分析 将Windows 的系统目录下的ding.wav 文件读入,这是一个双声道的声音, 选择任一声道的信号,使用fft 求取其频谱,并用plot 显示它的幅度谱, 观察主要的正弦分量; 参考代码: %% [y,fs]=wavread( 'di ng.wav' ) fs len g=le ngth(y) %取其中的一个声道,譬如说,右声道(左声道的格式 yr=y(:,2); %截取前1024个点 yr=yr(1:1024); %求取幅度普并显示,首先是 fs=2048 YR2048=fft(yr,2048); figure( 'numbertitle' , 'off' ,‘name' subplot(2,1,1) plot(li nspace(-pi,pi,2048),abs(YR2048)) title( 'FFT 的幅频特性') subplot(2,1,2) plot(li nspace(-pi,pi,2048),fftshift(abs(YR2048))) title( 'FFT 后幅频特性的 fftshift' ) %fs=1024 YR1024=fft(yr,1024); figure( 'numbertitle' , 'off' ,‘name' subplot(2,1,1) plot(li nspace(-pi,pi,1024),abs(YR1024)) title( 'FFT 的幅频特性') subplot(2,1,2) plot(li nspace(-pi,pi,1024),fftshift(abs(YR1024))) FFTSHIFT title( 'FFT 后幅频特性的 fftshift' ) ,'2048 ,'1024 yr=y(:,1) ) 点 FFT'); %FFT 的幅频特性 %FFT 的幅频特性FFTSHIFT 点 FFT'); %FFT 的幅频特性 %FFT 的幅频特性的

《解题思路》信号波形合成实验电路(2)

信号波形合成实验电路(C 题) 设计任务:设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。 1.基本要求 (1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz 和30kHz 的正弦波信号,这两种信号应具有确定的相位关系(要求2个信号来自同一信号源); 需要分频,所以振荡器产生150kHz 的信号。3分频得到50kHz ,5分频得到 30kHz 、15分频得到10kHz 。 (2)产生的信号波形无明显失真,幅度峰峰值分别为6V 和2V ; 方波的展开式:)7sin 7 15sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ 其中h 是方波的幅度(一半高度)h=2.36V ,方波高度4.71V 。 采用RLC 串联谐振电路作为选频电路,对方波进行频谱分解。其中RLC 分别选:对于10kHz 的基波,1、10mH 、25.36nF 、Q=100;对于30kHz 的3次谐波,1、10mH 、2.8nF 、Q=100。 采用低通开关电容滤波器TLC04,截止频率设为40kHz 需要2MHz 的时钟,20kHz 需要1MHz 的时钟。需要用运放组成带通滤波器。 (3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz 和 30kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V 。 制作一个移相网络,使得两路信号同相,然后叠加即可(运放实现)。 2.发挥部分 (1)再产生50kHz 的正弦信号作为5次谐波,参与信号合成,使合成的波 形更接近于方波; 用运放组成带通滤波器(运放实现)。 (2)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的 10kHz 、30kHz 等各个正弦信号,合成一个近似的三角波形; 三角波的展开式)7sin 7 15sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ, 将上一步中的3种波形按这一系数合成三角波。 (3)设计制作一个能对各个正弦信号的幅度进行测量和数字显示的电路,测 量误差不大于±5%; 采用平均值检波电路检波,然后用AD 采集、显示即可(MCU 实现)。 (4)其他。 可以添加语音功能(ISD1420实现)。

信号波形合成实验报告之欧阳家百创编

信号波形合成实验电路 欧阳家百(2021.03.07) 摘要:本设计包含方波振荡电路,分频电路,滤波电路,移相电路,加法电路,测量显示电路。题目要求对点频率的各参数处理,制作一个由移相器和加法器构成的电路,将产生的10KHz 和30KHz 正弦信号作为基波和三次谐波,合成一个波形幅度为5V、近似于方波的波形。振荡电路采用晶振自振荡并与74LS04 结 合,产生6MHz 的方波源。分频电路采用74HC164与74HC74分频出固定频率的 方波,作为波形合成的基础。滤波采用TI公司的运放LC084,分别设置各波形 的滤波电路。移相电路主要处理在滤波过程中相位的偏差,避免对波形的合成结 果造成影响。 关键词:方波振荡电路分频与滤波移相电路加法器 Experimental waveform synthesis circuit Abstract:The design consists of a square wave oscillator circuit, divider circuit, filtercircuit, phase shift circuits, addition circuits, measurement display circuit. Subject ofthe request of the point frequency of the various parameters of processing, productionof a phase shifter circuit consisting of adders, will have the 10KHz

