高中的物理功能关系知识点及习题的总结

高中的物理功能关系知识点及习题的总结
高中的物理功能关系知识点及习题的总结

高中物理功能关系

专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.

应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.

1.常见的几种力做功的特点

(1)重力、弹簧弹力、静电力做功与路径无关.

(2)摩擦力做功的特点

①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.

②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有

机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.

③摩擦生热是指滑动摩擦生热,静摩擦不会生热.

2.几个重要的功能关系

(1)重力的功等于重力势能的变化,即W G=-ΔE p.

(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.

(3)合力的功等于动能的变化,即W=ΔE k.

(4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE.

(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F f·l相对.

1.动能定理的应用

(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速

率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.

(2)应用动能定理解题的基本思路

①选取研究对象,明确它的运动过程.

②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.

③明确物体在运动过程始、末状态的动能E k1和E k2.

④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.

2.机械能守恒定律的应用

(1)机械能是否守恒的判断

①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.

②用能量转化来判断,看是否有机械能转化为其他形式的能.

③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目

中有特别说明及暗示.

(2)应用机械能守恒定律解题的基本思路

①选取研究对象——物体系统.

②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.

③恰当地选取参考平面,确定研究对象在运动过程的始、末状态时的机械能.

④根据机械能守恒定律列方程,进行求解.

题型1力学中的几个重要功能关系的应用

例1如图1所示,轻质弹簧的一端与固定的竖直板P拴接,另一端与物体A相连,物体A静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B相连.开始时用手托住B,让细线恰好伸直,然后由静止释放B,直至B获得最大速度.下列有关该过程的分析正确的是()

A.B物体的机械能一直减小

B.B物体的动能的增加量等于它所受重力与拉力做的功之和

C.B物体机械能的减少量等于弹簧的弹性势能的增加量

D.细线拉力对A物体做的功等于A物体与弹簧所组成的系统机械能的增加量

以题说法 1.本题要注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.

2.本题在应用动能定理时,应特别注意研究过程的选取.并且要弄清楚每个过程各力做功的情况.

如图2所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水

平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()

A.两滑块组成的系统机械能守恒

B.重力对M做的功等于M动能的增加

C.轻绳对m做的功等于m机械能的增加

D.两滑块组成系统的机械能损失等于M克服摩擦力做的功

题型2动力学方法和动能定理的综合应用

例2(15分)如图3所示,上表面光滑、长度为3 m、质量M=10 kg的木板,在F=50 N 的水平拉力作用下,以v0=5 m/s的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg的小铁块(可视为质点)无初速度地放在木板最右端,当木板运动了L=1 m时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m就在其最右端无初速度地放上一个同样的小铁块.(g取10 m/s2)求:

(1)木板与地面间的动摩擦因数;

(2)刚放第三个小铁块时木板的速度;

(3)从放第三个小铁块开始到木板停止的过程,木板运动的距离.

以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意每放一个小铁块都会使滑动摩擦力增加μmg.

2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.

如图4所示,倾角为37°的粗糙斜面AB底端与半径R=0.4 m的光滑半圆轨道

BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1 kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.

(1)求滑块与斜面间的动摩擦因数μ;

(2)若使滑块能到达C点,求滑块从A点沿斜面滑下时的初速度v0的最小值;

(3)若滑块离开C点的速度大小为4 m/s,求滑块从C点飞出至落到斜面上所经历的时间t.

题型3动力学方法和机械能守恒定律的应用

例3(14分)如图5,质量为M=2 kg的顶部有竖直壁的容器A,置于倾角为θ=30°的固定光滑斜面上,底部与斜面啮合,容器顶面恰好处于水平状态,容器内有质量为m=1 kg

的光滑小球B与右壁接触.让A、B系统从斜面上端由静止开始下滑L后刚好到达斜面底端,已知L=2 m,取重力加速度g=10 m/s2.求:

(1)小球到达斜面底端的速度大小;

(2)下滑过程中,A的水平顶面对B的支持力大小;

(3)下滑过程中,A对B所做的功.

