SS8050三极管参数 TO-92三极管SS8050规格书

SS8050三极管参数 TO-92三极管SS8050规格书
SS8050三极管参数 TO-92三极管SS8050规格书

9011,9012,9013,9014,8050,8550三极管的参数及区别

9011,9012,9013,9014,8050,8550三极管的参数及区别 9011 NPN 30V 30mA 400mW 150MHz 放大倍数20-80 9012 PNP 50V 500mA 600mW 低频管放大倍数30-90 9013 NPN 20V 625mA 500mW 低频管放大倍数40-110 8050 NPN 25V 700mA 200mW 150MHz 放大倍数30-100 8550 PNP 40V 1500mA 1000mW 200MHz 放大倍数40-140 详情如下: 90系列三极管参数 90系列三极管大多是以90字为开头的,但也有以ST90、C或A90、S90、SS90、UTC90开头的,它们的特性及管脚排列都是一样的。 9011 结构:NPN 集电极-发射极电压 30V 集电极-基电压 50V 射极-基极电压 5V 集电极电流 0.03A 耗散功率 0.4W 结温150℃ 特怔频率平均 370MHZ 放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-198 9012 结构:PNP 集电极-发射极电压 -30V 集电极-基电压 -40V 射极-基极电压 -5V 集电极电流 0.5A 耗散功率 0.625W 结温150℃ 特怔频率最小 150MHZ 放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-300 9013 结构:NPN 集电极-发射极电压 25V 集电极-基电压 45V 射极-基极电压 5V 集电极电流 0.5A 耗散功率 0.625W 结温150℃ 特怔频率最小 150MHZ 放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-300 9014 结构:NPN

SS8050LT1 三极管- SOT-23

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO.,LTD SOT-23 Plastic-Encapsulate Transistors S8550 TRANSISTOR (PNP) FEATURES z Complimentary to S8050 z Collector current: I C =0.5A MARKING : 2TY MAXIMUM RATINGS (T A =25℃ unless otherwise noted) Symbol Parameter Value Units V CBO Collector-Base Voltage -40 V V CEO Collector-Emitter Voltage -25 V V EBO Emitter-Base Voltage -5 V I C Collector Current -Continuous -0.5 A P C Collector Power Dissipation 0.3 W T j Junction Temperature 150 ℃ T stg Storage Temperature -55-150 ℃ ELECTRICAL CHARACTERISTICS (Tamb=25℃ unless otherwise specified) Parameter Symbol Test conditions MIN MAX UNIT Collector-base breakdown voltage V (BR)CBO I C = -100μA, I E =0 -40 V Collector-emitter breakdown voltage V (BR)CEO I C =-1mA, I B = 0 -25 V Emitter-base breakdown voltage V (BR)EBO I E = -100μA, I C =0 -5 V Collector cut-off current I CBO V CB = -40V, I E = 0 -0.1 μA Collector cut-off current I CEO V CE = -20V, I B =0 -0.1 μA Emitter cut-off current I EBO V EB = -3V, I C =0 -0.1 μA h FE(1) V CE = -1V, I C = -50mA 120 400 DC current gain h FE(2) V CE = -1V, I C = -500mA 50 Collector-emitter saturation voltage V CE (sat) I C =-500mA, I B = -50mA -0.6 V Base-emitter saturation voltage V BE (sat) I C =-500mA, I B = -50mA -1.2 V Transition frequency f T V CE = -6V, I C = -20mA f=30MHz 150 MHz CLASSIFICATION OF h FE(1) Rank L Range 200-3500