wav文件头

一、各种W AV文件头格式 WAV文件也分好几个种类,相应的非数据信息存储在文件头部分,以下是各种WAV文件头格式。表18KHz采样、16比特量化的线性PCM语音信号的WAV文件头格式表(共44字节) 表28KHz采样、8比特A律量化的PCM语音信号的WAV文件头格式表(共58字节) 表38KHz采样、8比特U律量化的PCM语音信号的WAV文件头格式表(共58字节)

表4ADPCM语音编码后的WAV文件头格式表(共90字节) 表5GSM(Global System for Mobile Communication全球移动通信系统)语音编码后的WAV文件头格式表(共60字节)

表6SBC(Sub-Band Coding子带编码)语音编码后的WAV文件头格式表(共58字节) 表7CELP(Code Excited Linear Prediction码激励线性预测编码——近10年来最成功的语音编码算法)语音编码后的WAV文件头格式表(共58字节) 概念1、读取WAV文件,填写WAVEFORMATEX结构 WAVEFORMATEX

typedef struct{WORD wFormatTag;WORD nChannels;DWORD nSamplesPerSec;DWORD nAvgBytesPe rSec; WORD nBlockAlign;WORD wBitsPerSample;WORD cbSize;} WAVEFORMATEX; 具体参数解释如下: wFormatTag:波形数据的格式,定义在MMREG.H文件中 nChannels:波形数据的通道数:单声道或立体声 nSamplesPerSec:采样率,对于PCM格式的波形数据,采样率有8.0 kHz,11.025kHz,22.05 kHz,44.1 kHz 等 nAvgBytesPerSec:数据率,对于PCM格式的波形数据,数据率等于采样率乘以每样点字节数nBlockAlign:每个样点字节数 wBitsPerSample:采样精度,对于PCM格式的波形数据,采样精度为8或16 cbSize:附加格式信息的数据块大小 概念2、定义设备头结构 以下WAVEHDR定义了指向波形数据缓冲区的设备头。 WAVEHDR typedef struct { LPSTR lpData; DWORD dwBufferLength; DWORD dwBytesRecorded; DWORD dwUser ; DWORD dwFlags; DWORD dwLoops; struct wavehdr_tag * lpNext; DWORD reserved; } WAVEHDR; lpData:波形数据的缓冲区地址 dwBufferLength:波形数据的缓冲区地址的长度 dwBytesRecorded:当设备用于录音时,标志已经录入的数据长度 dwUser:用户数据 dwFlags:波形数据的缓冲区的属性 dwLoops:播放循环的次数,仅用于播放控制中 lpNext和reserved均为保留值 注意:上述结构体以及我们在程序中所使用到的“HWAVEIN””HWAVEOUT”结构体均是系统已经存在的,我们只需要对其进行赋值即可。 二、PCM(44字节)的W AV文件头及其相关的编程方法 1、以下就经常见的一种格式PCM(44字节)的WAV文件头进行分析。 举例说明:kugoo下载的一首wav文件:魏三抹去泪水wav.wav(大小14,703,980 字节,时长2:46),文件头如下: ⑴地址00H-03H,值为“RIFF”标志;

