计算流体力学的基本知识

计算流体力学的基本知识
计算流体力学的基本知识

第二章计算流体力学的基本知识

流体流动现象大量存在于自然界及多种工程领域中, 所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表示式, 最后介绍几种常见的商业软件。

2.1 计算流体力学简介

2.1.1计算流体力学的发展

流体力学的基本方程组非常复杂, 在考虑粘性作用时更是如此, 如果不靠计算机, 就只能对比较简单的情形或简化后的欧拉方程或

N-S方程进行计算。20世纪30~40年代, 对于复杂而又特别重要的流体力学问题, 曾组织过人力用几个月甚至几年的时间做数值计算, 比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到

1947年。

数学的发展, 计算机的不断进步, 以及流体力学各种计算方法

的创造, 使许多原来无法用理论分析求解的复杂流体力学问题有了

求得数值解的可能性, 这又促进了流体力学计算方法的发展, 并形

成了"计算流体力学"。

从20世纪60年代起, 在飞行器和其它涉及流体运动的课题中, 经常采用电子计算机做数值模拟, 这能够和物理实验相辅相成。数

值模拟和实验模拟相互配合, 使科学技术的研究和工程设计的速度加快, 并节省开支。数值计算方法最近发展很快, 其重要性与日俱增。

自然界存在着大量复杂的流动现象, 随着人类认识的深入, 人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理创造了飞机。航空技术的发展强烈推动了流体力学的迅速发展。

流体运动的规律由一组控制方程描述。计算机没有创造前, 流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题, 无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现, 从而催生了计算流体力学这门交叉学科。

计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或

Navier-Stokes方程)以发现各种流动现象规律的学科。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动, 甚至数值天气预报也可列入其中。

自20世纪60年代以来, CFD技术得到飞速发展, 其原动力是不断增长的工业需求, 而航空航天工业自始至终是最强大的推动力。传

统飞行器设计方法实验昂贵、费时, 所获信息有限, 迫使人们需要用先进的计算机仿真手段指导设计, 大量减少原型机实验, 缩短研发周期, 节约研究经费。四十年来, CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展, 并给工业界带来了革命性的变化。如在汽车工业中, CFD和其它计算机辅助工程(CAE)工具一起, 使原来新车研发需要上百辆样车减少为当前的十

几辆车; 国外飞机厂商用CFD取代大量实物实验, 如美国战斗机

YF-23采用CFD进行气动设计后比前一代YF-17减少了60%的风洞实验量。当前在航空、航天、汽车等工业领域, 利用CFD进行的重复设计、分析、优化己成为标准的必经步骤和手段。

当前CFD问题的规模为:机理研究方面如湍流直接模拟, 网格数达到了109(十亿)量级, 在工业应用方面, 网格数最多达到了107(千万)量级。

与实验研究相比, 理论计算具有花费少、速度快、信息完整、模拟能力强等优点, 特别是大量的计算流体力学软件的出现, 大大减少了计算流体力学研究的工作量, 从而扩大了计算流体力学的应用范围, 推动了流体力学更深入的发展。计算流体力学还不是一项很成熟的技术, 在用计算流体力学对流动现象进行预测的时候, 需要对复杂的流动现象进行处理, 然后用数学模型来描述它, 计算的结果既取决于计算方法, 也取决于数学模型本身, 如果数学模型的描述不够精确, 甚至不恰当, 其计算结果也就没有任何价值可言。

尽管作为一门新兴的学科, 计算流体力学还有缺陷, 但它会随着技术的进步和发展而日趋成熟, 并将在化工领域得到广泛的应用。一个完整的计算流体力学模型应包含如下几个方面的内容:本构方程 , 即流体力学基本方程:连续性方程(质量方程)、动量方程、能量方程、状态方程等。

湍流模型, 不同于层流, 必须考虑流体单元的脉动速度, 脉动是湍流流动的基本特征。从模型的建立及求解过程能够看出, 其实质是寻找出由于脉动而起的运动粘度的表示式。

多相流模型, 对于多相流模拟计算来说, 基本的湍流模型还不够用, 需要进一步寻找各相运动规律及相间作用力规律。

模型的求解数值方法, 对模型进行计算时, 需要选择好的差分格式、松弛因子、时间步长等, 以使结果收敛尽量减少CPU运算时间。

2.1.2 计算流体力学的定义

计算流体动力学( Computational Fluid Dynamics ,简称CFD) 是建立在经典流体力学与数值计算方法基础上的新型独立的学科, 经过计算机数值计算和图像显示的方法, 在时间和空间上定量描述流场的数值解, 从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点, 建立了理论和方法, 为现代科学中许多复杂流动和传热问题提供了有效的计算技术。