全系列三极管应用参数代换大全

名称封装极性用途耐压电流功率频率配对管 9012 贴片PNP低频放大50V 0.5A 0.625W 9013 9012 21 PNP低频放大50V 0.5A 0.625W 9013 9013 21 NPN 低频放大50V 0.5A0.625W 9012 9013 贴片NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A0.4W 150HMZ 9015 9015 21 PNP低噪放大50V 0.1A0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A1W 100MHZ 8550 8550 21 PNP高频放大40V 1.5A1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 3DA87A 6 NPN 视频放大100V 0.1A1W 3DG6B 6 NPN 通用20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用30V 0.02A 0.1W 150MHZ 3DK2B 7 NPN 开关30V 0.03A 0.2W 3DD15D 12 NPN 电源开关300V 5A 50W 3DD102C 12 NPN 电源开关300V 5A 50W 3522V 5V稳压管 5609 21 NPN 音频低频放大50V 0.8A 0.625W 5610 5610 21 PNP音频低频放大50V 0.8A 0.625W 5610 60MIAL1 电磁/微波炉1000V 60A 300W 9626 21 NPN 通用 MPSA42 21E NPN 电话视频放大300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频放大300V 0.5A 0.625W MPSA42 MPS2222A 21 NPN 高频放大75V 0.6A 0.625W 300MHZ A634 28E PNP 音频功放开关40V 2A 10W A708 6 PNP 音频开关80V 0.7A 0.8W A715C 29 PNP 音频功放开关35V 2.5A 10W 160MHZ A733 21 PNP 通用50V 0.1A180MHZ

Multisim基础使用方法详解

M u l t i s i m基础使用方 法详解 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第2章 Multisim9的基本分析方法 主要内容 ?直流工作点分析(DC Operating Point Analysis ) ?交流分析(AC Analysis) ?瞬态分析(Transient Analysis) ?傅立叶分析(Fourier Analysis) ?失真分析(Distortion Analysis) ?噪声分析(Noise Analysis) ?直流扫描分析(DC Sweep Analysis) ?参数扫描分析(Parameter Sweep Analysis) 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路

为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。 注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果 点击B图下部Simulate按钮,测试结果如图所示。测试结果给出电路各个节点的电压值。根据这些电压的大小,可以确定该电路的静态工作点是否合理。如果不合理,可以

三极管型号参数查询大全

三极管型号及参数 晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型IRFU02050V15A42W**NMOS场效应IRFPG421000V4A150W**NMOS场效应IRFPF40900V 4.7A150W**NMOS场效应IRFP9240200V12A150W**PMOS场效应IRFP9140100V19A150W**PMOS场效应IRFP460500V20A250W**NMOS场效应IRFP450500V14A180W**NMOS场效应IRFP440500V8A150W**NMOS场效应IRFP353350V14A180W**NMOS场效应IRFP350400V16A180W**NMOS场效应IRFP340400V10A150W**NMOS场效应IRFP250200V33A180W**NMOS场效应IRFP240200V19A150W**NMOS场效应IRFP150100V40A180W**NMOS场效应晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型IRFP140100V30A150W**NMOS场效应IRFP05460V65A180W**NMOS场效应IRFI744400V4A32W**NMOS场效应IRFI730400V4A32W**NMOS场效应IRFD9120100V1A1W**NMOS场效应IRFD12380V 1.1A1W**NMOS场效应IRFD120100V 1.3A1W**NMOS场效应IRFD11360V0.8A1W**NMOS场效应IRFBE30800V 2.8A75W**NMOS场效应IRFBC40600V 6.2A125W**NMOS场效应IRFBC30600V 3.6A74W**NMOS场效应IRFBC20600V 2.5A50W**NMOS场效应IRFS9630200V 6.5A75W**PMOS场效应IRF9630200V 6.5A75W**PMOS场效应IRF9610200V1A20W**PMOS场效应晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频率管子类型IRF954160V19A125W**PMOS场效应IRF953160V12A75W**PMOS场效应IRF9530100V12A75W**PMOS场效应IRF840500V8A125W**NMOS场效应IRF830500V 4.5A75W**NMOS场效应IRF740400V10A125W**NMOS场效应IRF730400V 5.5A75W**NMOS场效应IRF720400V 3.3A50W**NMOS场效应IRF640200V18A125W**NMOS场效应IRF630200V9A75W**NMOS场效应IRF610200V 3.3A43W**NMOS场效应IRF54180V28A150W**NMOS场效应IRF540100V28A150W**NMOS场效应IRF530100V14A79W**NMOS场效应

