阀门泄漏等级检测标准ANSI B16.104

阀门泄漏等级检测标准ANSI B16.104
阀门泄漏等级检测标准ANSI B16.104

疏水阀为什么会泄漏

疏水阀为什么会泄漏 蒸汽疏水阀作为蒸汽系统和冷凝水系统的分割点,是隔绝蒸汽泄漏的重要节点,如果疏水阀泄漏会造成巨大的能源浪费。那么蒸汽疏水阀为什么会泄漏呢? 瓦特节能的经验是首先要区分蒸汽泄漏和是正常的闪蒸蒸汽。一般可以看到的现象,冷凝水排放量变少或疏水阀出口端产生大量的蒸汽泄漏,表明此疏水阀需要维修。当然,目视评估仅适用于开放式系统。 二次蒸汽又叫闪蒸蒸汽,当高压的饱和冷凝水被排放至低压环境中,由于低压饱和冷凝水的“显热”较低,疏水阀排放的较高“显热”的冷凝水会在低压环境中二次蒸发,以吸收多余的“显热”。我们把这部分二次汽化的蒸汽就叫做二次蒸汽。而次蒸汽的比例与冷凝水前后的压差有关,压差越大,二次蒸汽的比例就会越大。 随着疏水阀的开关,二次蒸汽会出现相应的变化,如果蒸汽的流动没有变化,而且伴有一定的啸叫声,一般这表明疏水阀已经泄漏。 由于二次蒸汽中带水情况,通常二次蒸汽呈现一种乳白色的颜色,如果排水口紧靠疏水阀侧的蒸汽有较长(10cm以上)的透明段,这表示很有可能疏水阀在泄漏新鲜蒸汽。 蒸汽疏水阀要在高压条件下将蒸汽和凝结水的混合物中的凝结水分离出来并排出,而避免泄漏新鲜蒸汽。蒸汽疏水阀必须兼有压力(容器)元件和精密机械的作用,能够在长时间苛刻条件下使用,蒸汽疏水阀需要保持有足够的强度和耐久性。所以疏水阀泄漏最多的原因就是疏水阀阀芯阀座组成的密封副失效。 疏水阀密封副失效的原因很多,疏水阀阀芯阀座必须采用够好的材料,并经过适当的热处理,强化密封副的硬度和耐磨型。否则高速通过的两相流很容易由于冲蚀、冲刷、气蚀等原因过早失效。 对于热静力型蒸汽疏水阀,瓦特节能认为这类阀的关键部件是波纹管或双金属等感温体,这类疏水阀的性能及耐用性在很大程度上取决于感温元件的质量,波纹管膜合的抗腐蚀和焊接应力,双金属片的抗疲劳性是此类疏水阀泄漏的考量因素。 对于机械型疏水阀,机构的卡塞是造成疏水阀泄漏的另外一个原因,比如杠杆浮球式疏水阀较自由浮球式疏水阀就容易由于机构卡塞导致疏水阀泄漏。倒置桶疏水阀也会由于杠杆的偏置造成疏水阀泄漏。所以疏水阀内部机构的设计和装配对疏水阀泄漏有直接的影响。 机械型疏水阀有严格的安装方位要求,错误的安装和不精确的安装也会造成疏水阀泄漏。 疏水阀泄漏有时与选型过大有关系,过大的尺寸会不仅降低疏水阀使用寿命,使得疏水频繁开关和长期微开导致的过度磨损,也由于疏水阀设计泄漏率是基于设计最大排量而导致的实际运行泄漏偏高。 蒸汽疏水阀泄漏和疏水阀的结构形式也密切相关,双阀座的泄漏量会远远大于单阀座,只有机械密封的疏水阀更加容易泄漏。 如果管道和疏水阀安装后的焊渣和杂质等杂质物质处理不当,就会给蒸汽疏水阀带来泄漏可能。新施工安装的管道淸洗要彻底,同时应定期清扫过滤器,清除运转初期所产生的水垢和杂质,这是非常重要的。

2020版汽轮机疏水系统阀门内漏对系统经济安全的影响分析

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版汽轮机疏水系统阀门内漏对系统经济安全的影响分析Safety management is an important part of production management. Safety and production are in the implementation process

2020版汽轮机疏水系统阀门内漏对系统经 济安全的影响分析 一、大型机组汽轮机疏水系统的主要问题 大型机组汽轮机转子发生大轴永久性弯曲是重大恶性事故,为此原国家电力公司反复强调,在“二十五项重点要求”中明确了具体的反事故措施,起到明显效果,但大轴弯曲事故仍时有发生。统计表明,86%的弯曲事故是由于转子碰磨引起,而其中80%以上是热态起动时发生,它们都与汽缸上、下缸温差大有关。导致汽缸上、下缸温差大,除意外进入冷水、冷汽之外,往往与疏水系统的设计和操作不合理密切相关。制造厂和设计院在防汽缸进水和冷汽方面一般均采取有效措施,普遍参照了ASMETDP1-1980(1998)的建议,但须注意不同机组的实际情况并不一样,如引进型机组管道疏水原设计并没有考虑旁路的设置等。疏水系统的设计往往只顾及正常运行

或机组冷态启动时疏水压力高低的分布,而未考虑温、热态开机及甩负荷后的启动情况。目前大型机组典型的疏水系统设计和操作容易导致高负荷停机、甩负荷后温、热态开机出现高、中压缸温差、汽缸内外壁温差逐渐增大现象,既存在安全隐患,又不利于机组的及时再次启动 二我厂从科学论证实验的角度对于汽轮机疏水系统做的工作。 机组热力系统泄漏是影响机组经济性的一项重要因素,国内外各研究机构及电厂的实践表明,机组阀门的泄漏虽然对机组煤耗的影响较大,但仅需较小的投入就能获得较大的节能效果。在一定条件下其投入产出比远高于对通流部分的改造,因此在节能降耗工作中首先应重视对系统阀门严密性的治理。另外热力系统的内漏在使机组经济性下降的同时,还会给凝汽器带来额外的热负荷,经计算可知国华盘山两台机组凝汽器热负荷每增加10%,将使低压缸排汽压力上升0.35kPa。 表4-14给出了国华盘山两台机组各部位阀门泄漏对机组热耗率的影响量。由表4-14可知,蒸汽品质越高,其泄漏对机组经济性的