计算流体动力学( CFD) 是经过计算机数值计算和图像显示, 对包含有流体流动和热传导等相关物理现象的系统所做的分析。它的基本思想是: 把原来在时间域及空间域上连续的物理量的场, 如速度场和压力场, 用一系列有限个离散点上的变量值的几何来代替, 经过一定的原则和方式建立起来的关于这些离散点上场变量之间关系的代数方程组, 然后代数方程组获得场变量的近似值[5]。

CFD方法和传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系。

理论分析方法的优点在于所得结果具有普遍性, 各种影响因素清晰可见, 是指导实验研究和验证数值计算方法的理论基础, 可是它往往要求对计算进行抽象和简化, 才可能得出理论解。对于非线性情况, 只有少数流动才能给出解析结果。

实验测量方法所得到的实验结果真实可信, 它是理论分析和数值方法的基础, 其重要性不容低估。然而, 实验往往受到模型尺寸、流场流动、人身安全和测量精度的限制, 有时可能很难经过试验的方法得到满意的结果。

而CFD方法恰好克服了前面两种方法的弱点, 在计算机上实现一个特定的计算, 就仿佛在计算机上做一个物理实验。例如, 机翼的绕流, 经过计算机并将其结果在屏幕上显示, 就能够看到流场的各种细节: 如激波的运动、强度, 涡的生成与传播, 流动的分离、表面的压力分布、受力大小及其随时间的变化等。数值模拟能够形

2020-2021年中国科学院大学(中科院)计算数学考研招生情况、分数线、参考书目、经验指导

一、中国科学院数学与系统科学研究院简介 中国科学院数学与系统科学研究院由中科院数学研究所、应用数学研究所、系统科学研究所及计算数学与科学工程计算研究所四个研究所整合而成,此外还拥有科学与工程计算国家重点实验室、中科院管理决策与信息系统重点实验室、中科院系统控制重点实验室、中科院数学机械化重点实验室、华罗庚数学重点实验室、随机复杂结构与数据科学重点实验室,以及中科院晨兴数学中心和中科院预测科学研究中心等。2010年11月成立国家数学与交叉科学中心,旨在从国家层面搭建一个数学与其它学科交叉合作的高水平研究平台。数学与系统科学研究院拥有完整的学科布局,研究领域涵盖了数学与系统科学的主要研究方向。共有16个硕士点和13个博士点(二级学科),分布在经济学、数学、系统科学、统计学、计算机科学与技术、管理科学与工程六个一级学科中,可以在此范围内招收和培养硕士与博士研究生。在2006年全国学科评估中,我院数学学科的整体评估得分为本学科的最高分数。数学与系统科学研究院硕士招生类别为硕士研究生、硕博连读生和专业学位硕士研究生。2019年共计划招收122名。 二、中国科学院大学计算数学专业招生情况、考试科目

三、中国科学院大学计算数学专业分数线 2018年硕士研究生招生复试分数线 2017年硕士研究生招生复试分数线 四、中国科学院大学计算数学专业考研参考书目 616数学分析 现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。 801高等代数 [1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷. [2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988. [3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社, 1997. 五、中国科学院大学计算数学专业复试原则 在中国科学院数学与系统科学研究院招生工作小组领导下,按研究所成立招收硕士研究生复试小组,设组长1人、秘书1人。 复试总成绩按百分制计算,其中专业知识成绩占60%,英语听力及口语测试成绩占20%,综合素质成绩占20%。 在面试环节,每位考生有5分钟自述,考查内容主要包括专业知识、外语(口语)水平

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

产品数据管理技术与计算流体力学课程介绍

〈〈产品数据管理(PDM技术》课程简介 课程代码:AM011 课程简介: 本门课程将讲授PDM技术的基本概念、理论方法、系统结构和PDM^r业实施案例以及典型PDM^统介绍等相关专题,以满足我国企业信息化工程对大量复合型人才的需求 本课程的主要任务是: 1、掌握PDMJ术的发展与应用; 2、掌握PDMJ术的基本理论和方法; 3、掌握PDMK统体系结构和主要功能; 4、掌握PD"对象的建模方法和对象模型; 5、了解PDMK统实施方法; 6、了接国内外著名PDMS用系统。 本课程是一门实用性和系统性很强的课程,包含了机械工程和工业工程等领域高级技术 人员必须掌握的基本知识和内容。课程学习的目的是使学生掌握 PD M 基本理论知识和方法,为今后从事企业信息化工作,特别是从事产品数字化设计、制造与管理工作打下坚实的理论基础。 This course is the basic course on product development, it covers the following topics: Development and applications of PDM technology, Supporting technologies of PDM, Product data management technology, Product development lifecycle management technology, PDM implementation methodology, Introduction to SIPM/PDM.