波形分析

电控汽油喷射系统的波形分析 汽车用示波器 一、汽车示波器的功用 汽车上电子设备所占的比例越来越多,电子设备的修理工作也就越来越多,这就对今天的汽车维修技术提出了新挑战。现代的汽车修理工作已经不再是一个单纯的机械修理,而是机械和电子一体化的维修,如果一个汽车维修企业不具备有效地排除汽车电子设备的故障能力,这个企业必将面临被淘汰的危险。为了能有效地排除汽车电子设备的故障,保证汽车修理的质量,必须具备以下三个基本条件: (1)必备的测试设备; (2)必需的维修资料; (3)必要的技术培训; 汽车示波器的诞生为汽车修理技术人员快速判断汽车电子设备故障提供了有力了的工具。用普通的示波器去测试电子设备时,最大的困难是设定示波器(即调整示波器的各个按钮,使显示的波形更为清楚)和分析波形,而使用汽车示波器测试汽车电子设备非常简单,只要像点菜单一样,选择要测试的内容,无需任何设定和调整就可以直接观察波形。汽车示波器是专门为汽车维修人员设计的“傻瓜”示波器,它的设定和调整是全自动的,使用汽车示波器,就你使用一台“傻瓜”照相机一样方便。 示波器与万用表相比有着更为精确及描述细致的优点,万用表通常只能用1—2个电参数来反映电信号的特征,而示波器则用电压随时间的变化的图形来反映—‘个电信号,它显示电信号比万用表更准确、更形象达式 有些汽车电子设备的信号变化速率非常快,变化周期达到干分之一秒.通常测试仪器的扫描速度应该是被测试信号的5—10倍。还有许多故障信号是间歇的,时有时无,这就需要仪器的测试速度大大高于故障信号曲速度。汽车示波器不仅可以快速捕捉电信号,还对以用较慢的速度来显示这些波形,以便一面观察,一面分析。汽车示波器还可以以储存的方式记录信号波形,反复观察已经发生过的快速信号,这就为分析故障提供了极大方便。无论是高速信号(如喷油嘴、间歇性故障信号),还是慢速信号(如节气门位置变化及氧传感器信号),都可以用汽车示波器来观测被测设备的工作状况。 使用汽车示波器还可以判定故障是否已被排除,而不仅仅是知道故障码是否清除,这可以帮助维修人员提高修理水平。 二、汽车示波器(表)的应用 汽车示波器在汽车电子控制故障诊断中,有两种方式:

信号波形合成

信号波形合成设计报告 一、设计要求: 1、 方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz 、30kHz 和50KHz 的正弦波信号,这三种种信号应具有确定的相位关系 2、 制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz 和 30kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波。 3、 根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的 10kHz 、30kHz 、50KHz 的正弦信号,合成一个近似的三角波形 (具体阐述设计的功能要求和指标要求) 二、方案设计: 傅里叶分析: 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和即:∑∞=++=1 0)sin cos (21)(n n n t n b t n a a t f ωω。 此方波为奇函数,它没有常数项。数学上可以证明此方波可表示为: )7sin 715sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ ∑∞=--=1])12sin[()1 21( 4n t n n h ωπ 同样,对于三角波也可以表示为: )7sin 7 15sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ ∑∞=----=1212)12sin() 12(1)1(8n n t n n h ωπ。 (写出设计的整体思路构架,画出框图,说明各部分的主要作用.) 三、设计过程 由有源振荡器产生19.2MHz 信号经可编程逻辑器件EPM7128SLC84-7产生一个

300kHz的方波,再经3路分频器,最终输出50kHz、30kHz和10kHz的方波信号。四:测试数据 1、方波产生电路:

TI杯模拟电子设计大赛信号波形合成实验电路

TI杯模拟电子设计大赛 信号波形合成的设计与实现 参赛学校: 参赛队员: 指导老师:

摘要 生活中离不开信号,我们时时刻刻都在和信号打着交道,正弦波,方波这两种波是最基本的波形,我们通过设计方波的产生来更加深刻了解到信号的产生。 Abstract Life is inseparable from the signal, we all the time and signal name of dealings, sine wave, square wave are the two waves in the most basic waveform. Now we design a products to generate square wave signal to know the wave deeply . 一.设计思路 采用单片机430 来控制输出值的显示。基本的流程图如下所示:

又因为我们将方波傅利叶分解出得出如上的图,我们发现方波就是基波,三次谐波,五次谐波组成。 对三角波分解,如下图 从图中,我们知道三角波是三次谐波翻转180度,然后和基波与五次谐波相加所得,其中因