9013,9014,8050三极管引脚图与管脚功能

9014,9013,8050三极管引脚图与管脚功能 s9014,s9013,s9015,s9012,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极 b基极 c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。用下面这个引脚图(管脚图)表示: 三极管引脚图e b c 当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册可以查询电子资料与单片机资料,明确三极管的特性及相应的技术参数和资料。 非9014,9013系列三极管管脚识别方法: (a) 判定基极。用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。 (b) 判定三极管集电极c和发射极e。(以PNP型三极管为例)将万用表置于 R×100或R×1K挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 D 不拆卸三极管判断其好坏的方法。 在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测管子各引脚的电压值,来推断其工作是否正常,进而判断三极管的好坏。 如是象9013 ,9014一样NPN的用万用表检测他们的引脚,黑表笔接一个极,用红笔分别接其它两极,两个极都有5K阻值时,黑表笔所接就是B极。这时用黑红两表笔分别接其它两极,用舌尖同时添(其实也可以先用舌头添湿一下手指然后用手指去摸,反正都不卫生)黑表笔所接那个极和B极,表指示阻值小的那个

multisim元件模型参数解释

m u l t i s i m元件模型参 数解释 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

电阻模型参数 R 电阻倍率因子 TC1 线性温度系数 TC2 二次温度系数 电容模型参数 C 电容倍率因子 VC1 线性电压系数 VC2 二次电压系数 TC1 线性温度系数 TC2 二次温度系数 电感模型参数 L 电感倍率因子 IL1 线性电流系数 IL2 二次电流系数 TC1 线性温度系数 TC2 二次温度系数 二极管模型参数 IS 饱和电流 RS 寄生串联电阻 N 发射系数 TT 渡越时间 CJO 零偏压PN结电容 VJ PN结自建电势 M PN结剃度因子 EG 禁带宽度 XT1 IS的温度指数 FC 正偏耗尽层电容系数 BV 反向击穿电压(漆点电压) IBV 反向击穿电流(漆点电流) KF 闪烁躁声系数 AF 闪烁躁声指数 双极晶体管(三极管)IS 反向饱和电流 BF 正向电流放大系数 NF 正向电流发射系数 VAF(VA)正向欧拉电压 IKF (IK)正向漆点电流 ISE(C2) B-E漏饱和电流 NE B-E漏饱和电流

BR 反向电流放大系数 NR 反向电流发射系数 VAR(VB)正想欧拉电压 IKR 反向漆点电流 ISS NS ISC C4 B-C 漏饱和电流 NC B-C漏发射系数 RB基极体电阻 IRB 基极电阻降致RBM/2时的电流 RE 发射区串联电阻 RC 集电极电阻 CJE 零偏发射结PN结电容 VJE发射结电压 MJE ME 集电结剃度因子 TF 正向渡越时间 XTF TF随偏置变化的系数 VTF TF随VBC变化的电压参数 ITF 影响TF的大电流参数 PTF 在 F=1/(2派TF)Hz时超前相移 CJC 零偏衬底结PN结电容 VJC PC 集电结内建电势 MJC MC 集电结剃度因子 XCJC Cbe 接至内部Rb的内部 TR 反向渡越时间 CJS CCS 零偏衬底结PN结电容 VJS PS 衬底结构PN结电容 MJS MS 衬底结剃度因子 XCJS XTB BF和BR的温度系数 EG 禁带宽度 XTI(PT) IS的温度效应指数 KF I/F躁声系数 AF I/F躁声指数 FC 正偏势垒电容系数 RCO VO QCO 由于参数太多,占时先编写到双极晶体管,改天在继续编写

8050-8550三极管引脚图与管脚识别

9011,9012,9013,9014,9015,9016,9017,9018,8050,8550 三极管引脚图与管脚识别(含贴片) s9014,s9013,s9015,s9012,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极 b基极 c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。用下面这个引脚图(管脚图)表示: 三极管引脚图 e b c 当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册https://www.360docs.net/doc/a08519274.html,首页可以查询电子资料与单片机资料,明确三极管的特性及相应的技术参数和资料。 非9014,9013系列三极管管脚识别方法: (a) 判定基极。用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。 (b) 判定三极管集电极c和发射极e。(以PNP型三极管为例)将万用表置于R×100 或R×1K挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 不拆卸三极管判断其好坏的方法。 在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测管子各引脚的电压值,来推断其工作是否正常,进而判断三极管的好坏。 如是象9013 ,9014一样NPN的用万用表检测他们的引脚,黑表笔接一个极,用红笔分别接其它两极,两个极都有5K阻值时,黑表笔所接就是B极。这时用黑红两表笔分别接