阀门执行标准大全-GB篇

阀门执行标准大全-GB篇 中国阀门技术网 https://www.360docs.net/doc/a04973060.html,/index.php/the-valve-executive-standard-daqo-gb-article.html GB12220-89《通用阀门标志》 GB12245-89《减压阀性能试验方法》 GB12221-89《法兰连接金属阀门的结构长度》 GB12246-89《先导式减压阀》 GB12222-89《多回转阀门驱动装置的连接》 GB12247-89《蒸汽疏水阀分类》 GB12223-89《部分回转阀门驱动装置的连接》 GB12248-89《蒸汽疏水阀术语》 GB12224-89《钢制阀门一般要求》 GB12249-89《蒸汽疏水阀标志》 GB12225-89《通用阀门铜合金铸件技术条件》 GB12250-89《蒸汽疏水阀结构长度》 GB12226-89《通用阀门灰铸铁件技术条件》 GB12251-89《蒸汽疏水阀试验方法》 GB12227-89《通用阀门球墨铸铁件技术条件》 GB10868-89《电站减温减压阀技术条件》 GB12228-89《通用阀门碳素钢锻件技术条件》 GB10869-89《电站调节阀技术条件》 GB12229-89《通用阀门碳素钢铸件技术条件》 GB1348-88《球墨铸铁件》 GB12230-89《通用阀门奥氏体钢铸件技术条件》 GB11352-89《铸钢件技术条件》 GB12231-89《阀门铸件外观质量要求》 GB596-83《船用外螺纹青铜截止止回阀》 GB12232-89《通用阀门法兰连接铁质闸阀》 GB597-83《船用外螺纹青铜止回阀》 GB12233-89《通用阀门铁质截止阀与升降式止回阀》 GB1047-70《管子和管路附件的公称通径》 GB12234-89《通用阀门法兰、对焊连接钢制闸阀》 GB1048-90《管道元件公称压力》 GB12235-89《通用阀门法兰连接钢制截止阀和升降式止回阀》 GB1851-84《船用PN160外螺纹青铜空气截止阀》 GB12236-89《通用阀门钢制旋启式止回阀》 GB4213-84《气动调节阀通用技术条件》 GB12237-89《通用阀门法兰和对焊连接钢制球阀》 GB8464-87《内螺纹连接闸阀、截止阀、球阀、止回阀通用技术条件》 GB12238-89《通用阀门法兰对夹连接蝶阀》 GB8465.1~7-87《内螺纹连接闸阀、截止阀、球阀、止回阀基本尺寸》GB12239-89《通用阀门隔膜阀》 GB8335-87《气瓶专业螺纹》

阀门国家标准GB

阀门标准GB中国阀门制造执行标准 阀门执行标准简介: 随着工业标准要求的不断提升,统一规范标准成了不可缺少的部分,以下是国家GB执行标准简介,主要为阀门通用标准以及技术条件标准做简单说明,详细的最新国家标准可在标准网最新发布的信息内查看。台臣公司产品符合国家最新GB标准要求制造,如使用不是国标标准可在采购中提前说明。台臣阀门制造标准主要包括化工标准、工业标准、电站阀门标准、国标标准、美标标准、德标标准、日标标准、非标标准等。 阀门国家标准名称及代号: 阀门标准代号阀门标准名称阀门标准代号阀门标准名称 GB12220-1989《通用阀门标志》GB12245-1989《减压阀性能试验方法》 GB12221-1989《法兰连接金属阀门的结构长度》GB12246-1989《先导式减压阀》 GB12222-1989《多回转阀门驱动装置的连接》GB12247-1989《蒸汽疏水阀分类》 GB12223-1989《部分回转阀门驱动装置的连接》GB12248-1989《蒸汽疏水阀术语》 GB12224-1989《钢制阀门一般要求》GB12249-1989《蒸汽疏水阀标志》 GB12225-1989《通用阀门铜合金铸件技术条件》GB12250-1989《蒸汽疏水阀结构长度》 GB12226-1989《通用阀门灰铸铁件技术条件》GB12251-1989《蒸汽疏水阀试验方法》 GB12227-1989《通用阀门球墨铸铁件技术条件》GB10868-1989《电站减温减压阀技术条件》 GB12228-1989《通用阀门碳素钢锻件技术条件》GB10869-1989《电站调节阀技术条件》 GB12229-1989《通用阀门碳素钢铸件技术条件》GB/T1972-1992《蝶形弹簧》 GB12231-1989《阀门铸件外观质量要求》GB12234-1989《通用阀门法兰、对焊连接钢制闸阀》 GB12232-1989《通用阀门法兰连接铁质闸阀》GB12237-1989《通用阀门法兰和对焊连接钢制球阀》 GB1047-1970《管子和管路附件的公称通径》GB12233-1989《通用阀门铁质截止阀与升降式止回阀》 GB12236-1989《通用阀门钢制旋启式止回阀》GB9443-1988《铸钢件渗透探伤及缺陷显示痕迹评级方法》 GB1348-1988《球墨铸铁件》GB3323-1987《钢熔化焊对接接头射线照相和质量分级》 GB1048-1990《管道元件公称压力》GB12235-1989《通用阀门法兰钢制截止阀和升降式止回阀》 GB11365-1989《锥齿轮和准双曲齿轮精度》GB1851-1984《船用PN160外螺纹青铜空气截止阀》 GB4213-1984《气动调节阀通用技术条件》GB8464-1987《内螺纹闸阀、截止阀、球阀、止回阀通用》 GB12238-1989《通用阀门法兰对夹连接蝶阀》GB8465.1~7-87《内螺纹闸阀、截止阀、球阀、止回阀尺寸》 GB8335-1987《气瓶专业螺纹》GB5677-1985《铸钢件射线照相及底片等级分类方法》 GB10877-1989《氧气瓶阀》GB12230-1989《通用阀门奥氏体钢铸件技术条件》 GB12239-1989《通用阀门隔膜阀》GB1804-1979《公差与配合未注公差尺寸的极限偏差》 GB12240-1989《通用阀门铁质旋塞阀》GB12244-1989《铸钢件射线照相及底片等级分类方法》 GB12241-1989《安全阀一般要求》GB10879-1989《溶解乙炔气瓶阀》 GB12242-1989《安全阀性能试验方法》GB197-1981《普通螺纹、公差与配合》 GB12243-1989《弹簧直接载荷式安全阀》GB1239.2-1989《冷卷圆柱螺旋压缩弹簧技术条件》 GB11352-1989《铸钢件技术条件》GB1239.4-1989《热卷圆柱螺旋弹簧技术条件》 GB596—83《船用外螺纹青铜截止止回阀》GB10095-1986《渐开线圆柱齿轮精度》 GB597-1983《船用外螺纹青铜止回阀》GB9444-1988《铸钢件磁粉探伤及质量评级方法》 GB5796-1986《梯形螺纹》GB/T13927-1992《通用阀门压力试验》 GB7306-1987《用螺纹密封的管螺纹》GB/T592-1993《船用法兰铸铁止回阀》 GB7307-1987《非螺纹密封的管螺纹》GB/T1852-1993《船用法兰铸钢蒸汽减压阀》 GB6414-1986《铸件尺寸公差》GB/T12252-1989《通用阀门供货要求》

