结构力学经典考研复习笔记强力推荐吐血推荐

结构力学经典考研复习笔记强力推荐吐血推荐
结构力学经典考研复习笔记强力推荐吐血推荐

第一章绪论

一、教学内容

结构力学的基本概念和基本学习方法。

二、学习目标

了解结构力学的基本研究对象、方法和学科内容。

明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。

理解荷载和结构的分类形式。

在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。

三、本章目录

§1-1 结构力学的学科内容和教学要求

§1-2 结构的计算简图及简化要点

§1-3 杆件结构的分类

§1-4 荷载的分类

§1-5 方法论(1)——学习方法(1)

§1-6 方法论(1)——学习方法(2)

§1-7 方法论(1)——学习方法(3)

§1-1 结构力学的学科内容和教学要求

1. 结构

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。

从几何的角度,结构分为如表1.1.1所示的三类:

表1.1.1 结构的分类

2. 结构力学的研究内容和方法

结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。

理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。

其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。学习好理论力学和材料力学是学习结构力学的基础和前提。

结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。包括以下三方面内容:

(1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择;

(2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算;

(3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。

结构力学问题的研究手段包含理论分析、实验研究和数值计算,本课程只进行理论分析和数值计算。结构力学的计算方法很多,但都要考虑以下三方面的条件:

(1) 力系的平衡条件或运动条件。

(2) 变形的几何连续条件。

(3) 应力与变形间的物理条件(本构方程)。

利用以上三方面进行计算的,又称为“平衡-几何”解法。

采用虚功和能量形式来表述时候,则称为“虚功-能量”解法。

随着计算机的进一步发展和应用,结构力学的计算由过去的手算正逐步由计算机所代替,本课程的特点是将结构力学求解器集成到网络中,主要利用求解器进行计算和画图。

3. 课程教学中的能力培养

(1) 分析能力

选择结构计算简图的能力:将实际结构进行分析,确定其计算简图。

进行力系平衡分析和变形几何分析的能力:对结构的受力状态进行平衡分析,对结构的变形和位移状态要进行几何分析。这两方面的分析能力是结构分析的两个看家本领,要在反复运用中加以融会贯通,逐步提高,力求达到能正确、熟练、灵活运用的水平。

选择计算方法的能力:要了解结构力学中的各种计算方法的特点,具有根据具体问题选择恰当的计算方法的能力。

(2) 计算能力

具有对各种结构进行计算或确定计算步骤的能力。

具有对计算结果进行定量校核或定性判断的能力。

初步具有应用计算机计算的能力。

做题练习是学习结构力学的重要环节。不做一定量的习题就很难对基本概念和方法有深入的理解和掌握,也很难培养较好的计算能力。

(3) 自学能力

自学包含两个方面:消化已学知识、摄取新的知识。

§1-2 结构的计算简图及简化要点

实际结构往往是很复杂的,进行力学计算以前,必须加以简化,用一个简化的图形来代替实际结构,这个图形称为结构的计算简图。

一、简化的原则

(1)从实际出发——计算简图要反映实际结构的主要性能。

(2)分清主次,略去细节——计算简图要便于计算。

二、简化的要点

1. 结构体系的简化

一般的结构都是空间结构。但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算。本课程主要讨论平面结构的计算。当然,也有一些结构具有明显的空间特征而不宜简化成平面结构。

2. 杆件的简化

在计算简图中,结构的杆件总是用其纵向轴线代替。

3. 杆件间连接的简化

结构中杆件相互连接的部分称为结点,结点通常简化为铰结点或刚结点。

铰结点是指相互连接的杆件在连接处不能相对移动,但可相对转动,即:可传递力,但不能传递力矩。

刚结点是指相互连接的杆件在连接处不能相对移动,也不能相对转动,既可传递力,又能传递力矩。

4. 结构与基础间连接的简化

结构与基础的连接区简化为支座。按受力特征,通常简化为:

(1) 滚轴支座:只约束了竖向位移,允许水平移动和转动。提供竖向反力。在计算简图中用支杆表示。

(2) 铰支座:约束竖向和水平位移,只允许转动。提供两个反力。在计算简图中用两根相交的支杆表示。

(3) 定向支座:只允许沿一个方向平行滑动。提供反力矩和一个反力。在计算简图中用两根平行支杆表示。

(4) 固定支座:约束了所有位移。提供两个反力也一个反力矩。

5. 材料性质的简化

在土木、水利工程中结构所用的建筑材料通常为钢、混凝土、砖、石、木料等。在结构计算中,为了简化,对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的。

上述假设对于金属材料在一定受力范围内是符合实际情况的。对于混凝土、钢筋混凝土、砖、石等材料则带有一定程度的近似性。至于木材,因其顺纹和横纹方向的物理性质不同,故应用这些假设时应予注意。

6. 荷载的简化

作用在实际结构上的荷载形式比较多,简化比较复杂,但根据其分布情况大致可简化为集中荷载和分布荷载两大类。

§1-3 杆件结构的分类

结构的分类实际上是计算简图的分类。

1. 梁

梁是一种受弯构件,其轴线通常为直线,既可以是单跨,也可以是多跨(图1-1a、b)。

图1-1a图1-1b

2. 拱

拱是一种杆轴为曲线且在竖向力作用下,会产生水平反力的结构(图1-2a、b)。

图1-2a图1-2b

3. 桁架

桁架是由若干个直杆组成,所有结点都为铰结点(图1-3)。

图1-3图1-4

4. 刚架

刚架由直杆组成,其结点通常为刚结点(图1-4)。

5. 组合结构

组合结构是桁架和梁或刚架组合在一起的结构(图1-5)。

图1-5

§1-4 荷载的分类

一、按作用时间的久暂

荷载可分为恒载和活载。

恒载是长期作用与结构上的不变荷载,如结构的自重、安装在结构上的设备重量等,这种荷载的大小、方向、作用位置是不变的。

活载是建筑物在施工和使用期间可能存在的可变荷载,如吊车荷载、结构上的人群、风、雪等荷载。

二、按荷载的作用范围

荷载可分为集中荷载和分布荷载。

荷载的作用面积相对于总面积是微小的,作用在这个面积上的荷载,可以简化为集中荷载。

分布作用在一定面积或长度上的荷载,可简化为分布荷载,如风、雪、自重等荷载。

三、按荷载作用的性质

荷载可分为静力荷载和动力荷载。

静力荷载的数量、方向和位置不随时间变化或变化极其缓慢,不使结构产生显著的加速度,因而可以忽略惯性力的影响。

动力荷载是随时间迅速变化或在短暂时间内突然作用或消失的荷载,使结构产生显著的加速度。

车辆荷载、风荷载和地震荷载通常在设计中简化为静力荷载,但在特殊情况下要按动力荷载考虑。

四、按荷载位置的变化

荷载可分为固定荷载和移动荷载。

作用位置固定不变的荷载为固定荷载。如风、雪、结构自重等。

可以在结构上自由移动的荷载称为移动荷载。如吊车梁上的吊车荷载、公路桥梁上的汽车荷载就是移动荷载。

荷载的确定,常常是比较复杂的,荷载规范总结了设计经验和科学研究的成果,供设计时应用。但在不少情况下,设计者要深入现场,结合实际情况进行调查研究,才能对荷载作出合理的确定。