为别的谐波幅值不太,我们可以不做考虑。 二.方案论证 1、方波的产生方案论证和选择 方波是要设计的基础部分,下面产生的任何波形都是在这个波上产生的。 方案一:采用专用DDS芯片产生方波。优点:软件设计,控制方便,电路易实现。但是因为题目要求是“方波振荡器的信号经分频与滤波处理”,也就是说,软件控制不是题目想要的。 方案二:采用晶振来产生。用60M的晶振来产生方波,通过对60M的有源晶振分频来产生频率分别为10K Hz,30K Hz,50K Hz 的方波,但这样产生的分频电路过于复杂,不利于系统的搭建。 方案三:利用555产生出一定频率的方波。根据后面的要求,我们直接用555产生50K Hz 和60K Hz的方波 为了后面的设计,又因为555的技术已经很成熟了,选择方案三,使用555来直接产生方波。 2、分频与滤波 通过RC振荡来滤波,为了得到毛刺少的波,我们用三阶滤波。 3、移相电路设计方案论证和选择 方案一:由三相输入隔离变压器二次绕组接成12边形的移相电路t每相有3个绕组通过特殊的连接方法组成。其存在着如体积大移相变化率>5 等诸多缺点。 方案二:用运放和R,C 来调节翻转的角度。R ,C 电路在输入输出时会有90度的迟滞。 根据题目的要求,我们只要在0~90度可调与一个反向器就好。 4加法器的设计方案 根据题目要求,只要可调就好。 5.电源方案的选择与论证 方案一:采用升压型稳压电路。用两片MC34063芯片分别将3V的电池电压进行直流斩波调压,得到5V 和12V的稳压输出。只需使用两节电池,节省了电池,又减小了系统体积重量。但该电路供电电流沁,供电时间短,无法使用相对庞大的系统稳定运作。 方案二:采用三端稳压集成7805与7905分别得到5V和-5V的稳定电压。利用该方法方便简单,工作稳定可靠。 综上所述,选择方案二,采用三端集成稳压器电路7805和7905。 三.信号波形系统的组成: 1方波的产生的电路设计 方波是由555发生器,二极管,三极管以及电阻,电容组成。其原理图如图1,图2所示。

信号波形合成

信号波形合成实验电路 摘要:本作品主要用于非正弦信号的分解与合成实验验证,包括电源电路模块,方波信号产生模块,放大、移相、波形合成模块、测量显示模块等。通过1MHz晶振电路产生1MHz 方波信号,经计数、分频得到10kHz方波信号,利用LC并联谐振(滤波器)分离出10kHz、30kHz、50kHz正弦波信号,然后对三个正弦波信号进行放大、移相加到加法器中合成方波信号。把10kHz和30kHz正弦波信号送到减法器中合成三角波信号。三个正弦波信号的幅度通过单片机采样,由液晶屏显示出来。 关键词:方波信号,滤波器,正弦波信号,分解,合成 Signal waveform synthesis experiment circuit Abstract:This work is mainly used in the sine signal decomposition and synthetic experiment, including power circuit module, pulse signal generated module, amplification, phase and waveform synthesis module, measuring display module, etc. Through 1MHz crystals 1MHz circuit, signal by counting, pulse frequency, pulse signal 10kHz get by LC parallel resonant filter (10kHz isolated, 30kHz, 50kHz sine signals, then the three sine signals, adding to amplify the adder synthetic square-wave signal. The 10kHz and 30kHz sine signals to reduce time-multiplier synthetic triangular signal. Three sine signals by MCU, the amplitude of LCD display samples. Key words:Pulse signal,Filter,Sine signals,decomposition,Synthesis

WAV文件格式说明

WAV文件格式说明 ――杨少军WAVE文件是以RIFF(Resource Interchange File Format,"资源交互文件格式")格式来组织内部结构的。RIFF文件结构可以看作是树状结构,其基本构成是称为"块"(Chunk)的单元,最顶端是一个“RIFF”块,下面的每个块有“类型块标识(可选)”、“标志符”、“数据大小”及“数据”等项所组成,其中,format chunk和data chunk是必需要的,其它的chunk可选。在data chunk中存放的数据可能是压缩的也可能是非压缩的,这是根据format chunk中的wFormatTag来决定的,如果wFormatTag为WA VE_FORMA T_PCM 时,表示数据为非压缩的,其它的为压缩的。在非压缩格式时,存放的数据就是PCM码;而在采用压缩格式时,由于各个公司都有自己的压缩算法,没有一个统一的标准,所以压缩制式非常杂。下面主要以INTEL 公司的IMA-ADPCM压缩算法来讲W A V文件的结构。 1.WA V文件内部结构 在讲W A V文件结构时,主要以非压缩格式和以INTEL 公司的IMA-ADPCM压缩算法来论述。下面来谈谈INTEL 公司的IMA-ADPCM压缩算法。 IMA-ADPCM 是Intel公司首先开发的是一种主要针对16bit采样波形数据的有损压缩算法, 压缩比为4:1.它与通常的DVI-ADPCM是同一算法。它是将声音流中每次采样的16bit 数据以4bit 存储。具体的压缩算法可以参看其它文章。