阀门内漏的检测方法

阀门内漏判定标准我厂至投产以来汽水侧阀门内漏很严重,此次#2机组小修后,消除了大部分内漏缺陷,现#2机组已经运行正常,运行与检修对内漏阀门各自进行了一次普查,存在较大的意见分歧,现做以下规定:1、判定阀门内漏的方法是:阀门关闭4—6小时后,用红外线测温仪表测量阀杆(靠近阀体处)或阀体下游150mm处金属温度,如大于70~C,则认定为“内漏”。这种判断方法对大多数的内漏阀门是适用的,但在实际工作中,我们碰到了以下一些特殊情况:(1)由于管道安装位置原因,使得有些阀门前、后存在扰动着的高温蒸汽,如高加的启动排空气门,连接到有压疏、放水母管的疏水门或排污门,这些阀门即使严密不漏,其阀杆温度也将超过70~C。所以,这些阀门的内漏判定要采用其他方式,观察高加启动排气口是否冒汽判定高加启动排气门是否内漏等。(2)并排接入疏、放水母管的疏水门或排污门,当最后一道阀门位置均靠近母管时,只要管路中任一支路阀门内漏,其他阀门温度均会升高以至超过70"C,如锅炉排污阀门、过热蒸汽疏水等。因此,这些阀门的内漏判定也要采用其他方式,般测量门前管壁温度或一次门前阀杆温度来确定内漏情况。2、运行人员确认或怀疑阀门内漏,必须通知检修人员到场进行确认,经与检修人员共同鉴定确认是内漏,方可登记缺陷,同时将检修鉴定人员名字记录在缺陷信息中,如在未通知检修到场鉴定确认的 文档冲亿季,好礼乐相随 mini ipad移动硬盘拍立得百度书包 情况下登记缺陷,经过鉴定确认阀门并不内漏,每一个阀门考核运行部50元。3、在运行人员与检修人员对阀门否内漏发生意见分歧时,应参照以下表格进行确认,如仍有意见分歧时,应通知设备管理部点检人员到场进行判定,最终以设备管理部点检人员的鉴定为准。 设备管理部 2010-9-18 1234567890ABCDEFGHIJKLMNabcdefghijklmn!@#$%^&&*()_+.一三五七九贰肆陆扒拾,。青玉案元夕东风夜放花千树更吹落星如雨宝马雕车香满路凤箫声动玉壶光转一夜鱼龙舞蛾儿雪柳黄金缕笑语盈盈暗香去众里寻他千百度暮然回首那人却在灯火阑珊处 你可能喜欢

国标阀门规格及型号

阀门型号编制方法、阀门编号说明、阀门命名 阀门型号编制方法、阀门编号说明 ?????? 阀门型号通常应表示阀门类型、驱动方式、连接形式、结构特点、公称压力、密封面材料、阀体材料等要素。阀门型号的标准化对阀门的设计、选用、经销,提供了方便。当今阀门的类型和材料种类越来越多,阀门型号的编制也愈来愈复杂。我国虽然有阀门型号编制的统一标准,但逐渐不能适应阀门工业发展的需要。目前,阀门制造厂一般采用统一的编号方法;不能采用统一编号方法的,各生产厂可按自己的情况制订出编号方法。 当阀门还具有其他功能作用或带有其他特异结构时,在阀门类型代号前再加注一个汉语拼音字母,按下表的规定。

二单元:传动方式 安全阀、减压阀、疏水阀、手轮直接连接阀杆操作结构形式的阀门,本代号省略,不表示;对于气动或液动机构操作的阀门:常开式用6K、7K表示;常闭式用6B、7B表示; 防爆电动装置的阀门用9B表示。 三单元:连接型式 四单元:结构型式 阀门结构形式用阿拉伯数字表示,按下表规定。 闸阀结构形式代号

截止阀、节流阀和柱塞阀结构形式代号 球阀结构形式代号 蝶阀结构形式代号 隔膜阀结构形式代号

止回阀结构形式代号 安全阀结构形式代号 减压阀结构形式代号 蒸汽疏水阀结构形式代号

五单元:密封副材料 六单元:公称压力数值用阿拉伯数字直接表示,它是MPa的10倍 举例:Z543H-16C 伞齿轮传动法兰连接平板闸阀,公称压力1.6MPa,阀体材料为碳钢 阀门的命名 阀门的名称按传动方式、连接形式、结构形式、衬里材料和类型命名。但下面内容在命名中均予省略: (1) 连接形式中:“法兰”。 (2) 结构形式中: ????? a:闸阀的“明杆”、“弹性”、“刚性”和“单闸板”; ????? b:截止阀和节流阀的“直通式”; ????? c:球阀的“浮动”和“直通式”; ????? d:蝶阀的“垂直板式”; ????? e:隔膜阀的“屋脊式”;