三极管S8050&S8550的使用

8050 8550三极管有时在电路里做为对管来使用,也有的做单管应用。在有些电路里对S8050 的放大倍数要求是很高的,不能随意替换,必需要用原参数管才能替换,否则电路不能正常工作。 8050为NPN型三极管 8550为PNP型三极管 S8050 S8550 参数: 耗散功率0.625W(贴片:0.3W) 集电极电流0.5A 集电极--基极电压40V 集电极--发射极击穿电压25V 集电极-发射极饱和电压 0.6V 特征频率fT 最小150MHZ 典型值产家的目录没给出 引脚排列为EBC或ECB 按三极管后缀号分为 B C D档贴片为 L H档 放大倍数B85-160 C120-200 D160-300 L100-200 H200-350 8050S 8550S 参数: 耗散功率0.625W(贴片:0.3W) 集电极电流0.5A 集电极--基极电压30V 集电极--发射极击穿电压25V 集电极-发射极饱和电压 0.5V 特征频率fT 最小150MHZ 典型值产家的目录没给出 引脚排列为ECB 按三极管后缀号分为 B C D档贴片为 L H档 放大倍数B85-160 C120-200 D160-300 E280-400 L100-200 H200-350 关于C8050 C8550 参数: 耗散功率1W 集电极电流1.5A 集电极--基极电压40V 集电极--发射极击穿电压25V 特征频率fT 最小100MHZ 典型190MHZ 放大倍数:按三极管后缀号分为 B C D档 放大倍数B:85-160 C:120-200 D:160-300 关于8050SS 8550SS 参数: 耗散功率?: 1W(TA=25℃) 2W(TC=25℃) 集电极电流1.5A

三极管8050和8550对管的参数

三极管8050和8550对管的参数 图18050和8550三极管TO-92封装外形和引脚排列 图28050和8550三极管SOT-23封装外形和引脚排列 8050和8550三极管在电路应用中经常作为对管来使用,当然很多时候也作为单管应用。8050 为硅材料NPN型三极管;8550 为硅材料PNP型三极管。 8050S 8550S S8050 S8550 参数: 耗散功率0.625W(贴片:0.3W) 集电极电流0.5A 集电极--基极电压40V 集电极--发射极击穿电压25V 特征频率fT 最小150MHZ 典型值产家的目录没给出 按三极管后缀号分为 B C D档贴片为 L H档 放大倍数B85-160 C120-200 D160-300 L100-200 H200-350

C8050 C8550 参数: 耗散功率1W 集电极电流1.5A 集电极--基极电压40V 集电极--发射极击穿电压25V 特征频率fT 最小100MHZ 典型190MHZ 放大倍数:按三极管后缀号分为 B C D档 放大倍数B:85-160 C:120-200 D:160-300 8050SS 8550SS 参数: 耗散功率: 1W(TA=25℃) 2W(TC=25℃) 集电极电流1.5A 集电极--基极电压40V 集电极--发射极击穿电压25V 特征频率fT 最小100MHZ 放大倍数:按三极管后缀号分为 B C D D3 共4档 放大倍数 B:85-160 C:120-200 D:160-300 D3:300-400 引脚排列有EBC ECB两种 SS8050 SS8550 参数: 耗散功率: 1W(TA=25℃) 2W(TC=25℃) 集电极电流1.5A 集电极--基极电压40V 集电极--发射极击穿电压25V 特征频率fT 最小100MHZ 放大倍数:按三极管后缀号分为 B C D 共3档 放大倍数 B:85-160 C:120-200 D:160-300 引脚排列多为EBC UTC的 S8050 S8550 引脚排列有EBC 8050S 8550S 引脚排列有ECB 这种管子很少见 参数: 耗散功率1W 集电极电流0.7A 集电极--基极电压30V 集电极--发射极击穿电压20V 特征频率fT 最小100MHZ 典型产家的目录没给出 放大倍数:按三极管后缀号分为C D E档 C:120-200 D:160-300 E:280-400