§1-5 方法论(1)——学习方法(1)

学习要讲究方法,要学会,更要会学。下面是在结构力学的教学和科研过程中产生的一些想法,主要从加、减、问、用和创新五个方面展开讨论。

一、会加

1.勤于积累

摄取和积累知识是培养能力的基础,也是研究创新的基础。“才须学也。非学无以广才,非志无以成学”(诸葛亮)。要有集腋成裘、积土成山的志趣。

2.融会贯通

要把知识连成一片,互相沟通,左右联系,前后呼应,融会贯通。在数学语言和力学语言之间要会翻译:把抽象的数学公式翻译成具体生动的物理概念;把直观的力学思路翻译成严密的数学程序。

3.用心梳理

积累知识要用心梳理,使之条理化,成为一个脉络清晰、有主有次、有目有纲的知识网。

4.落地生根

把别人的、书本上的知识变成自己的,化他为己,这样的知识才是牢靠的,生了根的。把新学来的知识融化在自己已有的知识结构上,把“故”作为“新”的基地,使“新”在“故”上生根发芽成长。

二、会减

1. 概括的能力

把一章内容概括成三言两语,对一门课理出它的主要脉络,写人能勾出特征,画龙会点睛。

2. 简化的能力

盲目简化——不分主次,乱剪乱砍。合理简化——分清主次,剪枝留干。

选取结构计算简图是结构力学的基本功。不会简略估算、定性判断,是很危险的。

3. 统帅驾驭的能力

学习积累的知识,要形成一个知识系统,要培养提纲挈领、统帅全局的能力,达到纲举目张、灵活驾驭的目的。

4. 弃形取神的能力

在力学学习和科学研究中要培养由表入里、弃形取神的能力:

个别到一般:舍弃千差万别的个性和特殊性,摘取其中的共性和普遍性。

具体到抽象:舍弃不同问题的具体性,提炼为一般原理的抽象性。

现象到规律:舍弃现象的表面形态,洞察出深藏的本质和内在的规律。

温故到创新:拆除旧观念的篱笆,标新立异,另辟新路,开拓新途径和新领域。

§1-6 方法论(1)——学习方法(2)

三、会问

1. 多问出智慧

学习中要多问,多打几个问号。“”像一把钥匙,一把开启心扉和科学迷宫的钥匙。

2. 要会问

学习中提不出问题是学习中最大的问题。发现了问题是好事,抓住了隐藏的问题是学习深化的表现。

3. 要追问

重要的问题要抓住不放,要层层剥笋,穷追紧逼,把深藏的核心问题解决了,才能达到“柳暗花明”的境界。

4. 要问自己

四、会用

学而时习之,学习=学+习。

什么是“习”,通常把“习”理解为复习;更准确些,应把“习”理解为用,理解为实践。“用”是“学”的继续、深化和检验。与“学”相比,“用”有更丰富的内涵:

多面性:把知识应用于解决各式各样的问题,把单面的知识化为多方面的知识。

综合性:处理问题时,要综合应用多种方法和知识。分门别类地学,综合优选地用。

反思性:正面学,反面用。计算是由因到果,校核时由果到因。

跳跃性:循规蹈矩地学,跳跃式地用。

灵活性:用能生巧。

牢固性:反复用过的知识是牢固的,久经难忘。

悟性:学习可以获得言传的知识,应用可以体验难以言传的悟性。

检验性:学来的知识是真懂、半懂还是不懂,考几道题就分辨出来了。

针对涉及工程计算的一些学科的情况,还要对“习题”和“校核”两个具体问题作些议论。

1.习题

做题练习,是学习工程计算学科的重要环节。不作一定数量的习题,就很难对基本概念和方法有深入的理解,也很难培养较好的计算能力。做题也要避免各种盲目性。举例如下:

不看书,不复习,埋头做题,这是一种盲目性。应当在理解的基础上做题,通过做题来巩固和加深理解。

贪图求快,不求甚解,这是另一种盲目性。

只会对答数,不会自己校核和判断,这也是一种盲目性。

做错了题不改正,不会从中吸取教训,这又是一种盲目性。

2.校核

计算的结果要经过校核。“校核”是“计算”中应有之义。没有校核过的计算书是未完成的计算书。

出错是难免的。重要的是要会判断、抓错和改错。判断是对计算结果的真伪性和合理性作出鉴定。抓错是分析错误根源,指明错在何处。改错是提出改正对策,得出正确答案。改错不易,抓错、判断更难。

关于判断和校核可分为三层:细校、粗算和定性。

另法细校:细校是指详细的定量的校核,不是重算一遍而是提倡用另外的方法来核算。

毛估粗算:粗算是指采用简略的算法对计算结果进行毛估,确定其合理范围。粗算是要能分清主次、抓大放小,对大事不糊涂。其做法有:选取简化计算模型,在公式中忽略次要的项,检查典型特例,考虑问题的极限情况,等等。

定性判断:定性判断是根据基本概念来判断结果的合理性,而不是进行定量的计算。力学中常用的例子有:

采用量纲分析,判断所列方程是否有误。

根据物理概念,看答案的数量级和正负号是否对头。

根据误差理论,估计误差的范围。

根据互等定理,看计算结果是否合理。

根据上下限定理,看计算结果是否出格。

在渐进法和迭代法中,判断结果是否收敛。

对称结构计算,检查结果的对称性。

当参数变化时,看结果的相应变化是否合理。

在近似算法中,判断所得结果是偏于安全还是偏于不安全,并采用“前者宽,后者严”的不同标准。

不细算而能断是非,断案如神,既快又准,这是总工程师应具备的看家本领,也是每个工程师和有心人应及早学会的本领。这种本领来源于扎实的理论和经验的积累。

计算机引入结构力学后,增加了我们进行大型计算,分析大型结构的能力。但是,计算机并不排斥力学理论,而是要求我们更深更活地掌握力学理论。

§1-7 方法论(1)——学习方法(3)

五、创新

科学精神的精髓是求实创新。

创新:推陈出新,破旧立新,有推有出,有破有立。创新并不神秘,把知识向前推进一步,向更广、更深、更精、更神的方向迈出一步,都是创新的一步。创新意识要贯穿在整个学习过程中,在加、减、问、用各个方面都要着眼于创新,有心于创新。