阀门内漏原因分析及预防

阀门内漏原因分析及预防 1 阀门密封概述 1.1阀门是在流体系统中用来控制流体方向、压力、流量的装置。阀门的作用是使管道或设备内的介质流动或停止并能控制其流量。阀门的密封性能是指阀门各密封部位阻止介质泄漏的能力,是阀门最重要的技术性能指标之一。阀门的密封部位主要有三处:启闭件与阀座两密封面间接触处;填料与阀杆和填料函结合处;阀体中法兰连接处。 1.2硬密封与软密封的区别 1.2.1密封材料的区别: 软密封是指用软质材料:如:1)橡胶(丁睛橡胶,氟橡胶等);2)塑料(聚四氟乙烯,尼龙等)。 硬密封材料:1)铜合金(用于低压阀门);2)铬不锈钢(用于普通高中压阀门);3)司太立合金、硬质合金(用于高温高压阀门及强腐蚀、耐磨阀门);4)镍基合金(用于腐蚀性介质)等。 1.2.2软密封和硬密封的优缺点: 软密封优点:密封性能好,可以做到“零泄漏”,并且阀座的维护更换方便。阀门扭矩小,可节约执行器的成本。制造成本低,加工便宜,供货周期短。一般用于比较干净、粘度小的液态和气体。缺点是:不耐高温,不耐磨,使用寿命短。 硬密封优点:阀芯阀座可做很多种组合,表面喷涂工艺的应用让阀门在耐磨、耐高温、耐腐蚀工况都有很好的应用,使用寿命长。缺点:密封性能不及软密封,制造成本高,阀门扭矩较大。 2 阀门泄漏分类 阀门泄漏主要分为内漏和外漏两类。启闭件与阀座两密封面间接触处泄漏为内漏,即当阀门处于关闭状态时管路中仍有介质流通,它影响阀门阻断介质的能力。填料与阀杆和填料函结合处、阀体中法兰连接处泄漏为外泄漏,即介质从阀内泄漏到阀外。外漏造成输送介质的损失,污染环境,严重时还会造成事故,对于易燃、易爆、有毒介质外漏更不允许。因此,阀门必须有可靠地密封性能。

阀门执行标准大全

阀门执行标准大全 标准号标准: GB12220-89《通用阀门标志》GB12245-89《减压阀性能试验方法》 GB12221-89《法兰连接金属阀门的结构长度》GB12246-89《先导式减压阀》 GB12222-89《多回转阀门驱动装置的连接》GB12247-89《蒸汽疏水阀分类》 GB12223-89《部分回转阀门驱动装置的连接》GB12248-89《蒸汽疏水阀术语》 GB12224-89《钢制阀门一般要求》GB12249-89《蒸汽疏水阀标志》 GB12225-89《通用阀门铜合金铸件技术条件》GB12250-89《蒸汽疏水阀结构长度》 GB12226-89《通用阀门灰铸铁件技术条件》GB12251-89《蒸汽疏水阀试验方法》 GB12227-89《通用阀门球墨铸铁件技术条件》GB10868-89《电站减温减压阀技术条件》 GB12228-89《通用阀门碳素钢锻件技术条件》GB10869-89《电站调节阀技术条件》 GB12229-89《通用阀门碳素钢铸件技术条件》GB1348-88《球墨铸铁件》 GB12230-89《通用阀门奥氏体钢铸件技术条件》GB11352-89《铸钢件技术条件》 GB12231-89《阀门铸件外观质量要求》GB596-83《船用外螺纹青铜截止止回阀》 GB12232-89《通用阀门法兰连接铁质闸阀》GB597-83《船用外螺纹青铜止回阀》 GB12233-89《通用阀门铁质截止阀与升降式止回阀》GB1047-70《管子和管路附件的公称通径》 GB12234-89《通用阀门法兰、对焊连接钢制闸阀》GB1048-90《管道元件公称压力》 GB12235-89《通用阀门法兰连接钢制截止阀和升降式止回阀》GB1851-84《船用PN160外螺纹青铜空气截止阀》 GB12236-89《通用阀门钢制旋启式止回阀》GB4213-84《气动调节阀通用技术条件》 GB12237-89《通用阀门法兰和对焊连接钢制球阀》GB8464-87《内螺纹连接闸阀、截止阀、球阀、止回阀通用技术条件》