以题说法若判断多个物体组成的系统机械能是否守恒,最简单有效的方法是看能量是否向机械能之外的其他能量转化.比如,此题中各个接触面都是光滑的,不会产生内能,也没有其他能量参与转移或转化,所以A、B组成的系统机械能守恒.

如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆

心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=

1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP

与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.

(1)求滑块对圆轨道末端的压力;

(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;

(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求

滑块在传送带上滑行过程中产生的内能

6.综合应用动力学和能量观点分析多过程问题

汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为0.02 (sin α=0.02)的长直公路上时,如图所示,所受摩擦阻力为车重的0.1倍(g=10 m/s2),求:

(1)汽车所能达到的最大速度v m;

(2)若汽车从静止开始以0.6 m/s 2的加速度做匀加速直线运动,则此过程能维持多长时

间?

(3)当汽车匀加速行驶的速度达到最大值时,汽车做功多少?

如图8所示,将一质量m =0.1 kg 的小球自水平平台顶端O 点水平抛出,小球

恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A 并沿斜面下滑,斜面底端B 与光滑水平轨道平滑连接,小球以不变的速率过B 点后进入BC 部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h =3.2 m ,斜面高H =15 m ,竖直圆轨道半径R =5 m .取sin 53°=0.8,cos 53°=0.6,g =10 m/s 2,试求:

(1)小球水平抛出的初速度v 0及斜面顶端与平台边缘的水平距离x ;

(2)小球从平台顶端O 点抛出至落到斜面底端B 点所用的时间;

(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D 时对轨道的压力.

专题突破

一、单项选择题

1.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r

,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为

( ) A .GMm ????1R 2-1R 1

B .GMm ????1R 1-1R 2 C.GMm 2????1R 2-1R 1

D.GMm 2????1R 1-1R 2 2. 如图1所示,质量为m 的物体(可视为质点)以某一初速度从A 点冲上倾角为30°的固定

斜面,其运动的加速度大小为34

g ,沿斜面上升的最大高度为h ,则物体沿斜面上升的过程中

( )

A .物体的重力势能增加了3

4

mgh B .物体的重力势能增加了mgh

C .物体的机械能损失了14

mgh D .物体的动能减少了mgh

3. 用电梯将货物从六楼送到一楼的过程中,货物的v -t 图象如图2所示.下列说法正确

的是 ( )

A .前2 s 内货物处于超重状态

B .最后1 s 内货物只受重力作用

C .货物在10 s 内的平均速度是1.7 m/s

D .货物在2 s ~9 s 内机械能守恒

4. 质量为m 的汽车在平直的路面上启动,启动过程的速度—时间图象如图3所示,其中

OA 段为直线,AB 段为曲线,B 点后为平行于横轴的直线.已知从t 1时刻开始汽车的功率保持不变,整个运动过程中汽车所受阻力的大小恒为F f ,以下说法正确的是 ( )

A .0~t 1时间内,汽车牵引力的数值为m v 1t 1

B .t 1~t 2时间内,汽车的功率等于(m v 1t 1

+F f )v 2 C .t 1~t 2时间内,汽车的平均速率小于v 1+v 22

D .汽车运动的最大速率v 2=(m v 1F f t 1

+1)v 1 二、多项选择题

5.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)

固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上.现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )

A .小球P 的速度先增大后减小

B .小球P 和弹簧的机械能守恒,且P 速度最大时所受弹力与库仑力的合力最

C .小球P 的动能、重力势能、电势能与弹簧的弹性势能的总和不变

D .系统的机械能守恒

6. 一物体静止在水平地面上,在竖直向上的拉力F 的作用下开始向上运动,如图5甲所

示.在物体运动过程中,空气阻力不计,其机械能E 与位移x 的关系图象如图乙所示,其中曲线上点A 处的切线的斜率最大.则

( )

A .在x 1处物体所受拉力最大

B .在x 2处物体的速度最大

C .在x 1~x 3过程中,物体的动能先增大后减小

D .在0~x 2过程中,物体的加速度先增大后减小

7. 被誉为“豪小子”的纽约尼克斯队17号华裔球员林书豪在美国职业篮球(NBA)赛场上

大放光彩.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m ,双脚离开地面时的速度为v ,从开始下蹲至跃起过程中重心上升的高度为h ,则下列说法正确的是 ( )