加:在继承中创新。每项创新成果都吸收了前人的成果。像牛顿那样站在巨人的肩上才能看得更远。广采厚积是创新的基础。

减:在“去粗取精,弃形取神”的减法过程中要注意“去”和“弃”。在“推陈出新、破旧立新”的创新过程中要注意“推”和“破”。二者是相通的。

问:在已有的知识中发现疑点,感到困惑,是走向解惑和创新的起点。创新是善问巧思的回报。

用:在应用和实践中对已有的知识进行检验,发现其中的不足而加以改正,这就是创新。实践为创新提供了机遇。

创新不能违反客观规律。在求实中创新,“出新意于法度之中”(苏轼)。在客观规律的容许之下,创造力有充分的自由活动空间。

后语

把以上的议论归纳为五句话:

加——广采厚积,织网生根。

减——去粗取精,弃形取神。

问——知惑解惑,开启迷宫。

用——实践检验,多用巧生。

创新——觅真理立巨人肩上,出新意于法度之中。

第二章几何构造分析

1. 主要内容

一个体系要能承受荷载,首先它的几何构造应当合理,能够使几何形状和位置保持不变。因此,在进行结构受力分析之前,先进行几何构造分析。

在几何构造分析中,最基本的规律是三角形规律。规律本身是简单浅显的,但规律的运用则变化无穷。因此,学习本章时遇到的困难不在于学懂,而在于灵活运用。

本章在全书中只是一个短小的前奏,只是从几何构造的角度讨论结构力学中的一个侧面,根本不涉及到内力和应变。但是构造分析与内力分析之间又是密切相关的,本章内容将在后面许多章节中得到应用。

2. 教学目的

理解自由度、可变体系与不变体系、瞬变体系、瞬铰的概念;

正确理解三角形规律,并能熟练应用三角形规律分析平面体系的几何构造;掌握计算自由度的计算方法,能计算一般平面体系的自由度。

3. 本章目录

§2-1 基本概念

§2-2 自由度计算

§2-3 几何不变体系的组成规律

§2-4 几何构造分析方法与实例

§2-5 求解器的应用

§2-6 小结

§2-7 习题

§2-8 测验

4. 参考章节

《结构力学教程(Ⅰ)》,第2章、结构的几何构造分析,。

§2-1 基本概念

1. 教学要求

理解自由度、几何可变体系与几何不变体系、瞬变体系、瞬铰的概念。2. 本节目录

1. 几何不变体系和几何可变体系

2. 运动自由度S

3. 约束

4. 多余约束和非多余约束

5. 瞬变体系

6. 瞬铰和无穷远处的瞬铰

7. 思考与讨论

3. 参考章节

《结构力学教程(Ⅰ)》,。

2.1.1 几何不变体系和几何可变体系

几何不变体系:体系的位置和形状是不能改变的(图2-1b)。

几何可变体系:体系的位置或形状是可以改变的(图2-1a)。

以上讨论的前提:不考虑材料的应变。

图2-1a图2-1b

一般结构都必须是几何不变体系,而不能采用几何可变体系

2.1.2 运动自由度S

S:体系运动时可以独立改变的坐标的数目。

图2-2a

图2-2b

(平面内一个点有两个自由度)

(平面内一个刚体有三个自由度)

2.1.3 约束

减少体系自由度的装置。

2.1.4 多余约束和非多余约束

不能减少体系自由度的约束叫多余约束。

图2-3a

图2-3b

图2-3c

S 由3个减少到2个 S 由6个减少到4个

S 由6个减少到3个

一个支杆相当于一个约束

一个简单铰相当于两个约

一个简单刚结相当于三个约束

能够减少体系自由度的约束叫非多余约束。

注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。

图2-4a图2-4b

链杆1或2能减少点 A 的两个自由度,因此链杆1和2都是非多余约束。链杆1、2和3共减少点 A 的两个自由度,因此三根链杆中只有两根是非多余约束,有一个是多余约束。

一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。

2.1.5 瞬变体系

图2-5a图2-5b

分析:

(1)当链杆1和2共线时,圆弧Ⅰ和Ⅱ在 A 点相切(图2-5a),因此 A 点可沿公切线方向做微小运动,体系是可变体系。

(2)当 A 点沿公切线发生微小位移后,链杆1和2不再共线(图2-5b),因此体系不再是可变体系。

本来是几何可变,经微小位移后成为几何不变的体系称为瞬变体系。

可以发生大位移的几何可变体系称为常变体系。

可变体系可进一步分为瞬变体系和常变体系。

(3)点A 在平面内有两个自由度,增加两根共线链杆后, A 点仍有一个自由度,因此链杆1和2中有一个是多余约束。

一般说来,瞬变体系中必然存在多余约束。

2.1.6 瞬铰和无穷远处的瞬铰

两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰(如图2-6a)。

图2-6a 图

2-6b 图2-6c

图2-6a中,链杆1和2交于 O 点,刚片I可以发生以 O 为中心的微小转动。

图2-6b和图2-6c中,链杆1和2的交点在无穷远处,因此两根链杆所起作用的相当于无穷远处的瞬铰所起的约束作用,绕瞬铰的转动转化为沿两根链杆的正交方向上的平动。在图2-6a、b、c各体系的相对运动过程中,瞬铰位置不断变化。

在几何构造分析中应用无穷远处瞬铰的概念时,可以采用射影几何中关于∞点和∞线的下列四点结论:

(1) 每个方向有一个∞点(即该方向各平行线的交点)。

(2) 不同方向上有不同的∞点。

(3) 各∞点都在同一直线上,此直线称为∞线。

(4) 各有限远点都不在∞线上。

2.1.7 思考与讨论

1.有的文献把几何可变体系称为几何不稳体系,把几何不变体系称为几何稳定体系。材料力学中把压杆屈曲问题称为弹性稳定性问题。试对几何稳定性和弹性稳定性这几个不同概念加以比较。

2.“多余约束”从以下哪个角度来看才是多余的

(a) 从对体系的自由度是否有影响的角度看;

(b) 从对体系的计算自由度是否有影响的角度来看;

(c) 从对体系的受力和变形状态是否有影响的角度来看;

(d) 从区分静定和超静定两类问题的角度来看。

§2-2 自由度计算

1. 教学要求

掌握实际自由度和计算自由度的计算方法。

2. 本节目录

1. 实际自由度S和计算自由度W

2. 部件和约束

3. 平面体系的计算自由度W的求法(1)

4. 平面体系的计算自由度W的求法(2)

5. 思考与讨论

3. 参考章节

1.《结构力学教程(Ⅰ)》,。

2. §2-1 基本概念

2.2.1 实际自由度 S 和计算自由度W

S = (各部件自由度总和 a)-(非多余约束数总和 c)------- (2-1)

S = 1×2-2 = 0,

非多余约束数c = 2 ,

多余约束数 n = 2 ,

但是复杂情况难以找全多余约束。

图3-1

W = (各部件自由度总和 a )-(全部约束数总和 d )-------- (2-2)