浅析阀门内漏产生原因危害及处理方法

浅析阀门内漏产生原因危害及处理方法 褚艳霞* (华电能源牡丹江第二发电厂,黑龙江 牡丹江 157015) 摘 要:阀门是锅炉系统中不可缺少的流体控制的设备,在锅炉事故中,有相当部分是由阀门所引发的故障,本文介绍阀门内漏产生的原因,并对处理问题的方法进行探讨,提出可行性方案。 关键词:阀门;内漏;处理 阀门是锅炉系统中不可缺少的流体控制的设备,在锅炉事故中,有相当部分是由阀门所引发的故障,阀门内漏,导致产生汽水损失,锅炉补给水量就要增加,相对所消耗的煤量也要增多,同时阀门内漏腐蚀将使阀门寿命降低,损坏过快,影响公司的经济效益,所以介绍阀门内漏产生的原因,并对处理问题的方法进行分析,提出可行性方案,对锅炉设备生产和使用单位具有一定的参考价值。 随着锅炉设备逐步向高参数大容量的方面发展,对锅炉设备本身也提出了新的要求。随着蒸汽参数的提高(主要指蒸汽的压力和温度)和蒸发量的增大,近代锅炉已较多地使用高温高压阀门,这就对阀门的要求越来越高。 锅炉阀门在运行中要经受各种恶劣环境如温度、压力、磨损和腐蚀等的影响,这些恶劣环境对锅炉阀门部件可造成轻微损伤,严重时会产生严重的漏泄。 一、阀门漏泄所产生的危害及机组运行的影响 1 阀门漏泄率增大>3 漏泄阀门增多,阀门漏泄率增大,泄流量也增大,在无形中导致汽水的损失,影响机组的运行。 2 机组补给水率增大 阀门漏泄导致水的流失,使机组不能正常经济运行,需要对锅炉进行补水,导致机组的补给水率增大。 3 汽水损失增加 阀门漏泄也导致机组内汽水流失,阀门漏泄个数越多,汽水损失越大。 4 煤耗增大 阀门漏泄也导致机组内汽水损失,需要对炉内进行大量补水,产生高温高压的过热蒸汽,需要对水进行大量加热,如此循环,需要消耗大量的燃煤,使发电厂的煤耗增大。 二、阀门在运行中常见的故障及消除方法 1 阀门阀体漏 消除方法:对漏处有4%硝酸容液侵蚀,便可显示出全部裂纹,然后用砂轮磨光或铲去有裂纹和砂眼的金属层,进行补焊即可。 2 阀盖的结合面漏 消除方法:铲除旧垫片更换,结合面擦伤补焊后研磨。 3 阀瓣与阀座密封面漏 消除方法:对阀座与阀瓣进行研磨,粗糙度达到0 4。 4 阀瓣腐蚀损坏 消除方法:精车后研磨,腐蚀深度达0 5mm可更换。 5 阀瓣、阀座有裂纹 消除方法:更换新的阀门。 6 阀瓣和阀壳间泄漏 消除方法:找好阀瓣与阀壳间的间隙,盘根或更换。 7 填料盒泄漏 消除方法:紧固盘根或更换新盘根,检查填料室的粗糙度。 综上所述,发生汽水损失的最大原因就是阀门内漏(阀瓣、阀座密封面的损坏)。阀门内漏,导致产生汽水损失,锅炉补给水量就要增加,相对所消耗的煤量也要增多,同时阀门内漏腐蚀将使阀门寿命降低,损坏过快,影响公司的经济效益。 综上所述,总结如下,见图1。 (1)在研磨阀门中,由于手工研磨阀门,研磨速度补均匀,用力不当,可导致阀座密封面受力不均,力量大时研磨砂粒可损坏密封面,力量小时,起不到研磨作用。 (2)手工研磨阀门,研磨杆上无定位导向垫圈,使研磨杆转动中东扭西歪,研磨容易导致把阀座密封面锥面研歪,组装阀门后使阀杆上的密封面与阀座的密封面中心对不上,密封面关闭不严密。 (3)由于工作人员没有责任心或专业技术水准不够,对阀门的使用范围不清楚,错用不符合要求的阀瓣、阀杆、阀座(如高温高压阀门采用合金材质、中温高压阀门采用碳钢),高温可导致阀瓣强度降低,疲劳度增加、腐蚀,使用寿命降低,阀瓣、阀座抗冲蚀磨损不够,容易发生内漏。 (4)由于检修的作业标准不够,使管路中存有遗留物,如焊渣、焊条头、锯条、铁渣、金属垫片残损部分及由于水质不良,使管道结垢后脱落的腐蚀物,在阀门开关使用 中国电力教育 2008年研究综述与技术论坛专刊*作者简介:褚艳霞,女,华电能源牡丹江第二发电厂锅炉检修分公司,助理工程师。

阀门国标和阀门标准

阀门国家标准1?GB/T1047-1995?管道元件的公称通径 2?GB/T1048-1990?管道元件公称压力 3?GB/T11698-1989??船用法兰连成一片接金属阀门的结构长度 4?GB/T12220-1989?通用阀门标志? 5?GB/T12221-1989?法兰连接金属阀门结构长度? 6?GB/T12222-1989?多回转阀门驱动装置的连接? 7?GB/T12223-1989?部分回转阀门驱动装置的连接? 8?GB/T12224-1989?钢制阀门一般要求 9?GB/T12247-1989?蒸汽疏水阀分类? 10?GB/T12248-1989?蒸汽疏水阀术语? 11?GB/T12249-1989?蒸汽疏水阀标志 12?GB/T12250-1989?蒸汽疏水阀结构长度 13?GB/T12712-1991?蒸汽供热系统凝结水回收及蒸汽疏水阀技术管理要求? 14?GB/T15188.1-1994?阀门的结构长度对焊连接阀门 15?GB/T15188.2-1994?阀门的结构长度?对夹连接阀门? 16?GB/T15188.3-1994?阀门的结构长度内螺纹连接阀门? 17?GB/T15188.4-1994?阀门的结构长度外螺纹连接阀门? 18?GB/T12225-1989?通用阀门铜合金铸件技术条件? 19?GB/T12226-1989?通用阀门灰铸铁件技术条件? 20?GB/T12227-1989?通用阀门球墨铸铁件技术条件? 21?GB/T12228-1999?通用阀门碳素钢锻件技术条件?

22?GB/T12229-1989?通用阀门碳素钢铸件技术条件? 23?GB/T12230-1999?通用阀门奥式体钢铸件技术条件? 24?GB/T4213-1992?气动调节阀? 25?GB/T7512-1999?液化石油气瓶阀? 26?GB/T8464-1998?水暖用内螺纹连接阀门? 27?GB10877-1989?氧气瓶阀 28?GB10879-1989?溶解乙炔气瓶阀 29?GB/T12232-1989?通用阀门法兰连接铁制闸阀 30?GB/T12233-1989?通用阀门铁制截止阀与升降式止回阀? 31?GB/T12234-1989?通用阀门法兰和对焊连接钢制闸阀 32?GB/T12235-1989?通用阀门?法兰连接钢制截止阀和升降式止回阀33?GB/T12236-1989?通用阀门钢制旋启式止回阀 34?GB/T12237-1989?通用阀门法兰和对焊连接钢制球阀 35?GB/T12238-1989?通用阀门法兰和对夹连接蝶阀? 36?GB/T12239-1989?通用阀门隔膜阀 37?GB/T12240-1989?通用阀门铁制旋塞阀 38?GB/T12241-1989?安全阀一般要求? 39?GB/T12243-1989?弹簧直接载荷式安全阀? 40?GB/T12244-1989?减压阀一般要求? 41?GB/T12246-1989?先导式减压阀 42?GB/T13438-1992?氩气瓶阀? 43?GB/T13439-1992?液氯瓶阀?