在wFormatTag为W A VE_FORMA T_PCM时,没有Fact Chunk,也没有format chunk 中的wSamplesPerBlock,data chunk中紧跟着DataChunkSize后的就是PCM数据了。而在wFormatTag为WA VE_FORMA T_DVI_ADPCM时,表示采用INTEL 公司的IMA-ADPCM 压缩算法,W A V文件格式即为上表所示。 在采用IMA-ADPCM压缩算法时,“data”chuck中的数据是以block形式来组织的,把它叫做“段”,也就是说在进行压缩时,并不是依次把所有的数据进行压缩保存,而是分段进行的。Data Block一般是由block header (block头) 和data 两者组成的。其中block header是一个结构,它在单声道下的定义如下: Typedef struct { short sample0; //block中第一个采样值(未压缩) BYTE index; //上一个block最后一个index,第一个block的index=0; BYTE reserved; //尚未使用 }MonoBlockHeader; 有了blockheader的信息后,就可以不需要知道这个block前面和后面的数据而轻松地解出本block中的压缩数据。对于双声道,它的blockheader应该包含两个MonoBlockHeader 其定义如下: typedaf struct { MonoBlockHeader leftbher; MonoBlockHeader rightbher; }StereoBlockHeader; 在解压缩时,左右声道是分开处理的,所以必须有两个MonoBlockHeader;

信号波形合成实验电路(C题)

信号波形合成实验电路(C 题) 摘要:该系统由方波振荡电路产生300k 方波,经三分频和十分频,同时得到10K,30K,50K 的方波。使用TI 公司的四阶开关电容低通滤波器TLC041D ,可同时产生几路正弦信号,再经移相和加法器合成方波信号或三角波,由单片机采样峰值进行液晶显示.整个系统简易实现,性价比高。 关键字:方波振荡器 开关电容滤波器TLC041D 移相器 峰值检测 液晶显示 1. 方案设计 1.1 总体方案与系统框图 题目要求从方波中提取基波和三次谐波,五次谐波,再合成方波,为实现题目要求,本系统的各个模块如图1所示。由施密特触发器构成方波振荡电路,由简单的门电路和触发器构成分频电路,使用通用运放组成滤波,放大,移相电路合成方波或三角波。 图1 1.2 理论分析及TI 芯片选用依据 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,如式(1-1): ) (公式1) sin cos (21 )(1 0∑∞ =++=n n n t n b t n a a t f ωω 对于方波和三角波分别可以通过傅立叶展开,如式1-2,1-3所示: )(公式2)7sin 71 5sin 513sin 31(sin 4)( ++++= t t t t h t f ωωωωπ )(公式3)7sin 7 1 5sin 513sin 31(sin 8)(2222 +-+- = t t t t h t f ωωωωπ 结合题目要求,本系统主要需要以下器件: (1) 信号源施密特触发器CD40106产生300K 方波; (2) 300K 方波分别经分频器 得到50K ,30K ,10K 方波; (3) 滤波芯片TLC041,通用运算放大器OP 系列,以及电流监测芯片))

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

很好的资料-wav文件头汇总

一、各种WA V文件头格式

概念1、读取WAV文件,填写WAVEFORMATEX结构WAVEFORMATEX

typedef struct{WORD wFormatTag;WORD nChannels;DWORD nSamplesPerSec;DWORD nAvgBytesPe rSec;WORD nBlockAlign;WORD wBitsPerSample;WORD cbSize;}WAVEFORMATEX; 具体参数解释如下: wFormatTag:波形数据的格式,定义在MMREG.H文件中 nChannels:波形数据的通道数:单声道或立体声 nSamplesPerSec:采样率,对于PCM格式的波形数据,采样率有8.0kHz,11.025kHz,22.05kHz,44.1kHz 等 nAvgBytesPerSec:数据率,对于PCM格式的波形数据,数据率等于采样率乘以每样点字节数nBlockAlign:每个样点字节数 wBitsPerSample:采样精度,对于PCM格式的波形数据,采样精度为8或16 cbSize:附加格式信息的数据块大小 概念2、定义设备头结构 以下WAVEHDR定义了指向波形数据缓冲区的设备头。 WAVEHDR typedef struct{LPSTR lpData;DWORD dwBufferLength;DWORD dwBytesRecorded;DWORD dwUser; DWORD dwFlags;DWORD dwLoops;struct wavehdr_tag*lpNext;DWORD reserved;}WAVEHDR; lpData:波形数据的缓冲区地址 dwBufferLength:波形数据的缓冲区地址的长度 dwBytesRecorded:当设备用于录音时,标志已经录入的数据长度 dwUser:用户数据 dwFlags:波形数据的缓冲区的属性 dwLoops:播放循环的次数,仅用于播放控制中 lpNext和reserved均为保留值 注意:上述结构体以及我们在程序中所使用到的“HWAVEIN””HWAVEOUT”结构体均是系统已经存在的,我们只需要对其进行赋值即可。 二、PCM(44字节)的W A V文件头及其相关的编程方法 1、以下就经常见的一种格式PCM(44字节)的WAV文件头进行分析。 举例说明:kugoo下载的一首wav文件:魏三抹去泪水wav.wav(大小14,703,980字节,时长2:46),文件头如下: ⑴地址00H-03H,值为“RIFF”标志;