2.2.2 部件和约束

1. 部件可以是点,也可以是刚片

在几何构造分析时要注意刚片内部是否有多余约束。

结构力学知识点复习过程

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。 刚结点:既可以传递力,也可以传递力矩。 支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。 荷载是主动作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 结构的几何构造分析 在几何构造分析中,不考虑这种由于材料的应变所产生的变形。 杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 自由度:一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的个数。 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 凡是自由度的个数大于零的体系都是几何可变体系。 一个支杆(链杆)相当于一个约束。可以减少一个自由度。 一个单铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度。一个单刚结(刚性结合)相当于三个约束,可以减少三个自由度。 如果在一个体系中增加一个约束,而体系的自由度并不因而减少,则此约束称为多余约束。增加了约束,计算自由度会减少。因为w=s-n . 瞬变体系:本来是几何可变、经微小位移后又成为几何不变的体系称为瞬变体系。 实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上交于一点,所构成的铰就叫实铰。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点,而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰了。两根链杆所起的约束作用等效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动。 截面上应力沿杆轴切线方向的合力,称为轴力。轴力以拉力为正。 截面上应力沿杆轴法线方向的合力称为剪力。剪力以绕微段隔离体顺时针转者为正。 截面上应力对截面形心的力矩称为弯矩。在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。 作轴力图和剪力图要注明正负号。作弯矩图时,规定弯矩图的纵坐标应画在受拉纤维一边,不注明正负号。 通常在桁架的内力计算中,采用下列假定: ①桁架的结点都是光滑的铰结点; ②各杆的轴线都是直线并通过铰的中心; ③荷载和支座反力都作用在结点上。 根据几何构造的特点,静定平面桁架可分为三类:简单桁架,联合桁架,复杂桁架。 在单杆的前提下,当结点无荷载作用时,单杆的内力必为零。此单杆称为零杆。 由链杆和梁式杆组成的结构,称为组合结构。 链杆只受轴力作用;梁式杆除受轴力作用外,还受弯矩和剪力作用。 三铰拱受力特点: ①在竖向荷载作用下,梁没有水平反力,而拱则有推力。 ②由于推力的存在,三铰拱截面上的弯矩比简支梁的弯矩小。弯矩的降低,使拱能更充分地发挥材料的作用。 ③在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力。 合理拱轴线:在固定荷载作用下使拱处于无弯矩、无剪力、而只有轴力作用的轴线。 合理轴线:通常指具有不同高跨比的一组抛物线。 影响线 内力影响线:表示单位移动荷载作用下内力变化规律的图形。无论在剪力、弯矩、支座反力的影响线图中都需要标上正负号。影响线是研究移动荷载最不利位置和计算内力最大值(或最小值)的基本工具。 荷载:特定单位移动荷载P=1 固定、任意荷载最不利位置:如果荷载移动到某个位置,使某量Z达到最大值,则此荷载位置称为最不利位置。 影响线的一个重要作用,就是用来确定荷载的最不利位置。 定出荷载最不利位置判断的一般原则是:应当把数量大、排列密的荷载放在影响线竖距较大的部位。 计算结构的位移目的有两个: ①一个目的是验算结构的刚度,即验算结构的位移是否超过允许的位移限值。 ②另一个目的是为超静定结构的内力分析打下基础。 产生位移的原因主要有下列三种: ①荷载作用②温度变化和材料胀缩③支座沉降和制造误差 一组力可以用一个符号P表示,相应的位移也可用一个符号Δ表示,这种夸大了的力和位移分别称为广义力和广义位移。 图乘法的应用条件:①杆段应是等截面直杆段。②两个图形中至少应有一个是直线,标距y0 应取自直线图中。 互等定理包括四个普遍定理:①功的互等定理②位移互等定理 ③反力互等定理④位移反力互等定理。 3、对称结构就是指: ①结构的几何形式和支承情况对某轴对称。 ②杆件截面和材料性质也对此轴对称。(因而杆件的截面刚度EI对此轴对称) 4、对称荷载:对称荷载绕对称轴对折后,左右两部分的荷载彼此重合(作用点相对应、数值相等、方向相同) 反对称荷载:反对称荷载绕对称轴对折后,左右两部分的荷载正好相反(作用点相对应、数值相等、方向相反) 超静定结构有一个重要特点,就是无荷载作用时,由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用也可以产生内力。 超静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移也可以产生内力。 静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移但不能产生内力。 力法:多余未知力静定结构变形协调(位移相等) 位移法:结构独立结点位移(角、线位移)超静定单杆(是用位移表示的)平衡方程 2、系数EAi /Li是使杆端产生单位位移时所需施加的杆端力,称为杆件的刚度系数。 体系的自由度指的是确定物体位置所需要的最少坐标数目。 拱的基本特点是在竖向荷载作用下会产生水平支座反力。 .静定结构的特性:(1)静定结构的全部约束反力与内力都可以用静力平衡方程求得。(2)温度变化、支座位移不引起静定结构的内力。3)当一个平衡力系作用在静定结构的某一自身几何不变的杆上时,静定结构只在该力系作用的杆段内产生内力。(4).作用在静定结构的某一自身为几何不变的杆 段上的某一荷载,若用在该段上的一个等效 力系来代替,则结构仅在该段上的内力发生 变化,其余部分内力不变。 1.平面杆件结构分类? 梁、刚架、拱、桁架、组合结构。 2.请简述几何不变体系的俩刚片规则。 两刚片用一个铰和一根不通过该铰链中心的链杆或不全交于一点也不全平行的三根链杆相联,则组成的体系是几何不变的,并且没有多余约束。 3.请简述几何不变体系的三刚片规则。 三刚片用不共线的三个铰两两相联或六根链杆两两相联,则组成的体系是几何不变体系,且没有多余约束。 4.从几何组成分析上来看什么是静定结构,什么是超静定结构?(几何特征) 无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构,有几个多余约束,即为几次超静定。 5.静定学角度分析说明什么是静定结构,什么是超静定结构? 只需要利用静力平衡条件就能计算出结构全部支座反力和构件内力的结构称为静定结构;全部支座反力和构件内力不能只用静力平衡条件确定的结构称为超静定结构。 6.如何区别拱和曲梁 杆轴为曲线且在竖向荷载作用下能产生水平推力的结构,称为拱;杆轴为曲线,但在竖向荷载作用下无水平推力产生,称为曲梁。 7.合理拱轴的条件? 在已知荷载作用下,如所选择的三铰拱轴线能使所有截面上的弯矩均等于零,则此拱轴线为合理拱轴线。 仅供学习与参考