控制阀泄漏量等级的规定和最大阀座泄露漏量计算

控制阀泄漏量等级的规定和最大阀座泄漏量计算 控制阀泄漏量指在规定的试验条件下,流过控制阀的流体流量。试验条件包括执行机构推力、阀芯和阀座的压紧力、流体特性等。泄漏量等级有六级。表1-1是泄漏量等级和试验条件。 表1-1 泄漏量等级及试验条件 泄漏等级 测试介质 测试程序最大阀座泄漏量 I 由制造方和购买方商定 II 液体或气体 1 5×10-3×C R (注1和注3) III 液体或气体 1 10-3×C R (注1和注3) 液体 1或2 IV 气体 1 10-4×C R (注1和注3) IV-S1 气体 1 5×10-6×C R (注1和注3) V 液体 2 1.8×10-7×Δp (kPa)×D(阀座直径,mm) l/h , VI 气体 1 3×10-3×Δp (kPa)×泄漏速率(见表4-46) 注1:可压缩流体的体积流量,使用标准条件为:101.325kPa 绝压和温度0℃或15℃; 注2:等级VI 表示仅用于有弹性材质阀座的控制阀; 注3:阀的额定容量是测试流体(液体或气体)在额定行程和描述的测试条件下通过控制阀的流量;它与额定流量系数的应用条件判别式和计算公式是不同,见GB/T4213-2008。 注4:表中,C R 是控制阀的额定容量;Δp 是控制阀两端最大压差;D 是阀座直径。 泄漏等级VI 的泄漏速率见表1-2。 表1-2 泄漏等级VI 的泄漏速率系数 允许泄漏速率 允许泄漏速率 阀座直径DN (mm ) 毫升/分 气泡数/分 阀座直径DN (mm ) 毫升/分 气泡数/分 25 0.15 1 150 4.00 27 40 0.30 2 200 6.75 45 50 0.45 3 250 11.1 - 65 0.60 4 300 16.0 - 80 0.90 6 350 21.6 - 100 1.70 11 400 28.4 - 表中,气泡数的计数是采用IEC 标准推荐的方法。它用φ6×1mm 的管端光滑、无倒角或毛刺的管子垂直插入水下5~10mm 深度测得的。对管道直径与表中数据的差值大于2mm 时,应采用插值法获得。这是假设泄漏速率与阀座直径的平方成正比推导获得的。 测试流体为液体(L )时通常采用水。测试流体为气体(G )时通常采用空气或氮气。测试流体温度通常为5~40℃。 测试程序1的测试条件:测试介质压力在300~400kPa (3~4bar )表压,或如果压力低于350kPa 时,在用户规定的最大操作压差的±5%内。 测试程序2的测试条件:测试压差在用户规定的阀两端最大操作压差的±5%内。 泄漏量用代码表示为:泄漏等级、测试流体、测试程序。例如,IVG1表示泄漏等级IV ,测试流体为气体(Gas ),采用测试程序1进行测试时的泄漏量。 泄漏量是阀全关时由于泄漏而流过控制阀的流量。根据不同的泄漏等级,泄漏量不同,一般约为最大流量的0.5~0.001%。控制阀的最小流量是控制阀可调节流量的下限,根据不

电厂系统阀门内漏分析及防治.

2013年第 08 期 电 引言: 发电厂因系统阀门内漏造成的热力损失是影响汽轮机热效率 的重要因素, 所以找到阀门内漏原因, 建立防治措施、 掌握运行维护的技巧, 把防治阀门内漏作为一项重点工作来抓, 才能建立安全生产长效机制, 提高机组经济运行水平。为了治理阀门内漏, 榆林汇通热电公司成立了阀门内漏治理小组,通过一个阶段的工作开展, 使阀门内漏得到很大改善, 提高了系统经济性和安全性。 1. 阀门内漏对发电企业的影响: 阀门内漏对发电企业的安全经济运行, 都有很大影响。从电厂安全生产方面而言,阀门内漏将使运行中的设备无法隔离消缺, 主要体现在安全措施无法执行到位,严重威胁检修人员的安全作业, 例如我们在给水泵检修时, 要求必须放尽存水, 泄压力至 0MPa, 给 水泵的进、 出口电动门必须严密关闭, 否则检修人员解体阀门时如果系统还有压力, 就会造成严重后果。 从发电厂经济效益方面,汽轮机蒸汽系统旁路门或疏水门内漏, 会使高温、高压蒸汽未经利用就直接排走。如果排入凝汽器, 将导致凝汽器热负荷增加, 机组真

空下降, 汽轮机效率降低; 如果排入疏水箱, 将使热量损失, 使疏水箱溢流。大量蒸汽未经利用直接排走, 对电厂的经济运行影响很大。 从发电厂文明生产方面,生产现场阀门泄漏将使部分高温、高压的汽、水直接排入环境中, 无法为运行、检修人员提供一个良好的工作环境。 2. 阀门内漏的原因:在实际生产中, 造成阀门内漏的原因较多, 总结榆林汇通热电公司阀门内漏治理的统计分析, 主要有以下几方面: 2.1阀门质量差造成内漏。阀门在生产过程中对材质、加工工艺、装配工艺等控制不严, 致使密封面结合不严密, 有麻点、沙眼等缺陷, 而现场安装前的质检又没有严格把关, 造成不合格的产品进入生产现场, 使阀门在使用过程中产生内漏。 2.2阀门调试不好引起内漏。电动阀门受加工、装配工艺的影响, 普遍存在手动关严后电动打不开的现象, 如通过上、下限位开关的动作位置把电动阀门的行程调整小一些, 又会出现电动阀门关不严或者阀门开不全的不理想状态;把电动 阀门的行程调整大一些, 则引起过力矩开关保护动作; 如果将过力矩开关的动作值 调整的大一些, 则出现撞坏减速传动机构或者撞坏阀门, 甚至将电机烧毁的事故。为了解决这一问题, 通常, 电动门调试时手动将电动阀门全关, 再往开的方向回一圈, 这时定电动门的下限位开关位置, 然后将电动阀门开到全开位置定上限开关位置, 这样电动阀门就不会出现手动关严后电动打不开的现象, 才能使电动门开、关操作自如, 但这样又会无形中引起了电动门内漏。即使电动阀门调整的比较理想, 由于限位开关的动作位置是相对固定的, 介质在运行中对阀门的不断冲刷、磨损, 也会造成阀门关闭不严而引起内漏现象。 2.3热力系统水质不合格, 管道冲洗不干净造成阀门内漏。机组在启动时, 特别是在调试期间, 由于系统长期停运, 管道内积存铁锈、积盐较多, 这时应全开系统的疏放水阀门进行冲洗, 如果冲洗不彻底, 铁锈等杂质就会在阀芯、阀座之间存积, 阀门关闭时卡涩在阀芯底部, 使阀门关闭不严造成冲刷内漏。