院(系)公章: 撰写人:

高等计算流体力学讲义(2)

高等计算流体力学讲义(2) 第二章 可压缩流动的数值方法 §1. Euler 方程的基本理论 0 概述 在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。 1非线性守恒系统和Euler 方程 一维一阶非线性守恒系统(守恒律)可写为下列一般形式 =??+??x F t U ,0,>∈t R x (1) 其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即: 0)(lim =→U F U 即通量是对守恒变量的输运,守恒变量为零时,通量也为零。 守恒律的物理意义 设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R R 。即此时虽然(,)U x t 的分布可以随时 间变化,但其总量保持守恒。 多维守恒律可以写为 )(=++??+??k H j G i F t U (2) 守恒律的空间导数项可以写为散度形式。 守恒系统(1)可以展开成所谓拟线性形式

流体力学知识点总结55410

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力:重力、惯性力、非惯性力、离心力) ΔF ΔP ΔT A ΔA V τ 法向应力 周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。 B F f m =2m s

单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 3 /1000m kg =ρ3 /2 .1m kg =ρdu T A dy μ=? h u u+du U y dy x dt dr dy du ?=?=μμτdu u dy h =ρμ ν=

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

流体力学知识点大全

流体力学-笔记参考书籍: 《全美经典-流体动力学》 《流体力学》张兆顺、崔桂香 《流体力学》吴望一 《一维不定常流》 《流体力学》课件清华大学王亮主讲 目录: 第一章绪论 第二章流体静力学 第三章流体运动的数学模型 第四章量纲分析和相似性 第五章粘性流体和边界层流动 第六章不可压缩势流 第七章一维可压缩流动 第八章二维可压缩流动气体动力学 第九章不可压缩湍流流动 第十章高超声速边界层流动 第十一章磁流体动力学 第十二章非牛顿流体 第十三章波动和稳定性

第一章 绪论 1、牛顿流体: 剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。 2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。此时,流体内部没有内摩擦,也就没有内耗散和损失。 层流:纯粘性流体,流体分层,流速比较小; 湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。因 为流速增加导致层流出现不稳定性。 定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变, 3、欧拉描述:空间点的坐标; 拉格朗日:质点的坐标; 4、流体的粘性引起剪切力,进而导致耗散。 5、无黏流体—无摩擦—流动不分离—无尾迹。 6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dt ρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。是一个过程方程。 7、流体的几种线 流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ??=

迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=????= 涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团 准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。 第二章流体静力学 1、压强:0lim A F dF p A dA ?→?==? 静止流场中一点的应力状态只有压力。 2、流体的平衡状态: 1)、流体的每个质点都处于静止状态,==整个系统无加速度; 2)、质点相互之间都没有相对运动,==整个系统都可以有加速度; 由于流体质点之间都没有相对运动,导致剪应力处处为零,故只有: 体积力(重力、磁场力)和表面力(压强和剪切力)存在。 3、表面张力:两种不可混合的流体之间的分界面是曲面,则在曲面两边存在一 个压强差。 4、正压流场:流体中的密度只是压力(压强)的单值函数。() dp p ρ? 5、涡量不生不灭定理 拉格朗日定理:理想正压流体在势力场中运动时,如某一时刻连续流场无旋,则 流场始终无旋。0,,ndA U ωω?==??? 有斯托克斯公式得:00,A l U x ndA δωΓ=?=?=??