结构力学课程教学改革

结构力学课程教学改革 摘要:文章通过阐述笔者在“结构力学”课程教学中所遇到的一些问题,并针对这些问题在教学内容、教学方式等方面进行了思考,最后对课程的教学改革提出了自己的一些看法。 关键词:结构力学;教学方法;教学改革 前言 结构力学是高校土木工程专业最重要的一门专业基础课之一,在整个土木工程专业教学中不但具有承上启下的核心地位,而且贯穿于整个专业学习的过程。结构力学的先修课包括高等数学、线性代数、计算机基础知识、工程力学等,作为土木工程学科主要的专业基础课之一,它是联系基础力学课程与工程设计课程的纽带,是从力学基本理论过渡到工程实际应用的重要桥梁。结构力学课程的教学质量直接决定了后续钢筋混凝土结构设计原理、钢结构、地基基础和抗震结构设计、以及课程设计和毕业设计等课程的教学效果,同时也是学生今后在设计或施工工作中解决工程问题的基础。因此,想要学生将大学的专业课程学习扎实,结构力学这门课程必须学好,这就对我们结构力学的教室提出了更高的要求。本人在结构力学的教学过程中,发现了一些教学上所存在的问题,文章将从这些问题着手,提出一些解决问题的方法,并对该课程的教学的改革提出几点自己的见解。 一、结构力学教学中存在的问题 (一)课时少 在教育部大力推行“大土木”专业背景下,学生的课程数量大幅

增加,导致各专业课分配到的课时不可避免的减少,结构力学也不例外。而结构力学是一门专业基础课,主要研究杆系结构的内力和变形,具有内容较多,理论性强,概念较为抽象,解决问题的思路多样化等特点。有很多重要的内容必须细细讲授,要耗费大量课时,课时少与内容多的矛盾相当突出。因此,必须增加结构力学课程的学时。 (二)内容繁琐、零乱 在目前的结构力学的培养方案中,有一些内容较为繁琐、零乱。例如在理论力学中,桁架杆的内力计算已经被讲授过,而结构力学又要重新再讲一次,内容得不到很好的衔接,导致学生上课一头雾水。而像矩阵位移法这类本科学生今后在工作中很少被运用到的内容,大纲却要求重点讲授,不仅浪费课时,也浪费学生学习的精力。因此,教学内容改革势在必行。 (三)内容抽象 结构力学研究计算的是结构在各种效应作用下的响应,包括内力的计算及位移的计算。由于内力看不见,摸不着,学生在学习的过程中缺乏感性的认识,学生很容易将内力等概念混淆,造成对知识点的模糊。且由于课程的内容抽象,这就造成学生在接触到这门课程时容易产生畏难情绪,再者由于学生在学习过程中没有明确的目的性,“怎样去学习”、“知识点该如何运用”、“如何分析力学模型”等问题普遍存在,导致学生不能学以致用,自然而然缺乏对结构力学这门理论性较强的课程的学习兴趣。学生学习后不知道学习结构力学对今后工作有何帮助。

结构力学经典考研复习笔记强力推荐吐血推荐

第一章绪论 一、教学内容 结构力学的基本概念和基本学习方法。 二、学习目标 了解结构力学的基本研究对象、方法和学科内容。 明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。 理解荷载和结构的分类形式。 在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。 三、本章目录 §1-1 结构力学的学科内容和教学要求 §1-2 结构的计算简图及简化要点 §1-3 杆件结构的分类 §1-4 荷载的分类 §1-5 方法论(1)——学习方法(1) §1-6 方法论(1)——学习方法(2) §1-7 方法论(1)——学习方法(3) §1-1 结构力学的学科内容和教学要求 1. 结构 建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。 从几何的角度,结构分为如表1.1.1所示的三类: 表1.1.1 分特点实例

2. 结构力学的研究内容和方法 结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。 理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。 其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。学习好理论力学和材料力学是学习结构力学的基础和前提。 结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。包括以下三方面内容: (1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择; (2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算; (3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。 结构力学问题的研究手段包含理论分析、实验研究和数值计算,本课程只进行理论分析和数值计算。结构力学的计算方法很多,但都要考虑以下三方面的条件: (1) 力系的平衡条件或运动条件。

结构力学期末复习题及答案

二、判断改错题。 1、三刚片用三个铰两两相联必成为几何不变体系。 ( ) 2、对静定结构,支座移动或温度改变会产生内力。 ( ) 3、力法的基本体系必须是静定的。 ( ) 4、任何三铰拱的合理拱轴都是二次抛物线。 ( ) 5、图乘法可以用来计算曲杆。 ( ) 6、静定结构的影响线全部都由直线段组成。 ( ) 7、多跨静定梁若附属部分受力,则只有附属部分产生内力。 ( ) 8、功的互等定理成立的条件是小变形和线弹性。 ( ) 9、力法方程中,主系数恒为正,副系数可为正、负或零。 ( ) 三、选择题。 1、图示结构中当改变 B 点链杆方向(不能通过 A 铰)时,对该梁的影响是( ) A 、全部内力没有变化 B 、弯矩有变化 C 、剪力有变化 D 、轴力有变化 2、图示桁架中的零杆为( ) A 、DC, EC, DE, DF , EF B 、DE, DF, EF C 、AF, BF, DE, DF, EF D 、DC, EC, AF, BF 3、右图所示刚架中 A 支座的反 力 H A 为( ) A 、 P P B 、 2 C 、 P P D 、 2 C DE P C 2EI D EI EI A B 4、右图所示桁架中的零杆为( ) G HI A B F F J

A、DG, BI ,CH B、DE,DG,DC,BG,AB,BI C、BG,BI,AJ D、CF , BG , BI 5、静定结构因支座移动,() A、会产生内力,但无位移 B、会产生位移,但无内力 C、内力和位移均不会产生 D、内力和位移均会产生 支座 A 产生逆时针转角,支座 B 产生竖直沉降c ,若取简支梁为) A 、X c a B 、X a C、X c a 7、下图所示平面杆件体系为() A 、几何不变,无多余联系 B、几何不变,有多余联系 C、瞬变体系 D、常变体系 A B EI a A B X EI 6、对右图所示的单跨超静定 梁, 其基本结构,则力法方程为(

结构力学主要知识点归纳

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A 、杆件的简化:常以其轴线代表 B 、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C 、体系简化:常简化为集中荷载及线分布荷载 D 、体系简化:将空间结果简化为平面结构 2、结构分类: A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B 、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。 ②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。 二、平面体系的机动分析 1、体系种类 A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。 A 、W>0,表明缺少足够联系,结构为几何可变; B 、W=0,没有多余联系; C 、W<0,有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远处的体系分析可见结构力学P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制: A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示