[VIP专享]基于Multisim的三极管放大电路仿真分析

基于Multisim的三极管放大电路仿真分析 来源:大比特半导体器件网 引言 放大电路是构成各种功能模拟电路的基本电路,能实现对模拟信号最基本的处 理--放大,因此掌握基本的放大电路的分析对电子电路的学习起着至关重要的作 用。三极管放大电路是含有半导体器件三极管的放大电路,是构成各种实用放大 电路的基础电路,是《模拟电子技术》课程中的重点内容。 在课程学习中,一再向学生强调,放大电路放大的对象是动态信号,但放大电 路能进行放大的前提是必须设置合适的静态工作点,如果静态工作点不合适,输 出的波形将会出现失真,这样的“放大”就毫无意义。什么样的静态工作点是 合适的静态工作点;电路中的参数对静态工作点及动态输出会产生怎样的影响;正常放大的输出波形与失真的输出波形有什么区别;这些问题单靠课堂上的推理 及语言描述往往很难让学生有一个直观的认识。 在课堂教学中引入Multisim仿真技术,即时地以图形、数字或曲线的形式 来显示那些难以通过语言、文字表达令人理解的现象及复杂的变化过程,有助于 学生对电子电路中的各种现象形成直观的认识,加深学生对于电子电路本质的理 解,提高课堂教学的效果。实现在有限的课堂教学中,化简单抽象为具体形象, 化枯燥乏味为生动有趣,充分调动学生的学习兴趣和自主性。 1 Multisim 10 简介 Multisim 10 是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿 真设计软件,其集电路设计和功能测试于一体,为设计者提供了一个功能强大、 仪器齐全的虚拟电子工作平台,设计者可以利用大量的虚拟电子元器件和仪器仪 表,进行模拟电路、数字电路、单片机和射频电子线路的仿真和调试。 Multisim 10 的主窗口如同一个实际的电子实验台。屏幕中央区域最大的窗 口就是电路工作区,电路工作窗口两边是设计工具栏和仪器仪表栏。设计工具栏 存放着各种电子元器件,仪器仪表栏存放着各种测试仪器仪表,可从中方便地选 择所需的各种电子元器件和测试仪器仪表在电路工作区连接成实验电路,并通过 “仿真”菜单选择相应的仿真项目得到需要的仿真数据。 2 三极管放大电路的仿真分析

各三极管参数大全

HIT5609 NPN 三极管 △主要用途: 主要用于开关、音频放大,适用于应急灯、电动玩具等电子产品。(与HIT5610 互补) △极限值(TA=25℃) △电参数(Ta=25℃) 参数符号测试条件最小值典型值最大值单位 集电极漏电流 I CBO V CB=25V,I E=0 100 nA 发射极漏电流 I EBO V BE=5V,I C=0 100 nA 基极漏电流 I CEO V CE=20V,I B=0 5 μA 集电极、发射极击穿电压 BV CEO I C=10mA,I B=0 20 V 发射极、基极击穿电压 BV EBO I E=1mA,I C=0 6 V 集电极、基极击穿电压 BV CBO I C=100μA,I E=0 25 V 集电极、发射极饱和压降 V CE(sat) I C=0.8A,I B=0.08A 0.5 V 基极、发射极饱和压降 V BE(on) V CE=2V,I C=0.5A 1.0 V 直流电流增益 H FE1 V CE=2V,I C=0.5A 120 240 H FE2 V CE=2V,I C=1mA 105 H FE3 V CE=2V,I C=10mA 110 脉冲方式测试:PW≤300μs;占空比≤2% 实际分如档: B C1 C2 120-160 160-200 200-240 脚位排列与快捷三星 相同 TO-92 1. 发射极 E 2. 集电极 C 3. 基极 B 参数符号标称值单位 集电极、基极击穿电压 V CBO 25 V 集电极、发射极击穿电压 V CEO 20 V 发射极、基极击穿电压 V EBO 5 V 集电极电流 I C 1.5 A 集电极功率 P C 2 W 结温 T J 150 ℃ 贮存温 T STG -55-150 ℃ 名称封装极性功能耐压电流功率频率配对管 D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大 50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大 50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大 50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大 30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大 40V 1.5A 1W 100MHZ 8550