A .从地面跃起过程中,地面支持力对他所做的功为0

B .从地面跃起过程中,地面支持力对他所做的功为12

m v 2+mgh C .离开地面后,他在上升过程和下落过程中都处于失重状态

D .从下蹲到离开地面上升过程中,他的机械能守恒

三、非选择题

8. 水上滑梯可简化成如图6所示的模型,光滑斜槽AB 和粗糙水平槽BC 平滑连接,斜槽

AB 的竖直高度H =6.0 m ,倾角θ=37°,水平槽BC 长d =2.5 m ,BC 面与水面的距离h =0.80 m ,人与BC 间的动摩擦因数为μ=0.40.一游戏者从滑梯顶端A 点无初速度地自由滑下,求:(取重力加速度g =10 m/s2,cos 37°=0.8,sin 37°=0.6)

(1)游戏者沿斜槽AB 下滑时加速度的大小;

(2)游戏者滑到C 点时速度的大小;

(3)在从C 点滑出至落到水面的过程中,游戏者在水平方向上的位移的大小.

9. 如图所示,倾角为θ的光滑斜面上放有两个质量均为m 的小球A 和B ,两球之间用一根

长为L 的轻杆相连,下面的小球B 离斜面底端的高度为h .两球从静止开始下滑,不计

球与地面碰撞时的机械能损失,且地面光滑,求:

(1)两球都进入光滑水平面时两小球运动的速度大小;

(2)此过程中杆对B 球所做的功.

10. 如图7所示,质量为m =1 kg 的小物块轻轻地放在水平匀速运动的传送带上的P 点,

随传送带运动到A 点后水平抛出,小物块恰好无碰撞地沿圆弧切线从B 点进入竖直光滑的圆弧轨道.B 、C 为圆弧轨道的两端点,其连线水平,已知圆弧轨道的半径R =1.0

m ,圆弧轨道对应的圆心角θ=106°,轨道最低点为O ,A 点距水平面的高度h =0.8 m ,小物块离开C 点后恰能无碰撞地沿固定斜面向上运动,0.8 s 后经过D 点,小物块与斜

面间的动摩擦因数为μ1=13

.(g =10 m/s2,sin 37°=0.6,cos 37 °=0.8) (1)求小物块离开A 点时的水平初速度v 1的大小;

(2)求小物块经过O 点时对轨道的压力;

(3)假设小物块与传送带间的动摩擦因数为μ2=0.3,传送

带的速度为5 m/s ,求P 、A 间的距离;

(4)求斜面上C 、D 间的距离.

11.如图8所示是一皮带传输装载机械示意图.井下挖掘工将矿物无初速度地放置于沿图示

方向运行的传送带A 端,被传输到末端B 处,再沿一段圆形轨道到达轨道的最高点C 处,然后水平抛到货台上.已知半径为R =0.4 m 的圆形轨道与传送带在B 点相切,O 点为半圆的圆心,BO 、CO 分别为圆形轨道的半径,矿物m 可视为质点,传送带与水平面间的夹角θ=37°,矿物与传送带间的动摩擦因数μ=0.8,传送带匀速运行的速率为v0=8 m/s ,传送带A 、B 点间的长度s AB =45 m .若矿物落到点D 处离最高点C 点的水平距离为s CD =2 m ,竖直距离为h CD =1.25 m ,矿物质量m =50 kg ,sin 37°=0.6,cos 37°=0.8,g =10 m/s2,不计空气阻力.求:

(1)矿物到达B 点时的速度大小;

(2)矿物到达C 点时对轨道的压力大小;

(3)矿物由B 点到达C 点的过程中,克服阻力所做的功.