天津大学结构力学考研真题资料含答案及详细讲解

天津大学结构力学考研真题资料含答案及详细讲解天津大学结构力学考研真题作用十分重大,能从中琢磨考研老师出题思路,然后给自己的考研复习一个定位。所以,特别是后期的考研复习阶段,尤其需要真题资料,所以不能太急往下做。每一套真题都很宝贵。专业课方面,天津大学结构力学考研真题资料是很重要的,但是总听见一些考生们被假资料所累,被错误的信息引导,影响了复习质量,实在是得不偿失了。为了帮助大家更好的使用天津大学结构力学考研真题资料,且明辨真伪,下面天津考研网小编就仔细和大家说说。 天津大学结构力学考研真题资料什么时候做? 建议:考前1~2个月,可以做几遍,最近年份的真题建议在临近考试前做一下,不为检测考多少分,只为找找感觉。注意总结,真题是最好的资源,在真题中往深挖掘,反思,这样才能有所提高,《天津大学818结构力学考研真题复习宝典》对考研真题进行了详细讲解并做深度分析,总结出题规律,进行必要的答题技巧点拨,同时在关键时刻做考点预测。 天津大学818结构力学考研真题试卷的卷面分析: 以下内容摘录自《天津大学818结构力学考研红宝书》: 天大的结构题型分为判断题,填空题以及解答题。满分150分,其中判断题6个,每个5分;选择题6个,每个5分;解答题3个,每个30分。 其中判断题主要是对概念的理解,基本上无关计算;选择题一般是简单的计算题;而3个解答题则分别考察力法,位移法以及动力学知识。 结构力学的卷面构成相对简单,常见题型包括填空、判断和分析计算题。考察内容多为基础知识及各知识点的灵活运用。 这里以2010年结构力学考试中的一道分析计算题为例,分析答题思路和要点: 图示连续梁,EI为常数。支座B是弹性抗转支座,抗转刚度为,支座C处弹簧刚度为。试用位移法求解此梁,并绘制弯矩图。(本大题30分)

结构力学手工计算(小灰笔记版)

结构力学手工计算汇报讲义 力学是做好施工技术的基础,手工计算是工程技术人员的基本功。学好手工计算,对力学活学活用,可以认知结构特征,能够快捷高效地完成结构设计工作。复杂问题简单处理,简单问题认真分析,能够体现工程技术人员的基本素质。 针对结构力学的巧用方法,汇报我多年的学习体会。 结构力学手工计算,要善于利用结构能量守恒定律以及变形相似规律,熟练掌握简单荷载下静定结构的计算理论。 一、简单荷载又简单结构的力学计算方法:静定结构 1、某一孔等刚度(EI )均布荷载简支梁力学模型如图1.1所示,求其最大弯矩、挠度值。 图1.1、一孔均布荷载简支梁力学模型 最大弯矩:M max =2)2(8 1 L q ; 跨中最大挠度:x EI L q 4 max )2(3845=ω 2、某一孔等刚度(EI )、跨中作用一集中荷载F 的简支梁力学模型如图1.2所示,求其最大弯矩、挠度值。

图1.2、一孔集中荷载作用简支梁力学模型 最大弯矩:M max =4 2L F ) (; 跨中最大挠度:x EI L 48)2F 3 max (= ω 二、稍微复杂一点的结构计算:简单荷载+一次超静定结构 某一等刚度(EI )、均布荷载双等跨连续梁力学模型如图2.1所示。计算其最大结构内力(弯矩、剪力)及最大变形。 图2.1、双等跨均布荷载连续梁力学模型 1、利用先人做好的系数法 各支点反力:R A =qL 8 3 ,R B = qL 810,R C =qL 83 ; 弯矩:M 1中=207.0qL ,M B 支=28 1 qL -; 剪力:T A 右=qL 83-,T B 左=qL 85,T B 右=qL 85 -,T C 左=qL 8 3; 最大挠度:EI 1000.521qL 4 1=中ω 2、巧用力法:演示中间B 点反力R B 计算过程

结构力学的知识点

双筋计算方法: 一As与As' 1、截面计算 1)假设a s=65mm,a s'=35mm,求得h0=h-a s 2)验算是否需要双筋。Mu= f cd bh02§b(1-0.5§b) 3)取§=§b,求As'=【M- f cd bh02§(1-0.5§)】/【f sd'(h0- a s')】 4)求As=【f cd bx+f sd'As'】/ f sd 其中x=§b h0 下面选钢筋,钢筋层净距,钢筋间净距(大于30mm和直径d),保护层厚度,再计算a s和a s' 二、已知As',求As 5)假设a s,求得h0=h-a s 6)求受压区高度x= h0-√h02-2【M- f sd'As'(h0- a s')】/f cd b 7)当x﹤§b h0且x﹤2 a s'时,As=M/【f sd(h0- a s')】 当x≤§b h0且x≥2 a s'时,As=【f cd bx+f sd'As'】/ f sd 8)选择受拉钢筋直径的数量,布置截面钢筋(同上) 2、截面复核 1)检查钢筋布置是否符合规要求 2)将As=?As'=?h0=?f cd f sd' f sd 若带入x=【f sd As- f sd'As'】/f cd b ≤§b h0 ﹤2 a s' 用Mu= f sd As(h0- a s')计算正截面承载力 若2 a s'≤x≤§b h0,矩形截面抗弯承载力 Mu= f cd bx(h0-x/2)+ f sd'As'(h0- a s')

一、As与As'均未知 1、截面设计 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之, ξ1=0.27+2.7 e0/ h0 ξ2=1.15-0.01l0/h η=1+1/【1400(e0/ h0)】(l0/h)2ξ1ξ2 2)令§=§b,求As'=【Ne s- f cd bh02§b(1-0.5§b)】/ f sd'(h0- a s') ≥ρmin bh (ρmin=0.2%)取σs= f sd 求As=【f cd bh0§b+ f sd'As'-N】/ f sd≥ρmin bh 二、已知As',求As 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之,2)计算受压区高度x= h0-√h02-2【Ne s - f sd'As'(h0- a s')】/f cd b 当2 a s'﹤x≤§b h0时,取σs= f sd 求As=【f cd bx+ f sd'As'-N】/ f sd 当x≤§b h0 x≤2 a s'时,As=Ne s'/ f sd(h0- a s') 3)选钢筋,看配筋率是否符合ρ+ρ'≥0.5%,纵筋最小净距(一般为30mm),重取a s= a s'=?,计算保护层厚度是否满足要求,最小截面宽度b min 2、截面复核 1)垂直于弯矩作用平面

结构力学复习材料

结构力学复习题 一、单项选择题 1.图示体系为() 题1图 A.无多余约束的几何不变体系 B.有多余约束的几何不变体系 C.瞬变体系 D.常变体系 2. 图示结构用位移法计算时,其基本未知量数目为( )。 A. 角位移=2, 线位移=2 B. 角位移=4, 线位移=2 C. 角位移=3,线位移=2 D. 角位移=2,线位移=1 3.图示结构AB杆杆端弯矩M BA(设左侧受拉为正)为() A.2Pa B.Pa C.3Pa D.-3Pa 题2图题3图 4.在竖向均布荷载作用下,三铰拱的合理轴线为() A.圆弧线 B.二次抛物线 C.悬链线 D.正弦曲线 5.图示结构DE杆的轴力为() A.-P/4 B.-P/2 C.P D.P/2 6.图示结构,求A、B两点相对线位移时,虚力状态应在两点分别施加的单位力为() A.竖向反向力 B.水平反向力 C.连线方向反向力 D.反向力偶

题5图题6图 7.位移法解图示结构内力时,取结点1的转角作为Z1,则主系数r11的值为() A.3i B.6i C.10i D.12i 题7图8.图示对称刚架,具有两根对称轴,利用对称性简化后的计算简图为() A. B. C. D. 题8图 9.计算刚架时,位移法的基本结构是() A.超静定铰结体系 B.单跨超静定梁的集合体 C.单跨静定梁的集合体 D.静定刚架 10.图示梁在移动荷载作用下,使截面K产生最大弯矩的最不利荷载位置是() A. B.