multisim中有关元器件参数的中英文对照

电阻模型参数 R 电阻倍率因子 TC1 线性温度系数 TC2 二次温度系数 电容模型参数 C 电容倍率因子 VC1 线性电压系数 VC2 二次电压系数 TC1 线性温度系数 TC2 二次温度系数 电感模型参数 L 电感倍率因子 IL1 线性电流系数 IL2 二次电流系数 TC1 线性温度系数 TC2 二次温度系数 二极管模型参数 IS 饱和电流 RS 寄生串联电阻 N 发射系数 TT 渡越时间 CJO 零偏压PN结电容 VJ PN结自建电势 M PN结剃度因子 EG 禁带宽度 XT1 IS的温度指数 FC 正偏耗尽层电容系数 BV 反向击穿电压(漆点电压)IBV 反向击穿电流(漆点电流)KF 闪烁躁声系数 AF 闪烁躁声指数 双极晶体管(三极管) IS 传输饱和电流 EG 禁带宽度 XTI(PT)IS的温度效应指数BF 正向电流放大系数 NF 正向电流发射系数 VAF(VA)正向欧拉电压 IKF (IK)正向漆点电流 ISE(C2)B-E漏饱和电流 NE B-E漏饱和电流 BR 反向电流放大系数 NR 反向电流发射系数 VAR(VB)正想欧拉电压

IKR 反向漆点电流 ISC C4 B-C 漏饱和电流 NC B-C漏发射系数 RB 零偏压基极电阻 IRB 基极电阻降致RBM/2时的电流RE 发射区串联电阻 RC 集电极电阻 CJE 零偏发射结PN结电容 VJE PE 发射结内建电势 MJE ME 集电结剃度因子 CJC 零偏衬底结PN结电容 VJC PC 集电结内建电势 MJC MC 集电结剃度因子 XCJC Cbe 接至内部Rb的内部 CJS CCS 零偏衬底结PN结电容 VJS PS 衬底结构PN结电容 MJS MS 衬底结剃度因子 FC 正偏势垒电容系数 TF 正向渡越时间 XTF TF随偏置变化的系数 VTF TF随VBC变化的电压参数 ITF 影响TF的大电流参数 PTF 在F=1/(2派TF)Hz时超前相移TR 反向渡越时间 XTB BF和BR的温度系数 KF I/F躁声系数 AF I/F躁声指数