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高中物理功能关系知识点和习题总结

高中物理功能关系 专题定位本专题主要用功能的观点解决物体的运动和带电体、带电粒子、导体棒在电场或磁场中的运动问题.考查的重点有以下几方面:①重力、摩擦力、静电力和洛伦兹力的做功特点和求解;②与功、功率相关的分析与计算;③几个重要的功能关系的应用;④动能定理的综合应用;⑤综合应用机械能守恒定律和能量守恒定律分析问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题. 应考策略深刻理解功能关系,抓住两种命题情景搞突破:一是综合应用动能定理、机械能守恒定律和能量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场带电粒子运动或电磁感应问题. 1.常见的几种力做功的特点 (1)重力、弹簧弹力、静电力做功与路径无关.

(2)摩擦力做功的特点 ①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功. ②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有 机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为能.转化为能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积. ③摩擦生热是指滑动摩擦生热,静摩擦不会生热. 2.几个重要的功能关系 (1)重力的功等于重力势能的变化,即W G=-ΔE p. (2)弹力的功等于弹性势能的变化,即W弹=-ΔE p. (3)合力的功等于动能的变化,即W=ΔE k. (4)重力(或弹簧弹力)之外的其他力的功等于机械能的变化,即W其他=ΔE. (5)一对滑动摩擦力做的功等于系统中能的变化,即Q=F f·l相对. 1.动能定理的应用 (1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、 速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用. (2)应用动能定理解题的基本思路 ①选取研究对象,明确它的运动过程. ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和. ③明确物体在运动过程始、末状态的动能E k1和E k2.

高中物理知识点归纳分享

高中物理知识点归纳分享 高中物理知识点归纳分享 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 2、光的干涉 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的.方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光 分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。 下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平 面镜形成相干光源的示意图。 2.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即 δ=nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即 δ=(n=0,1,2,……) 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条 纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射 现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平 面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光 是横波。 5.光的电磁说 ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外, 相邻两个波段间都有重叠。 各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受 到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ 射线是原子核受到激发后产生的。 ⑶红外线、紫外线、X射线的主要性质及其应用举例。 种类产生主要性质应用举例 红外线一切物体都能发出热效应遥感、遥控、加热 紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2 X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 以上就是新编高中物理知识点归纳之光的波动性和微粒性的全部内容,希望能够对大家有所帮助!

高中物理必修2知识点归纳重点

新课标高中物理必修Ⅱ知识点总结 在学习物理的过程中,希望你能养成解题的好习惯,这一点很重要。 1、看题目的时候,很容易会看着头晕转向,这是心理问题,是自己逃避的 表现。因此再看题目的过程中,要手拿笔,画出重要的解题关键点。比 如:物体的开始与结束的状态、平衡状态等等;(这是一个积累过程,习 惯了就会事半功倍,不要不要在乎纸的清洁。); 2、画图;物理解题应该是想象思维、图形结合,再到推理的过程。画图真 的是必不可少的,不能懒而省了这一步。一定要画图,而且要整洁,不 可马虎; 3、辅导书是第二个老师;你若自学辅导书的每一章节前面的是总结梳理, 认真的记忆梳理,你课都可以不听了(不骗人,前提是你真的用功了)。 自习的时候,不要直接做辅导书的题那么快,认真看前面的知识点和例 题,消化好了,绝对受益匪浅。(任何一门理科都可以这么学的) 第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。 3、曲线运动的性质:曲线运动一定是变速运动。(选择题) 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 <二> 运动的合成与分解(小船渡河是重点) 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性 4、运动的性质和轨迹

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

高中物理常见功能关系

高中物理常见功能关系 功是能量转化的量度。有多少功就有多少能量参与转化。高中阶段常见的做功引起能量转化的基本类型如下: 1、合外力的功等于物体动能的变化量; 这是动能定理的基本类容,表达式为 W=Ek2-Ek1=ΔEk; 2、重力的功等于物体重力势能的减少量; 注意,是重力势能的减少量,不是变化量。变化量是指增量,所以减少量是变化量的相反数。这个用关系式表达为WG=Ep1-Ep2=-ΔEp; 3、重力以外的力做功等于物体机械能的变化量;即 W=E2-E1=ΔE; 4、互为作用力与反作用力的一对滑动摩擦力做功等于系统机械能的减少量; 设两个物体之间存在着大小为f的滑动摩擦力,则对物体1,摩擦力做功为Wf1=fx1,对物体2,摩擦力做功为 Wf2=-fx2,则Wf1+Wf2=f(x1-x2)=fx相,这个x相是指相对路程。fx相等于系统机械能的减少量。 5、弹簧弹力做功等于弹性势能的减少量; 这个与第二点“重力做功等于重力势能的减少量”类似。表达式也是W=Ep1-Ep2=-ΔEp 6、电场力做功等于电势能减少量;