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业:电子信息工程 指导教师: 报告人:学号:班级: 实验时间:

实验报告提交时间: 教务处制

具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X-Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0o 、90o 、180o 时,波形分别如图所示。 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比。 五、 实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关。 2、调节函数信号发生器,使其输出10KHz 左右的方波,占空比为50%,峰峰值为6V

左右,如图(2)所示。将其接至该实验模块的“输入端”,用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示。 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

3、信号的分解实验提供两种方式即分立元件模拟方式和数字方式。该实验采用数字方式。数字方式采用单片机输出各次谐波分量的采样值,然后经过DA转换出各次谐波,基波幅度已经固定,只需调节其他谐波的幅度,操作比较方便。数字方式需要同时打开电源开关S1、S2。 4、用示波器的两个探头,直接观察基波和三次谐波的相位关系,或者采用李沙育图的方法,看其相位差是否为180,同时考察其幅度关系,幅度之比是否为3:1. 采用李沙育图观察基波和三次谐波的相位关系如图(7),可知道其相位为180. 图(7) 从示波器中观察基波和三次谐波的峰峰值之比,可知其幅度比为3:1,如图(8)所示

信号波形发生与合成实验

摘要 本系统主要以TL081A运放为核心,由方波发生器、滤波分频电路、移相电路、加法器电路模块组成。实现了产生多个不同频率的正弦信号与基于多个正弦波合成方波信号的电路功能。系统基本工作过程为:1kHz方波信号通过低通滤波器和带通滤波器得到按傅里叶级数展开的1kHz基波正弦波信号和3kHz三次谐波正弦波信号。而后将基波信号通过移相电路使其相位调整到与三次谐波相同,然后通过加法电路将信号合成近似的方波信号。输出波形结果表明,系统合成波形符合理论傅里叶分析结果,比较准确。正弦波及合成波的幅值测试误差小于5%,符合题目要求。 关键词:方波发生器;傅里叶级数;分频;滤波;移相 一.总体方案设计及论证 1.1题目设计任务 设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。系统框图如下图所示: 具体要求: 1.2方案论证比较 方波发生电路产生1kHz方波,对其中的基波和三次谐波分量进行提取,1kHz基波可用截止频率为1kHz的巴特沃斯低通滤波器滤波得到,3kHz谐波可用中心频率设为3kHz的高Q值带通滤波器滤波得到。最后再经相位调整重新合成近似方波。 本系统中的方波发生电路是实现后续各级电路功能的基础,对频率准确度和稳定度的要求较高。方案一:555定时器组成的多谐振荡器,直接调节至1KHz左右的对称方波。此方案成本低廉,实现方便,但其稳定性容易受到外部元件的影响,在振荡频率较高时频率稳定度不够。 方案二:使用石英晶振组成高稳定度的频率参考源,并使用计数器和集成锁相环芯片构成分频/倍频环,以产生1KHz的方波。该方法产生的信号稳定度高,但需要搭建石英晶体振荡电路,并进行锁相环分频、倍频,电路较复杂。 方案三:采用基于反相输入的滞回比较器和RC电路的方波产生电路。该电路结构简单,性能稳定,主要的限制因素在于比较器的速度。结合适当的RC参数,可达到1KHZ的振荡频率。 方案选择:本系统采用方案三,此电路结构简单,产生的方波稳定性较好。 1.2.3滤波电路的选择 本系统中所需正弦波均来自于方波信号,需使用低通滤波器和带通滤波器。 方案一:使用由LC网络组成的无源高阶巴特沃斯滤波器。其通带内相应最为平坦,衰减特性和相位特性都很好,对器件的要求也不高。但其在低频范围内有体积重量大、价格昂贵和衰减大等缺点。方案二:采用实时DSP数字滤波技术,数字信号灵活性大,可以在不增加硬件成本的基础上对信号进行有效的滤波,但要进行滤波,需要A/D、D/A既有较高的转换速率,处理器具有较高的运算速度,成本高。 方案三:以集成运放为核心的有源滤波电路,结构简单,所需元件少,成本低,且电路输入阻抗高、输出阻抗低,并有专门的设计软件。 方案选择:选择方案三作为系统的基波和三次谐波滤波方案。用集成运放TL081A和RC网络组成的二阶有源滤波电路器的滤波器结构清晰,幅频响应更接近理想特性,截止频率和增益可以进行充分调节,具有较好的滤波效果,可以产生非常理想的正弦波效果。 1.2.4移相电路的选择 移相电路对分频滤波后的基波正弦信号进行移相,使基波与三次谐波相位关系满足信号合成的需要。 方案一:采用无源RC移相网络。该方案电路简单,可以完成移相,但是通过移相网络后信号有衰