三极管大全

2SC3943,panasonic,TO-220F,DIP/三极管,NPN,50V,0.15A, 2SC1755D,SANYO,TO-220,DIP/三极管,NPN,300V,0.2A, 2SC3866,TO-220F,FUJ,DIP/三极管,NPN,800V,3A 2SC4635LS TO-220F SANYO DIP/三极管 NPN 1500V 0.02A HI772 TO-251 HJ/华昕 DIP/三极管 PNP -30V -3A HI882 TO-251 HJ/华昕 DIP/三极管 NPN 30V 3A HJ772 SOT-252 HJ/华昕 SMD/三极管 PNP -30V -3A HJ882 SOT-252 HJ/华昕 SMD/三极管 NPN 30V 3A 2SA1216 SK MT-200 DIP/三极管 PNP -180V -17A 2SC2922 SK MT-200 DIP/三极管 NPN 180V 17A FZT753 ZETEX SOT-223 SMD/三极管 PNP -100V -3A BCP53 PHILIPS SOT-223 SMD/三极管 PNP -80V -1A STN817 ST SOT-223 SMD/三极管 PNP -80V -1.5A FZT792A ZETEX SOT-223 SMD/三极管 PNP -70V -2A BCP52 PHILIPS SOT-223 SMD/三极管 PNP -60V -1A FZT591 ZETEX SOT-223 SMD/三极管 PNP -60V -1A FZT751 ZETEX SOT-223 SMD/三极管 PNP -60V -3A BCP51 PHILIPS SOT-223 SMD/三极管 PNP -45V -1A FZT1151A ZETEX SOT-223 SMD/三极管 PNP -40V -3A FZT790A ZETEX SOT-223 SMD/三极管 PNP -40V -3A PBSS5540Z PHILIPS SOT-223 SMD/三极管 PNP -40V -5A FZT549 ZETEX SOT-223 SMD/三极管 PNP -30V -1A FZT949 ZETEX SOT-223 SMD/三极管 PNP -30V -5.5A FZT749 ZETEX SOT-223 SMD/三极管 PNP -25V -3A FZT789A ZETEX SOT-223 SMD/三极管 PNP -25V -3A 2SB1386 ROHM SOT-223 SMD/三极管 PNP -20V -5A FZT948 ZETEX SOT-223 SMD/三极管 PNP -20V -6A FZT788B ZETEX SOT-223 SMD/三极管 PNP -15V 3A FZT717 ZETEX SOT-223 SMD/三极管 PNP -12V -3A STN851 ST SOT-223 SMD/三极管 NPN 60V 5A FZT692B ZETEX SOT-223 SMD/三极管 NPN 70V 2A STN715 ST SOT-223 SMD/三极管 NPN 80V 1.5A FMMT560 ZETEX SOT-23 SMD/三极管 PNP -500V -0.15A MMBT5401 ON SOT-23 SMD/三极管 PNP -150V -0.1A MMBT2907A FAIRCHILD SOT-23 SMD/三极管 PNP -60V -0.6A A1015 SOT-23 SMD/三极管 PNP -50V -0.15A PDTA144WK PHILIPS SOT-23 SMD/三极管 PNP -50V -0.1A MMBT8550 ON SOT-23 SMD/三极管 PNP -25V -0.6A S8550 贴片长电 SOT-23 SMD/三极管 PNP -25V -0.5A S9012 长电 SOT-23 SMD/三极管 PNP -25V -0.5A SS8550 贴片长电 SOT-23 SMD/三极管 PNP -25V -1.5A 2SC9012 LRC SOT-23 SMD/三极管 0V 0A 2SC3904 NEC SOT-23 SMD/三极管 NPN 10V 0.065A 2SC3356 台产 SOT-23 SMD/三极管 NPN 12V 0.1A

贴片三极管参数大全(材料相关)

贴片三极管上的印字与真实名称的对照表印字器件厂商类型封装器件用途及参数 -28 PDTA114WU Phi N SOT323 pnp dtr -24 PDTC114TU Phi N SOT323 npn dtr R1 10k -23 PDTA114TU Phi N SOT323 pnp dtr R1 10k -20 PDTC114WU Phi N SOT323 npn dtr -6 PMSS3906 Phi N SOT323 2N3906 -4 PMSS3904 Phi N SOT323 2N3904 0 2SC3603 Nec CX SOT173 Npn RF fT 7GHz 1 Gali-1 MC AZ SOT89 DC-8GHz MMIC amp 12dB gain 1 2SC3587 Nec CX - npn RF fT10GHz 1 BA277 Phi I SOD523 VHF Tuner band switch diode 2 BST82 Phi M - n-ch mosfet 80V 175mA 2 MRF5711L Mot X SOT14 3 npn RF MRF571 2 DTCC114T Roh N - 50V 100mA npn sw + 10k base res 2 Gali-2 MC AZ SOT89 DC-8GHz MMIC amp 16dB gain 2 BAT62-02W Sie I SCD80 BAT16 schottky diode 2 2SC3604 Nec CX - npn RF fT8GHz 12dB@2GHz 3 Gali-3 MC AZ SOT89 DC-3GHz MMIC amp 22dB gain 3 DTC143TE Roh N EMT3 npn dtr R1 4k7 50V 100mA 3 DTC143TUA Roh N SC70 npn dtr R1 4k7 50V 100mA 3 DTC143TKA Roh N SC59 npn dtr R1 4k7 50V 100mA 3 BAT60A Sie I SOD323 10V 3A sw schottky 3 BAT62-02W Sie I SCD80 - 4 DTC114TCA Roh N SOT23 npn dtr R1 10k 50V 100mA 4 DTC114TE Roh N EMT3 npn dtr R1 10k 50V 100mA 4 DTC114TUA Roh N SC70 npn dtr R1 10k 50V 100mA 4 DTC114TKA Roh N SC59 npn dtr R1 10k 50V 100mA 4 MRF5211L Mot X SOT143 pnp RF MRF521 4 Gali-4 MC AZ SOT89 DC-4GHz MMIC amp 17. 5 dBm 4 BB664 Sie I SCD80 Varicap 42-2.5pF 5 SSTPAD5 Sil J - PAD-5 5pA leakage diode 5 Gali-4 MC AZ SOT89 DC-4GHz MMIC amp 18 dBm o/p 5 DTC124TE Roh N EMT3 npn dtr R1 22k 50V 100mA 5 DTC124TUA Roh N SC70 npn dtr R1 22k 50V 100mA 5 DTC124TKA Roh N SC59 npn dtr R1 22k 50V 100mA 6 Gali-6 MC AZ SOT89 DC-4GHz MMIC amp 115 dBm o/p 6 DTC144TE Roh N EMT3 npn dtr R1 47k 50V 100mA 6 DTC144TUA Roh N SC70 npn dtr R1 47k 50V 100mA 6 DTC144TKA Roh N SC59 npn dtr R1 47k 50V 100mA 9 DTC115TUA Roh N SC70 npn dtr R2 100k 50V 100mA 9 DTC115TKA Roh N SC59 npn dtr R2 100k 50V 100mA 9 BC849 Mot N SOT23 BC 549B