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

科学与工程计算国家重点实验室(中科院数学与系统科学研究所)

科学与工程计算国家重点实验室 简介 中国科学院科学与工程计算国家重点实验室(简称LSEC)是在已故著名数学家、中国计算数学的奠基人和开拓者冯康院士的倡导、并亲自筹备和组织下,由原中科院计算中心从事计算数学研究的部分课题组成的。实验室筹建于1990年,1993年10月经中科院验收后正式投入运行,1994年向国内外开放,1995年9月和 2005年3月两次通过国家验收。 实验室主要开展科学与工程计算中具有重要意义的基础理论研究,解决科学与工程领域中的重大计算问题,着重研究计算方法的构造、理论分析及实现。研究内容包括:动力系统与数值方法,研究各类保结构算法的理论、算法的构造和数值试验;有限元边界元方法,针对具有应用背景的椭圆边值问题及其它相关问题,提出适合于这些问题的有限元边界元新型高性能计算方法;非线性最优化,主要研究求解非线性规划的新算法以及算法的收敛性;计算流体力学,研究非定常不可压N-S方程和可压缩流的计算方法;并行计算方法和科学计算可视化;非均匀多孔介质中渗流问题的多尺度计算方法。 实验室主任是陈志明研究员。实验室学术委员会主任是中国工程院院士崔俊芝。 实验室建设以来在动力系统几何算法,非线性优化,有限元边界元,数理方程反问题,计算流体力学,并行算法,科学计算可视化等方面取得了大量的研究成果,十分突出的是关于哈密尔顿系统的辛几何算法的研究。其成果荣获“国家自然科学一等奖”。实验室在设备研制方面也取得了显著的成绩。 实验室现有科研人员19人,中科院院士2人(石钟慈、林群),中国工程院院士1人(崔俊芝),其中研究员16人,此外,实验室还获得多项其它重要奖项,其中石钟慈院士在 2000年获“何梁何利科学与技术进奖”,林群院士获2001年获捷克科学院“数学科学成就荣誉奖”、2004年获“何梁何利科学与技术进奖”。实验室十分重视队伍建设和人才培养工作,尤其注重青年学术骨干的培养和引进。目前通过中科院“百人计划”已引进3位年轻的学科带头人,其中实验室主任陈志明研究员被国家科技部任命为973计划项目“高性能科学计算研究”首席科学家,一批优秀青年学术骨干脱颖而出,他们在各自的研究领域取得了可喜的成果,并因此获得了荣誉。例如,袁亚湘研究员曾获1995年首届“冯康科学计算奖”、1996年度“中国青年科学家奖”、“国家杰出青年科学基金”、1998年度“全国十大杰出青年”称号;2005年度“北京市科学技术一等奖”;张林波研究员曾获1995年度“中科院青年科学家二等奖”、1997年度“中科院优秀青年”奖、2000年度“国家科技进步奖二等奖”;白中治研究员获得1998年度“中科院自然科学三等奖”、1999年度“中科院青年科学家二等奖”、“中科院优秀青年”称号、2005年度“国家杰出青年科学基金”;许学军研究员获2000年度“钟家庆数学奖”;陈志明研究员获2000年度“国家杰出青年科学基金”、2001年度“第四届冯康科学计算奖”、2003年度“第七届中科院杰出青年”称号、2004年度“新世纪百千万人才工程国家级人选”、2005年度“海外青年学者合作研究基金”;周爱辉研究员获2004年度“国家杰出青年科学基金”。

47全国自考流体力学知识点汇总

3347流体力学全国自考 第一章绪论 1、液体和气体统称流体,流体的基本特性是具有流动性。流动性是区别固体和流体的力学特性。 2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。 3、流体力学的研究方法:理论、数值和实验。 4、表面力:通过直接接触,作用在所取流体表面上的力。 5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。重力是最常见的质量力。 6、与流体运动有关的主要物理性质:惯性、粘性和压缩性。 7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。 8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。粘性是流体的内摩擦特性。粘性又可定义为阻抗剪切变形速度的特性。 9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。 10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。 11、压缩性:流体受压,分子间距离减小,体积缩小的性质。 12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。 13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。 14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。 第二章流体静力学 1、精致流体中的应力具有一下两个特性: 应力的方向沿作用面的内法线方向。 静压强的大小与作用面方位无关。 2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。 3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、 4、相对压强是以当地大气压强为基准起算的压强。 5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个·又称负压,这种状态用真空度来度量。 6、工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。因此,先跪压强又称为表压强或计示压强。 7、z+p/ρg=C: z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。 p/ρg=h p,称为测压管高度或压强水头,其物理意义是单位重量的液体具有的压强势能,简称压能。 z+p/ρg称为测压管水头,是单位重量液体具有的总势能,其物理意义是静止液体中各点单位重量液体具有的总势能相等。 第三章流体动力学基础 1、描述流体运动的两种方法:拉格朗日法和欧拉法。 2、拉格朗日法:从整个流体运动是无数个质点运动的综合出发,以个别质点为观察对象来描述,再讲每个质点的运动情况汇总起来,就描述了流体的整个流动。 3、欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个时刻的情况汇总起来,就描述了整个运动。