wav文件格式分析详解

wav文件格式分析详解 一、综述 WAVE文件作为多媒体中使用的声波文件格式之一,它是以RIFF格式为标准的。 RIFF是英文Resource Interchange File Format的缩写,每个WAVE文件的头四个 字节便是“RIFF”。 WAVE文件是由若干个Chunk组成的。按照在文件中的出现位置包括:RIFF WAVE Chunk, Format Chunk, Fact Chunk(可选), Data Chunk。具体见下图: ------------------------------------------------ | RIFF WAVE Chunk | | ID = 'RIFF' | | RiffType = 'WAVE' | ------------------------------------------------ | Format Chunk | | ID = 'fmt ' | ------------------------------------------------ | Fact Chunk(optional) | | ID = 'fact' | ------------------------------------------------ | Data Chunk | | ID = 'data' | ------------------------------------------------ 图1 Wav格式包含Chunk示例 其中除了Fact Chunk外,其他三个Chunk是必须的。每个Chunk有各自的ID,位 于Chunk最开始位置,作为标示,而且均为4个字节。并且紧跟在ID后面的是Chunk大小(去除ID和Size所占的字节数后剩下的其他字节数目),4个字节表示,低字节 表示数值低位,高字节表示数值高位。下面具体介绍各个Chunk内容。 PS: 所有数值表示均为低字节表示低位,高字节表示高位。 二、具体介绍 RIFF WAVE Chunk ==================================

TI杯设计报告(赛区一等奖)信号波形合成实验电路

全国大学生电子设计竞赛 2010年TI杯模拟电子系统专题邀请赛设计报告 题目:信号波形合成实验电路(C题) 学校:武汉大学 指导老师: 参赛队员姓名: 日期:2010年08月24日

2010年TI杯模拟电子系统专题邀请赛试题 信号波形合成实验电路(C题) 一、课题的任务和要求 课题任务是对一个特定频率的方波进行变换产生多个不同频率的正弦信号,再将这些正弦信号合成为近似方波和近似三角波。 课题要求是首先设计制作一个特定频率的方波发生器,并在这个方波上进行必要的信号转换,分别产生10KHz、30KHz和50KHz的正弦波,然后对这三个正弦波进行频率合成,合成后的目标信号为10KHz近似方波和近似三角波。另外设计一个正弦信号幅度测量电路,以测量出产生的10KHz、30KHz和50KHz正弦波的的幅度值。 课题还给出了参考的实现方法,见下图。 图1 电路示意图 图1 课题参考实现方案 二、实现方案的分析 1.基本方波发生器方案的分析 方波的产生方法很多,如用运算放大器非线性产生、用反向器及触发器产生、也可用模数混合时基电路ICL7555产生等。本例采用第一种方案,最符合题意要求。 2.波形变换电路方案的分析 从某方波中提取特定频率的正弦波方案很多,如用窄带滤波器直接从方波中提取所需的基波或谐波;用锁相方法进行分频或倍频产生所需频率;用数字分频方案,从较高频率的方波或矩形波中通过分频获得所需频率方波并进行变换获得正弦波。本课题采用第三种方案。 3.移相方案分析 在方波——正弦波转换中,难免会产生附加相移,通过移相来抵消附加相依,以便信号合成时重新实现同步。根据微分电路实现相位超前、积分电路实现相位滞后的理论,因此,采用微伏和积分来实现移相。 4.信号合成方案分析 方波信号经过波形变换和移相后,其输出幅度将有不同程度的衰减,合成前需要将各成分的信号幅度调整到规定比例,才能合成为新的合成信号。本课题采用反向比利运算电路实