9014,9013,8050三极管引脚图与管脚识别方法

s9014,s9013,s9015,s9012,s9018系列的晶体小功率三极管,把显示文字平面朝自己,从左向右依次为e发射极 b基极 c集电极;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c,s8050,8550,C2078 也是和这个一样的。用下面这个引脚图(管脚图)表示: 三极管引脚图 e b c 当前,国内各种晶体三极管有很多种,管脚的排列也不相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置(下面有用万用表测量三极管的三个极的方法),或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 非9014,9013系列三极管管脚识别方法: (a) 判定基极。用万用表R×100或R×1k挡测量管子三个电极中每两个极之间的正、反向电阻值。当用第一根表笔接某一电极,而第二表笔先后接触另外两个电极均测得低阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b。黑表笔分别接在其他两极时,测得的阻值都较小,则可判定被测管子为PNP型三极管;如果黑表笔接的是基极b,红表笔分别接触其他两极时,测得的阻值较小,则被测三极管为NPN型管如9013,9014,9018。 (b) 判定三极管集电极c和发射极e。(以PNP型三极管为例)将万用表置于R×100或R×1K挡,红表笔基极b,用黑表笔分别接触另外两个管脚时,所测得的两个电阻值会是一个大一些,一个小一些。在阻值小的一次测量中,黑表笔所接管脚为集电极;在阻值较大的一次测量中,黑表笔所接管脚为发射极。 D 不拆卸三极管判断其好坏的方法。 在实际应用中、小功率三极管多直接焊接在印刷电路板上,由于元件的安装密度大,拆卸比较麻烦,所以在检测时常常通过用万用表直流电压挡,去测量被测管子各引脚的电压值,来推断其工作是否正常,进而判断三极管的好坏。 如是象9013 ,9014一样NPN的用万用表检测他们的引脚,黑表笔接一个极,用红笔分别接其它两极,两个极都有5K阻值时,黑表笔所接就是B极。这时用黑红两表笔分别接其它两极,用舌尖同时添(其实也可以先用舌头添湿一下手指然后用手指去摸,反正都不卫生)黑表笔所接那个极和B极,表指示阻值小的那个黑表所接就是C极。(以上所说为用指针表所测,数字表为红笔数字万用表内部的正负级是和指正表相反的。) 9011,9012,9013,9014,8050,8550三极管的主要参数数据 9011 NPN 30V 30mA 400mW 150MHz 放大倍数20-80 9012 PNP 50V 500mA 600mW 低频管放大倍数30-90 9013 NPN 20V 625mA 500mW 低频管放大倍数40-110 9014 NPN 45V 100mA 450mW 150MHz 放大倍数20-90 8050 NPN 25V 700mA 200mW 150MHz 放大倍数30-100 8550 PNP 40V 1500mA 1000mW 200MHz 放大倍数40-140

相关文档
最新文档