阀门的密封性及泄漏标准

阀门的密封性及泄漏标准 阀门的密封性能是考核阀门质量优劣的主要指标之一。阀门的密封性能主要包括两个方面,即内漏和外漏。内漏是指阀座与关闭件之间对介质达到的密封程度,考核内漏的标准我国有两个。一个是国家技术监督局于1992年12月发布的,1993年6月1日开始实施的国家标准GB/T 13927-1992《通用阀门压力试验》。这个标准是参照采用国际标准IS05208-1 982《工业阀门的压力试验》制订的;另一个是原机械工业部发布的JB/T9092-1999《阀门的试验与检验》,这个标准是参照APl598—1986《阀门的检查和试验》制订的。GB/T13927-1992适用于一般工业用阀门的检验;JB/T9092—1999适用于石油工业用阀门的检验。外漏是指阀杆填料部位的泄漏、中法垫片部位的泄漏及阀体因铸造缺陷造成的渗漏,外漏是根本不允许的。如果介质不允许排人大气,则外漏的密封比内漏的密封更为重要。因此,阀门的密封结构对阀门的选用影响很大。 如果没有发现阀门泄漏,或者发现阀门的泄漏量是在允许值范围内,则该阀门被认为对介质是达到密封。对于某一用途的阀门的最大允许泄漏量即作为阀门的泄漏标准。 1.GB/T l3927--1992的密封试验要求 密封试验的最大允许泄漏量见表2-1的规定。表2-1中的泄漏量只适用于向大气排放的情况。A级适用于非金属弹性密封阀门,8、C、D级适用于金属密封阀门。其中,8级适用于比较关键的阀门,D级适用于一般的阀门。各类阀门的最大允许泄漏量(等级)应按有关产品标准的规定。如果有关标准未作具体规定,则非金属弹性密封阀门按A级要求,金属密封阀门按D级要求。 2.JB/T9092--1999的密封试验要求 对于壳体试验和上密封试验,不允许有可见的渗漏。 如果试验介质为液体,则不允许有明显可见的液滴或表面潮湿。如果试验介质是空气或其他气体,则按所制订的试验检漏,应无气泡漏出。试验时应无结构损伤。 对于低压密封试验和高压密封试验,不允许明显可见的泄漏通过阀瓣、阀座与阀体接触面等处,并无结构上的损坏。

防止机组阀门内漏管理制度

机组阀门内漏管理制度 第一条为降低机组运行热耗、补水率,加强徐塘发电有限责任公司(以下简称公司)节能降耗工作,提高机组效率,防止机组阀门频繁发生内漏事件,特制定本制度。 第二条本制度适用于公司#4、5、6、7机组高温、高压阀门操作、检查及检修工作;低温、低压阀门原则上适用。 第三条当发生下列情况时,发电部必须按照相应要求操作,否则,每项次考核责任人30元。 3.1机组启停及正常运行期间,应严格监视各疏水阀门开关到位,如发现疏水阀门开关不到位要及时处理,必要时联系检修处理,以防止阀门长期小开度、造成阀门阀芯冲刷、阀门关闭不严。 3.2机组启动过程中,按照规程规定及时关闭有关疏水门、放空气门,关闭疏水阀门2小时后,进行测温,检查阀门是否泄漏,防止因为关不到位造成阀门密封面冲刷损伤。 3.3对于有一、二次门的系统,开门时应先开一次门,后开二次门,关闭时应先关二次门,后关一次门,关闭后应及时手紧阀门。若需要进行流量调节时应保持一次门全开,用二次门调节流量。 3.4对于只有一个阀门的系统,开门时应全开,不要保持半开状态,减少阀门的冲刷。

3.5锅炉上水后及启动初期水质不合格冲放时,应保持定排电动一、二次截止门常开,通过调节定排调节阀的开度进行冲放。禁止同时对一、二次门进行操作,以防一、二次门受冲刷、关闭不严。 3.6锅炉升压前必须保证水质合格,汽包压力升高至2MPa 后,禁止用停炉放水门来控制汽包水位。 3.7开机过程中应及时将关闭的电动门手紧,减少因压力较高时阀门因关闭不严造成的汽水冲刷,如汽包、过热器、再热器放空气门、5%旁路电动门、汽机疏水手动门等。 3.8正常运行过程中应及时关注经常操作的电动门的内漏情况,如吹灰电动门、定排电动门等,发现有内漏情况及时手紧电动门,并通知检修人员调整电动门行程或力矩消除阀门内漏。 3.9锅炉吹灰后应及时查看电动门后吹灰压力,如发现压力有异常情况应及时处理,4、5号炉吹灰后应及时将吹灰压力调节阀关闭,减少汽水损失。 3.10机组启动后要全面检查各疏水阀门后温度是否正常。如发现阀门温度异常,阀门微漏、渗漏时要及时采取措施,通过调整阀门行程或手紧使阀门关闭到位,防止阀门长期冲刷,越漏越大。 3.11机组停运,如无特殊原因,过、再热及主蒸汽管道疏水、放空气门必须按照规程规定的参数开启。

阀门标准大全国标、美标、日标)

阀门标准大全(国标、美标、日标) 本文内容主要发布的阀门制造标准主要有: 中国国家标准(GB) 中国机械部标准(JB) 美国国家标准(ANSI) 美国石油学会标准(API) 美国材料试验协会标准(ASTM) 美国阀门和管件制造厂标准化协会标准(MSS) 日本工业标准(JIS) 德国国家标准(DIN) 法国国家标准(NF) 英国国家标准、欧洲标准(BS、EN) 其他国家阀门标准(ГOCT、IEEE 、UL) 阀门国标标准--GB标准 序 阀门标准代号阀门标准名称 号 1GB12220-1989《通用阀门标志》 2GB12221-1989《法兰连接金属阀门的结构长度》 3GB12222-1989《多回转阀门驱动装置的连接》 4GB12223-1989《部分回转阀门驱动装置的连接》 5GB12224-1989《钢制阀门一般要求》 6GB12225-1989《通用阀门铜合金铸件技术条件》 7GB12226-1989《通用阀门灰铸铁件技术条件》 8GB12227-1989《通用阀门球墨铸铁件技术条件》 9GB12228-1989《通用阀门碳素钢锻件技术条件》 10GB12229-1989《通用阀门碳素钢铸件技术条件》 11GB12231-1989《阀门铸件外观质量要求》 12GB12232-1989《通用阀门法兰连接铁质闸阀》 13GB1047-1970《管子和管路附件的公称通径》 14GB12236-1989《通用阀门钢制旋启式止回阀》