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。 这里 这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。 在CFD常把这个程写成矢量形式 这里 进一步可以写成散度形式

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

计算流体力学课程大作业

《计算流体力学》课程大作业 ——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟 张伊哲 航博101 1、 引言和综述 2、 问题的提出,怎样使用涡量-流函数方法建立差分格式 3、 程序说明 4、 计算结果和讨论 5、 结论 1引言 虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。 考虑不可压缩流动的N-S 方程: 01()P t νρ??=? ? ??+??=-?+???? U U UU f U (1.1) 其中ν是运动粘性系数,认为是常数。将方程组写成无量纲的形式: 01()Re P t ??=?? ??+??=-?+????U U UU f U (1.2) 其中Re 是雷诺数。 从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。 如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。 目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。其中涡量-流函数法是解决二维不可压缩流动的有效方法。作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。 本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。第3节介绍程序的结构。第4节对于不同雷诺数下的计算结果进行分析,并且与U.GHIA 等人【1】的经典结论进行对比,评述本

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

流体力学-中国科学院海洋研究所研究生部

中科院海洋研究所硕士研究生入学考试 《流体力学》考试大纲 本流体力学考试大纲适用于中国科学院研究生院力学专业的硕士研究生入学考试。流体力学是现代力学的重要分支,是许多学科专业的基础理论课程,本科目的考试内容主要包括流体的物理性质、流体运动学、动力学和静力学,无粘不可压缩、可压缩流动,粘性不可压缩流动及湍流、流体波动和漩涡理论等方面。要求考生对其基本概念有较深入的了解,能够熟练地掌握基本方程的推导,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试内容: (一)流体的物理性质 固液气体的宏观性质与微观结构,连续介质假设及其适用条件,流体的物理性质(粘性、可压缩性与热膨胀性、输运性质、表面张力与毛细现象) ,质量力与表面力。 (二)流体运动学 流体运动的描述(拉格朗日描述与欧拉描述及其间的联系、物质导数与随体导数、迹线、流线及脉线),流场中的速度分解,涡量,涡量场,涡线、涡管、涡通量,涡管强度及守恒定理。 (三)流体动力学 连续性方程(雷诺输运定理),动量方程(流体的受力、应力张量),能量方程(热力学定律),本构关系,状态方程,流体力学方程组及定解条件,正交曲线坐标系,量纲分析与流动相似理论,流体力学中的无量纲量及其物理意义、相似原理的应用。 (四)流体静力学 控制方程,液体静力学规律,自由面的形状,非惯性坐标系中的静止液体。 (五)无粘流动的一般理论 无粘流动的控制方程,Bernoulli方程,Bernoulli方程和动量定理的应用。 (六)无粘不可压缩流体的无旋流动 控制方程及定解条件,势函数及无旋流动的性质,平面定常无旋流动(流函数、源汇、点涡、偶极子、镜像法、保角变换),无旋轴对称流动,非定常无旋流动。 (七)液体表面波 控制方程(小振幅水波) 及定解条件,平面单色波,水波的色散和群速度,水波的能量及其传输,速度与压力场特性,表面张力波及分层流体的重力内波,非线性水波理论。 (八)旋涡运动 涡量动力学方程和涡量的产生,涡量场(空间特性、时间特性),典型的涡模型。 (九)粘性不可压缩流动 控制方程及定解条件,定常的平行剪切流动(Couette流动、Poiseuille流动等),非定常的平行剪切流动(Stokes第一和第二问题、管道流动的起动问题),圆对称的平面粘性流动(圆柱Couette流及其起动过程),小雷诺数粘性流动。 (十)层流边界层和湍流 边界层的概念,层流边界层方程(Blasius平板边界层),边界层的分离,湍流的发生,层流到湍流的转捩,雷诺方程和雷诺应力。 (十一)无粘可压缩流动 声速和马赫数,膨胀波、弱压缩波的形成及其特点,一维等熵流(定常和非定常),激波(正激波和斜激波),拉瓦尔喷管流动的特征。 二、考试要求:

相关文档
最新文档