若在电场中带电体从A点移动到B点,则 WAB=EpA-EpB=-ΔEp 7、分子力做功等于分子势能减少量; 8、安培力做多少功就有多少电能转化为其他形式能;克服安培力做多少功就有多少其他形式能转化为电能; 推导如下:W安=-BILx=-I*BLv*t=-EIt=-W电 以上是高中阶段常见功能关系的一点总结。看起来纷繁复杂,其实可以总结为一个表达式:即W=以上是高中阶段常见功能关系的一点总结。看起来纷繁复杂,其实可以总结为一个表达式:即W=ΔE,也就是:力做了多少功,就有多少能量参与转化。所以说:功是能量转化的量度。

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理知识点总结

高中物理知识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

?? ? ???? ? ??,仍不发生加光强,增加照射时率可以于射光频率增加效应发生子逸出射光强度大压越大能大电射光频率大生光电间2.增发生截止频大入1.光电不能饱和光电流大→多光电→光子数目多→2.入遏止电→子的最大初动光→光子能量大→1.入效应能发 (Ra) 和镭(Po)钋n H E )(E 101 10 10位素、发现正电子、放射性同居里夫妇) 发现中子(粒子轰击铍核查德威克)发现质子(粒子轰击氮核卢瑟福原子核具有复杂结构 天然放射现象发现贝克勒尔谱 解释了氢原子的线状光)跃迁假设()定态假设(能量不连续)轨道假设(轨道不连续氢原子结构玻尔原子的核式结构 荷原子内部有集中的正电少数大角度偏转原子内大部分是空的大部分直线穿过粒子散射(金箔)卢瑟福电荷是量子化的 与质量 测出了电子电量油滴实验密立根测出了电子比荷结构 原子是可以再分有复杂发现电子阴极射线汤姆孙实物粒子波动性德布罗意光电效应光子说爱因斯坦解释黑体辐射能量量子化普朗克→→→→→→→? ??? ??? ??? ????==?→??? ???→→→?? ?→?? ? ??→= →→→-=→→→→-ααλναλνhc h e e p h W h k ?? ? ??用只跟临近核子有核力作核力是短程力强相互作用的一种表现 核力

释放能量 质量亏损比结合能变大小的核(聚变)较轻的核结合成中等大小的核(裂变)较重的核分解成中等大质量亏损会释放能量它的核子质量之和原子核的质量小于组成质量亏损最大 平均每个核子质量亏损最大中等大小的核比结合能定 比结合能越大的核越稳核子数 结合能 )比结合能(平均结合能能越大核子越多的原子核结合子所需的能量把原子核分解成自由核结合能→→??? →→→→=→→波粒二象性 实验基础 表现 光的波动性 干涉和衍射 ①光是一种概率波,即光子在空间各点出现的可能性大小(概率)可用波动规律来描述 ②大量的光子在传播时,表现出波的性质 光的粒子性 光电效应、康普顿效应 ①当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子的性质 ②少量或个别光子清楚地显示出光的粒子性 波动性和 粒子性的 对立、统一 ①大量光子易显示出波动性,而少量光子易显示出粒子性 ②波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强 光电效应规律 图像名称 图线形状 由图线直接(间接)得到的物理量 光电效应实验原理图 ①光照的一端为阴极 ②阴极接外电源负极时为正向电源 ③光电子逸出向阳极运动,构成闭合回路,出现光电流,说明发生了光电效应。电流为电子运动反方向。 规律: 1.频率高的光发生光电效应,频率低的不一定发生。 2.改变电压,电流不一定变化。 3.改变电源极性,电流不一定消失。 4.光电效应瞬间产生。 最大初动能E k 与入射光频率ν的关系图线 ①(截止)极限频率:图线与ν轴交点的横坐标νc ②逸出功:图线与E k 轴交点的纵坐标的值W 0=|-E |=E ③逸出功与(截止)极限频率νc 的关系是W 0=hνc ④普朗克常量:图线的斜率k =h 颜色相同、强度不同的光,光电流与电压的关系 ①遏止电压U c :图线与横轴的交点 ②饱和光电流I m :电流的最大值 ③最大初动能:E km =eU c 颜色不同时,同金属板的光电效应,光电流与电压的关系 ①遏止电压U c1>U c2 ②饱和光电流 ③最大初动能E k1=eU c1,E k2=eU c2 ④U c 越大照射光频率越高