C. D. 题10图 11.图示杆件体系为( ) A .无多余约束的几何不变体系 B .有多余约束的几何不变体系 C .瞬变体系 D .常变体系 12.图示结构,截面C 的弯矩为( ) A .4 2ql B .2 2ql C .2ql D .22ql 题11图 题12图 13.图示刚架,支座A 的反力矩为( ) A .2Pl B .Pl C .2 3Pl D .2Pl 14.图示桁架中零杆的数目为(不包括支座链杆)( ) A .5 B .6 C .7 D .8 题13图 题14图 15.图示三铰拱,支座A 的水平反力为( ) A .0.5kN B .1kN C .2kN D .3kN 16.图示结构的超静定次数为( ) A .2 B .3 C .4 D .5

结构力学

第一讲平面体系的几何组成分析及静定结构受力分析 【内容提要】 平面体系的基本概念,几何不变体系的组成规律及其应用。静定结构受力分析方法,反力、内力计算与内力图绘制,静定结构特性及其应用。 【重点、难点】 静定结构受力分析方法,反力、内力计算与内力图绘制 一、平面体系的几何组成分析 (一)几何组成分析 按机械运动和几何学的观点,对结构或体系的组成形式进行分析。 (二)刚片 结构由杆(构)件组成,在几何分析时,不考虑杆件微小应变的影响,即每根杆件当做刚片。 (三)几何不变体系 体系的形状(或构成结构各杆的相对位置)保持不变,称为几何不变体系,如图6-1-1 (四)几何可变体系 体系的位置和形状可以改变的结构,如图6-1-2。 图6-1-1 图6-1-2 (五)自由度 确定体系位置所需的独立运动参数数目。如一个刚片在平面内具有3个自由度。(六)约束

减少体系独立运动参数(自由度)的装置。 1.外部约束 指体系与基础之间的约束,如链杆(或称活动铰),支座(固定铰、定向铰、固定支座)。2.内部约束 指体系内部各杆间的联系,如铰接点,刚接点,链杆。 规则一:一根链杆相当于一个约束。 规则二:一个单铰(只连接2个刚片)相当于两个约束。 推论:一个连接n 个刚片的铰(复铰)相当于(n- 1)个单铰。 规则三:一个单刚性结点相当于三个约束。 推论:一个连接个刚片的复刚性结点相当于( n- 1)个单刚性结点。 3.必要约束 如果在体系中增加一个约束,体系减少一个自由度,则此约束为必要约束。 4.多余约束 如果体系中增加一个约束,对体系的独立运动参数无影响,则此约束称为多余约束。(七)等效作用 1.虚铰 两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作用与实铰相同。 平行链杆的交点在无限远处。 2.等效刚片 一个内部几何不变的体系,可用一个刚片来代替。 3.等效链杆。 两端为铰的非直线形杆,可用一连接两铰的直线链杆代 二、几何组成分析 (一)几何不变体系组成的基本规则

结构力学知识点总结

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0,体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。

9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。 () ()Q dM x dF x dx =2 2 ()()()Q dF x d M x q y dx dx ==-,,B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=- =+ ? ? ?

分布力q(y) = 常数时,剪力图为一条斜直线;弯矩图为一条二次曲线。 12.只有两杆汇交的刚结点,若结点上无外力偶作用,则两杆端弯矩必大小相等,且同侧受拉。 13.对称结构受正对称荷载作用, 内力和反力均为对称(K行结点不受荷载情况)。对称结构受反对称荷载作用, 内力和反力均为反对称。 14.三铰拱支反、内力计算公式(竖向荷载、两趾等高)

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第12章 结构动力学【圣才出品】

第12章 结构动力学 12.1 复习笔记【知识框架】

【重点难点归纳】 一、基本概念 ★★★ 1.动力载荷与静力载荷(见表12-1-1) 表12-1-1 动力载荷与静力载荷的基本概念 2.自由振动和强迫振动(见表12-1-2) 表12-1-2 自由振动和强迫振动的基本概念 3.结构动力计算的前提和目的(见表12-1-3) 表12-1-3 结构动力计算的前提和目的

二、结构振动的自由度(见表12-1-4) ★★★ 表12-1-4 结构振动的自由度 三、单自由度结构的自由振动 ★★★★ 1.不考虑阻尼时的自由振动 如图12-1-1(a)所示,弹簧下端悬挂一质量为m的重物。取此重物的静力平衡位置为计算位移y的原点,并规定位移y和质点所受的力都以向下为正。 图12-1-1

(1)刚度系数与柔度系数(见表12-1-5) 表12-1-5  刚度系数与柔度系数 (2)建立振动微分方程的方法(见表12-1-6) 表12-1-6 建立振动微分方程的方法 (3)单自由度结构在自由振动时的微分方程(见表12-1-7) 表12-1-7 单自由度结构在自由振动时的微分方程

2.考虑阻尼作用时的自由振动(见表12-1-8) 表12-1-8 考虑阻尼作用时的自由振动 四、单自由度结构在简谐荷载作用下的受迫振动(见表12-1-9) ★★★

表12-1-9 单自由度结构在简谐荷载作用下的受迫振动 五、单自由度结构在任意荷载作用下的受迫振动 ★★ 单自由度结构在任意动力载荷作用下的质点位移公式均为杜哈梅积分,公式无需记忆,了解即可,此处不进行归纳。两种特殊载荷作用下的质点位移公式见表12-1-10。 表12-1-10 两种特殊载荷作用下的质点位移公式

结构力学知识点汇总

结构力学知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0, 体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。 三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。 5.二元体规律: 在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。 6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。 7.w=s-n ,W=0,但布置不当几何可变。自由度W >0 时,体系一定是可变的。 但W ≤0仅是体系几何不变的必要条件。S=0,体系几何不变。 8..轴力FN --拉力为正; 剪力FQ--绕隔离体顺时针方向转动者为正; 弯矩M--使梁的下侧纤维受拉者为正。 弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。 9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 () ()Q dM x dF x dx =22() ()()Q dF x d M x q y dx dx ==-FN+d FN F N FQ+dFQ F Q M M+ dM d x d x ,, B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=-=+? ? ?