信号的产生分解与合成

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第七次实验 实验名称:信号的产生、分解与合成 院(系):电子科学与工程学院专业: 姓名:姜勖学号:06A11315 实验室:104实验组别:27 同组人员:徐媛媛实验时间:年月日 评定成绩:审阅教师: 实验四信号的产生、分解与合成 一、实验内容及要求 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3.创新要求 用类似方式合成其他周期信号,如三角波、锯齿波等。 分析项目的功能与性能指标: 功能:通过振荡电路产生一个方波,并将其通过滤波得到1、3、5次谐波,最后通过加法电路合成新的波形。 性能指标: (1)方波:频率1KHz,幅度5V。 (2)滤波器:基础要求从方波中提取基波和三次谐波,提高要求提取五次谐波。 (3)移相电路:通过移相电路调节滤出来的1、3、5次谐波相位,使得其与原方波相位差近似为0。

(4)加法器电路:将基波和3次谐波和5次谐波信号按一定规律相加。 1、信号的产生 通过震荡电路产生1kHz ,幅度为5V 的方波信号。 2、滤波器的设计 根据方波的傅里叶展开式: 可知原信号分解只包含奇次谐波分量。因此设计不同中心频率的带通滤波器,可将各次谐波滤出。 3、相位校正电路 由于滤波器用到了对不同频率有不同响应的储能元件,对于滤除的波形会产生附加相位。若要让各次谐波叠加出原有信号,必须调节其相位使之同相。用全通滤波器可在不影响相对幅度的前提下改变相位。 4、加法电路 将滤除的基波、3次谐波、5次谐波相加,得到近似的方波信号。对于滤波器对不同频率分量不成比例的衰减,可在加法电路中选择合适的比例给予响应的补偿。 二、电路设计(预习要求) (1) 电路设计思想(请将基本要求、提高要求、创新要求分别表述): 1、信号发生电路: 利用运放和RC 回路构成振荡电路,通过分别调节正反向RC 回路的时间常数和运放同相输入端的参考电压来调节震荡电路的频率以及占空比。用一对稳压二极管限制输出电压幅度,并对稳压管导通压降进行一定的补偿。 2、有源带通滤波器: 根据实验要求,设计有源带通滤波器,将所需频率的信号以尽量小的衰减输出,同时对其它频率有非常大的衰减。因此需要增加滤波器的阶数。初步选择采用二阶有源带通滤波器,通过理论计算,调节其中一个电阻来改变中心频率。根据实际搭出的电路效果,可尝试使用四阶有源带通滤波器,以求获得更好的滤波效果。 3、相移电路: 由于滤波器难免对滤出的谐波分量产生附加相位,需要在选频电路之后加一全通网络校正相位,抵消相位差。移向电路有两种,分为正向移向和反向移向。 4、加法电路 将所得到的各次谐波分量叠加,得到近似的方波。同时,加法电路可对滤波对原信号分量的衰减进行补偿。 (2) 电路结构框图(请将基本要求、提高要求、创新要求分别画出): 基础要求:因基础要求与提高要求相比,除缺少5次滤波与移相电路外,其余部分均相同,其结构框图已包含在提高要求的框图中,故不单独列出。 提高要求: (3)电路原理图(各单元电路结构、工作原理、参数计算和元器件选择说明): 分工:徐媛媛(滤波电路的设计、搭建和调试);姜勖(方波产生、相移及加法电路设计搭建和调试) 方波振荡及鉴幅电路: 采用迟滞比较及RC 反馈回路以及比较器鉴幅电路,总电路图如下: 设从输出端的对输入端的负反馈电阻分别为1f R 和2f R ,则前部分方波的振荡周期为111222 ln(12)ln(12)f f R R T R C R C R R =+++,通过电位器分别调节1f R 和2f R 的阻值使方波的频率为1kHz ,占空比为50%。

相关文档
最新文档