高中物理功能关系专题

高中物理功能关系专题 XXXX教育学科教师辅导讲义讲义编号: 学员编号: 年级:高三课时数: 学员姓名: 辅导科目:高中物理学科教师: 学科组长签名及日期家长签名及日期 课题功能关系 授课时间备课时间 1( 功,功率的定义 教学目的 2( 汽车启动问题 3( 动能定理初步 类型1 功和功率的计算 (一)功的相关问题 1. 恒力F做功: WFs,cos, 两种理解: scos, (1)力F与在力F的方向上通过的位移的乘积。 (2)在位移s方向上的力与位移s的乘积。 Fcos, 注:力的作用点和位移要画成共点的,然后来找箭头和箭头之间的夹角 2. 变力F做功的求解方法 FF,12,?cos (1)若变力F是位移s的线性函数,则。 F,WFs,,2 WPT,? (2)变力F的功率恒定。 (3)利用动能定理及功能关系等方法求解。 (4)分段来看是恒力的,分段求功然后加起来。 典型的常见题型:篮球

3. 合外力的功W 合 WFs,cos, (1),在位移s上F恒定。合合合 WWWW,,,,… (2)要注意各功的正负。 12n合 4. 正、负功的物理意义 正功表示该力作为动力对物体做功,把其他物体的能量(或者其他形式的能量)给物体 负功表示该力作为阻力对物体做功,把物体的能量给了其他物体(或者变成其他形式的能量) 5. 摩擦力做功的特点 (1)摩擦力既可以做正功,也可以做负功。 (2)相互摩擦的系统内: 一对静摩擦力的功的代数和总为零,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能。 一对滑动摩擦力的功的代数和与路径有关,其值为负。等于摩擦力与相对位移的乘积。即WFsEQ,,,,。所以摩擦力可能有两个作用:一是物体间的机械能的转移;二是机滑相对损内能 械能转化为内能。 6.重力做功的特点 如右图(d)所示,质量为m的物体经三条不同的路径,从高度是h的位置运动到高度是h的位12置。重力做功有什么特点呢, 小结:重力做的功只跟它的起点和终点位置的高度差有关,而跟物体运动的路径无关

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结 高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;

五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质 六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2 七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强; 八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。1、电场线不是客观存在的线;2、电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷 远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;3、电场线的作用:1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;4、电场线的特点:1、电场线不是封闭曲线;2、同一电场中的电场线不向交; 九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

高中物理专题练习《功能关系》

一个人站在船头,按图中A. B. 两种情况用同样大小的力拉绳,设船的质量一样,水的阻力不计,从静止开始在相同的t时间内(t时间内,A. 图中小船未碰岸,B. 图中两船未相遇),两种情况人所做的功分别为W a和W b,在t时刻人拉绳做功的瞬时功率分别为P a和P b,则有( ) A. W a>W b, P a>P b B. W a=W b, P a=P b C. W a<W b, P a<P b D. W a<W b, P a>P b 答案:C 来源: 题型:单选题,难度:理解 如图所示,轻弹簧一端系一个质量为m的小球,另一端固定于O点,弹簧的劲度系数为k,将小球拉到与O点等高处,弹簧恰为原长时,将小球由静止释放,达到最低点时,弹簧的长度为l,对于小球的速度v和弹簧的伸长量△l有( ). A .△l=mg/k B. △l=3mg/k C. υ= D. υ< 答案:D 来源: 题型:单选题,难度:理解 一个小球在竖直环内至少做n次圆周运动,当它第(n-2)次经过环的最低点时速度为7 m / s,第(n-1)次经过环的最低点时速度为5 m / s,则第n次经过环的最低点时的速度V一定 A.v>1 m / s B.v < 1 m / s C.v = 1 m / s D.v = 3 m / s。 答案:A 来源: 题型:单选题,难度:应用 一根质量为M的链条一半放在光滑水平桌面上,另一半挂在桌边,如图(甲)所示。将链条由静止释放,当链条刚离开桌面时,速度为v1.然后在链条两端各系一个质量为m的小球,把链条一半和一个小球放在光滑水平桌面上,另一半和另一个小球挂在桌边,如图(乙)所示。又将系有小球的链条由静止释放,当链条和小球刚离开桌面时速度v2.下列判断中正确的是 () A.若M=2m,则v1=v2 B.若M>2m,则v1<v2 C.若M<2m,则v1<v2 D.不论M与m大小关系如何,均有v1>v2