结构力学最全的知识点梳理及学习方法

第一章绪论 §1-1 结构力学的研究对象和任务 一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。 注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。最简单的结构可以是单个的构件,如单跨梁、独立柱等。 二、结构的分类:由构件的几何特征可分为以下三类 1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。 3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。 三、课程研究的对象 ?材料力学——以研究单个杆件为主 ?弹性力学——研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构 ?结构力学——研究平面杆件结构 四、课程的任务 1.研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。 2.计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。 3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。 §1-2 结构计算简图

一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。 选择计算简图时,要它能反映工程结构物的如下特征: 1.受力特性(荷载的大小、方向、作用位置) 2.几何特性(构件的轴线、形状、长度) 3.支承特性(支座的约束反力性质、杆件连接形式) 二、结构计算简图的简化原则 1.计算简图要尽可能反映实际结构的主要受力和变形特点 ,使计算结果安全可靠; .............. 。 2.略去次要因素,便于分析和计算 ....... 三、结构计算简图的几个简化要点 1.实际工程结构的简化:由空间向平面简化 2.杆件的简化:以杆件的轴线代替杆件 3.结点的简化:杆件之间的连接由理想结点来代替 (1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。 (2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。(3)组合结点(半铰):刚结点与铰结点的组合体。 4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结 (1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。沿支座链杆方向产生一个约束力。 (2)固定铰支座:简称铰支座,允许杆件饶固定铰铰心有微小转动。过铰心产生任意方向的

结构力学上期末复习重点

第一章: 机动分析就是判断一个杆系是否是几何不变体系,同时还要研究几何不变体系的组成规律。又称: 几何组成分析、几何构造分析 机动分析的目的: 1、判别某一体系是否为几何不变,从而决定它能否作为结构。 2、区别静定结构、超静定结构,从而选定相应计算方法。 3、搞清结构各部分间的相互关系,以决定合理的计算顺序。 计算自由度: W=3m-2h-r m---刚片数h---单铰数r---单链杆数(支座链杆) W=2j-b-r 【平面链杆系的自由度(桁架):链杆(link)——仅在杆件两端用铰连接的杆件】 非链杆体系的只能用第一个公式计算 J---铰结点数b---链杆数r---单链杆数(支座链杆) = 限制自由度为1 限制自由度为2 限制自由度为3 W>0时,体系几何可变 体系几何不变的必要条件:W≤0 A.三刚片规则 三个刚片用不在同一直线上的三个单铰两两相连,所组成的平面体系几何不变。 B.二元体规则 在刚片上增加一个二元体,是几何不变体系。 C.两刚片规则: 两个刚片用一个铰和一个不通过该铰的链杆连接,组成几何不变体系。

O 瞬变体系:原为几何可变,经微小位移后即转化为几何不变的体系。 铰结三角形规则——条件:三铰不共线 机动分析步骤总结: 计算自由度 判别二元体,如有,先撤去 观察是否是瞬变体系 已知为几何不变的部分宜作为大刚片 两根链杆相当于其交点处的虚铰 运用三刚片规则时,如何选择三个刚片是关键,刚片选择的原则是使得三者之间彼此的连接方式是铰结 各杆件要么作为链杆,要么作为刚片,必须全部使用,且不可重复使用 4.多余约束”从哪个角度来看才是多余的?( A ) A.从对体系的自由度是否有影响的角度看 B.从对体系的计算自由度是否有影响的角度看 C.从对体系的受力和变形状态是否有影响的角度看 D.从区分静定与超静定两类问题的角度看 下列个简图分别有几个多余约束: 0 个约多余束 3 个多余约束

东南大学《结构力学》考试大纲

结构力学》考试大纲 一、命题范围与重点 1.平面体系的几何组成分析 用平面几何不变体系的基本组成规则分析给定平面体系的几何构造,判断其几何稳定性。 2.静定结构的内力计算 静定梁、刚架、桁架、拱和组合结构的内力计算。 直杆弯矩图的叠加法;直杆弯矩,剪力及荷载间的微分关系及增量关系。 隔离体平衡法:结点法和截面法以及它们的联合应用。 多跨静定梁的计算方法。 刚体体系的虚功原理。 3.静定结构的位移计算 弹性体的虚功原理及平面结构位移计算的一般公式。 静定平面弹性结构因荷载、支座移动、温度变化和制造误差而产生的位移计算(单位荷载法)。 图乘法;三角形及标准二次抛物线图形的面积及形心位置。 弹性体系的功的互等定理、反力互等定理和位移互等定理。 4.力法 用力法计算超静定梁、刚架、桁架、组合结构。 上述超静定结构因荷载、支座移动、温度变化和制造误差而产生的内力和位移的计算。 对称性的利用。 5.位移法 等截面直杆的转角位移方程。 用位移法计算刚架和连续梁由于荷载和支座移动产生的内力。 对称性的利用。 6.力矩分配法 用力矩分配法计算连续梁和无侧移刚架 7.影响线 用静力法和机动法作静定梁和桁架反力和内力的影响线。 用机动法作超静定梁的影响线。 用影响线求给定荷载下的影响量。 8.矩阵位移法 单元刚度矩阵的概念。 利用一般单元的刚度矩阵求特殊单元的刚度矩阵。 局部坐标系和整体坐标系中结点力、位移和单元刚度矩阵的转换。 整体刚度矩阵的概念,和集成方法。 等效结点荷载。结构整体结点荷载的形成。 9.结构动力计算 单自由度体系的自由振动。自振频率的计算。 单自由度体系在简谐荷载作用下的受迫振动。 多自由度体系的自由振动。振型和频率的计算、主振型的正交性。 多自由度体系在简谐荷载作用下的受迫振动,振型分解法。

天津大学结构力学真题(最完整版)

天津大学研究生院1994年招收硕士生入学试题 考试科目:结构力学(包含结构动力学) 题号:0901 一.计算图1所示珩架指定杆的轴力()12,N N (10分) 二.结构仅在ACB 部分温度升高t 度,并且在D 处作用外力偶M 。试求图示刚架A,B 两点间水平向的相对位移。已知:各杆的EI 为常值,α为线膨胀系数,h 为截面高度。 (20分)

三.用力法分析图3所示结构,绘M 图。计算时轴力和剪力对位移的影响略去不计。各杆的EI 值相同。 (20分) 半圆弧 积分表:2 211 sin sin 2,cos sin 22424 x x xdx x xdx x = -=+? ? 四.试用位移法求解图4所示刚架并绘M 图。计算时不考虑轴力变形时对位移的影响。(20分) 杆端力公式: 21 ,08 f f AB BA ql M M =-=,53,88 f f AB BA ql ql Q Q ==-

一.试用力矩分配法计算图5所示连续梁并绘M 图。(10分) 二.求图示结构的自振频率和主振型,并作出振型图。已知:122,,m m EI m m ===常数, 忽略阻尼影响。 (20分)

天津大学研究生院1995年招收硕士生入学试题 考试科目:结构力学题号:0901 一.选择题:在正确答案处画“√”。每题4分。 1.图示平面体系的几何组成性质是: A.几何不变且无多余联系的 B.几何不变且有多余联系的 C.几何可变的 D.瞬变的 2.图示结构A截面的剪力为: A. –P B. P C. P/2 D. –P/2 3.图示珩架内力为零的杆为: A.3根 B.6根 C.8根 D.7根

相关文档
最新文档