15GB1348-1988《球墨铸铁件》 16GB1048-1990《管道元件公称压力》 17GB11365-1989《锥齿轮和准双曲齿轮精度》 18GB4213-1984《气动调节阀通用技术条件》 19GB12238-1989《通用阀门法兰对夹连接蝶阀》20GB8335-1987《气瓶专业螺纹》 21GB10877-1989《氧气瓶阀》 22GB12239-1989《通用阀门隔膜阀》 23GB12240-1989《通用阀门铁质旋塞阀》 24GB12241-1989《安全阀一般要求》 25GB12242-1989《安全阀性能试验方法》 26GB12243-1989《弹簧直接载荷式安全阀》 27GB11352-1989《铸钢件技术条件》 28GB596—83《船用外螺纹青铜截止止回阀》29GB597-1983《船用外螺纹青铜止回阀》 30GB5796-1986《梯形螺纹》 31GB7306-1987《用螺纹密封的管螺纹》 32GB7307-1987《非螺纹密封的管螺纹》 33GB6414-1986《铸件尺寸公差》 34GB12245-1989《减压阀性能试验方法》 35GB12246-1989《先导式减压阀》 36GB12247-1989《蒸汽疏水阀分类》 37GB12248-1989《蒸汽疏水阀术语》 38GB12249-1989《蒸汽疏水阀标志》 39GB12250-1989《蒸汽疏水阀结构长度》 40GB12251-1989《蒸汽疏水阀试验方法》 41GB10868-1989《电站减温减压阀技术条件》

汽轮机疏水系统阀门内漏对系统经济安全的影响(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 汽轮机疏水系统阀门内漏对系统经济安全的影响(新版)

汽轮机疏水系统阀门内漏对系统经济安全的 影响(新版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:疏放水系统不但影响到发电厂的热经济性,也威胁到设备的安全可靠运行。将蒸汽管道中的凝结水及时排掉是非常重要的,若疏水不畅(如管径偏小),管道中聚集了凝结水,会引起管道水击或振动,轻者会损坏支吊架,重者造成管道破裂、设备损坏的安全事故。水若进入汽轮机,还会损坏叶片,引起机组振动、推力瓦烧损、大轴弯曲、汽缸变形等恶性事故。因此,对疏放水系统的设计、安装、检修和运行都应足够重视。 主题词汽轮机是疏水节能 一、大型机组汽轮机疏水系统的主要问题 大型机组汽轮机转子发生大轴永久性弯曲是重大恶性事故,为此原国家电力公司反复强调,在“二十五项重点要求”中明确了具体的反事故措施,起到明显效果,但大轴弯曲事故仍时有发生。统计表明,86%的弯曲事故是由于转子碰磨引起,而其中80%以上是热态起动时发

阀门国家安全标准

阀门国家安全标准 试验能力 按国内外有关标准进行阀门的壳体试验、液体密封性能试验、气体密封性能试验、阀门静压寿命试验、操作扭矩试验、材料组织、成分分析、壳体壁厚测量、阀门清洁度、安全阀全性能及排量试验、调节阀性能试验、减压阀性能试验、阀门及管件爆破试验、气瓶阀性能试验、振动试验、阀门及管件流量流阻试验、高低温性能试验、阀门驱动装置性能试验、阀门电动装置寿命试验。 试验项目 序号主要试验项目 检测能力范围 1 壳体试验、密封性能试验公称压力PN≤420.0MPa 2 阀门静压寿命试验公称压力PN≤32.0MPa 公称通径DN≤400mm 3 阀门驱动装置试验性能检测:公称转矩≤5000N·m 4 阀门电动装置寿命试验 公称转矩≤5000N·m 5 安全阀全性能和排量试验阀门整定压力(开启压力)≤19.0MPa,公称通径DN≤100mm。 6 阀门和管件流量和流阻试验公称通径DN≤300mm 7 振动试验最大负载25Kg,振幅≤5mm,振动频率10~80Hz 8 气瓶阀性能试验公称通径DN≤25mm 9 高温性能试验可调最高温度300℃ 10 低温性能试验可调最低温度-80℃ 11 壁厚测量 1.2~200 mm 12 阀门扭矩试验 2~350 N.m 13 阀门及管件爆破压力试验理论爆破压力≤400.0MPa 中国阀门标准 标准 标准名称 GB12220-89 通用阀门标志 GB12221-89 法兰连接金属阀门结构长度 GB12222-89 多回转阀门驱动装置的连接 GB12223-89 部分回转阀门驱动装置的连接

GB12224-89 钢制阀门一般要求 GB12225-89 通用阀门铜合金铸件技术条件 GB12226-89 通用阀门灰铸铁件技术条件 GB12227-89 通用阀门球墨铸铁件技术条件 GB12228-89 通用阀门碳素钢锻件技术条件 GB12229-89 通用阀门碳素钢铸件技术条件 GB12230-89 通用阀门奥氏体钢铸件技术条件 GB12232-89 通用阀门法兰连接铁制闸阀 GB12233-89 通用阀门铁制截止阀与升降式止回阀 GB12234-89 通用阀门法兰和对焊焊连接铜制闸阀 GB12235-89 通用阀门法兰连接钢制截止阀和升降式止回阀 GB12236-89 通用阀门钢制旋启式止回阀 GB12237-89 通用阀门法兰和对焊连接钢制球阀 GB12238-89 通用阀门法兰和对夹连接蝶阀 GB12239-89

相关文档
最新文档