(完整版)高一物理知识点归纳

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

高中物理必修二功能关系试题

高中物理必修二功能关 系试题 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中物理必修二功能关系试题 1、两个物体的质量之比为1:4,速度大小之比为4:1,则这两个物体的动能之比是( ) A 、 1:4 B 、 4:1 C 、2:1 D 、1:1 2、质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,下列说法中正确的是 ( ) A 、物体机械能增加2J B 、拉力对物体做功12J C 、合外力对物体做功2J D 、物体克服重力做功10J 3.光滑的水平面上固定着一个螺旋形光滑水平轨道,俯视如图所示。一个小球以一定速度沿轨道切线方向进入轨道,以下关于小球运动的说法中正确的是 ( ) A .轨道对小球做正功,小球的线速度不断增大 B .轨道对小球做正功,小球的角速度不断增大 C .轨道对小球不做功,小球的角速度不断增大 D .轨道对小球不做功,小球的线速度不断增大 4、质量为m 的物体以速度v 从地面竖直上抛,当它抛到离地面h 高处时,它的动能和势能 正好相等,这个高度是( ) A 、g v 2 B 、g v 22 C 、g v 42 D 、g v 2 2 5、一物体由H 高处自由落下,当物体的动能等于势能时,物体运动的时间为( ) A 、g H 2 B 、g H C 、g 2H D 、4H g 6、质量为m 的物体从地面上方H 高处无初速释放,落在地面后出现一个深度为h 的坑,如图所示,在此过程中:( )

A 、重力对物体做功为mgH B 、物体的重力势能减少了mg (H +h ) C 、所有外力对物体做的总功为零 D 、地面对物体的平均阻力为mg (H +h )/ h 7、如图所示,一物体以一定的速度沿水平面由A 点滑到B 点,摩擦力做功W 1;若该物体从A′沿两斜面滑到B′,不考虑物体在最高点离开斜面情况,摩擦力做的总功为W 2,已知物体与各接触面的动摩擦因数均相同,则:( ) A .W 1=W 2 B .W 1>W 2 C .W 1<W 2 D .不能确定W 1、W 2大小关系 8、一物体在竖直弹簧的上方h 米处下落,然后又被弹簧弹回,则物体动能最大时是:( ) A 、物体刚接触弹簧时 B 、物体将弹簧压缩至最短时 C 、物体重力与弹力相等时 D 、弹簧等于原长时 9、如图所示,一小球自A 点由静止自由下落,到B 点时与弹簧接触,到C 点 时弹簧被压缩到最短。若不计弹簧质量和空气阻力,在小球由A →B →C 的过程中,若仅以小球为系统,且取地面为参考面,则:( ) A 、小球从A → B 的过程中机械能守恒;小球从B → C 的过程中只有重力和弹力做功,所以机械能也守恒 B 、小球在B 点时动能最大 C 、小球减少的机械能,等于弹簧弹性势能的增量 D 、小球到达C 点时动能为零,重力势能为零,弹簧的弹性势能最大 10.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下 列关于能量的叙述中正确的应是( ) A.重力势能和动能之和总保持不变 A B C

相关文档
最新文档