调技〔2012〕32号关于下发《山东电网风电机组 低电压穿越能力检测补充规定(暂行)》的通知

调技〔2012〕32号关于下发《山东电网风电机组 低电压穿越能力检测补充规定(暂行)》的通知
调技〔2012〕32号关于下发《山东电网风电机组 低电压穿越能力检测补充规定(暂行)》的通知

山东电力调度中心文件

调技〔2012〕32号

关于下发《山东电网风电机组低电压穿越能力检测补充规定(暂行)》的通知

济南、青岛、潍坊、烟台、临沂、滨州、威海、东营、日照供电公司,电力研究院,华能山东公司、华能新能源公司、国电山东公司、国电龙源公司、国电新能源公司、中广核山东公司、华润新能源山东公司、国华山东公司、大唐山东公司、大唐新能源公司、大唐桂冠公司、华电山东公司,各统调风电场:

为规范山东电网风电机组并网检测管理,在执行《风电机组低电压穿越能力抽检管理办法》(调水〔2011〕261号)和《关于印发山东电网风电场并网检测规程的通知》(调技〔2012〕14号)的基础上,山东电力调度控制中心针对风电机组低电压穿越能力检测

—1—

中发现的问题,补充强调以下几点规定:

一、抽签原则:抽检机组由调度机构(省调及相关地调)组织抽签确定,抽签仪式在风电场进行。抽签时检测机构、风电场(包括风机制造商)、调度机构三方均应在场。抽签后检测机构立即封闭该机组塔筒门,杜绝任何人对机组进行软、硬件改动及定值调整。

二、风电场应提供一切必要的措施,支持检测机构的检测工作,相关地调做好运行方式安排、继电保护校核等协调和配合工作,必要时可采取停用集电线的方式。风电场应提供测试风电机组的变流器、并网控制器、箱变保护定值清单,并在测试前由检测机构核实。

三、若由于位置特殊等原因无法检测抽检机组,经省调确认,允许第二次进行抽签确定抽检机组。

四、测试工作完成的第3个工作日,检测机构须出具经风电场和检测机构签字的初步结论;测试完成2周内,检测机构须出具正式检测报告。

五、检测不合格的风电场,必须在2个月内完成整改。整改期间该公司所属风电场所有在运同型号机组,根据电网需要,可采取限制出力运行、停机等措施;所有新建同型号机组暂停并网调度协议签订和并网验收工作。

六、完成低电压穿越能力整改后需重新进行抽检,逾期不能完成整改,或完成整改后抽检仍不合格者,该风电场直接退出电网运行进行整改,再次申请检测应在3个月后。

—2—

七、风电场低电压穿越能力测试未能配合检测机构按计划完成的,视为测试未通过。

二〇一二年四月二十四日

主题词:能源电网风电机组通知

山东电力集团公司办公室2012年4月24日印发

—3—

风电电能质量检测系统

风电电能质量检测系统 横河电机低电压穿越(LVRT)解决方案 低电压穿越(Low Voltage Ride Through, LVRT)是指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。 如果风电机组不具备LVRT能力,就会在电网故障导致电压跌落时,由于风机自身的保护系统动作使风机与电网断开,电网电压会降的更低,甚至有使系统崩溃的风险。 国际电工委员会(International Electro technical Commission,简称IEC)针对风力发电机组发布了IEC61400系列技术标准。其中的第21部分即IEC61400-21,内容是关于并网风力 发电机组电能质量特性测试,规定了风电电能质量的测试项目、测试原理以及测试指标等,是风力发电电能质量测试的基本依据。低电压穿越能力的标准就是之中的重要组成部分。 IEC61400-21主要测试项目包括: 1.低电压穿越 2.谐波、间谐波、高频谐波 3.闪变 4.有功功率、无功功率 5.电网保护、重连时间 不同国家(和地区)所提出的LVRT要求不尽相同。目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了基于IEC61400-21的新的电网运行准则。中国也已经发布了基于IEC61400-21的国内风力发电机组并网标准。 IEC61400-21定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。 图1 IEC61400-21标准中的风电系统离网的条件 ●红线所示程度以上的电网跌落,不能导致风机脱网或发电单元运行不稳定。 ●风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保持并网运行625 ms的低电压穿越能力。 ●风场电压在发生跌落后2s内能够恢复到额定电压的90%时,风场必须保持并网运行。 ●风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。 IEC61400-21标准中低电压穿越测试要求记录风力发电机输出端的有功功率、无功功率、有功电流、无功电流和电压随时间的变化。

L11483 光伏电站低电压穿越技术要求与实现2

L11483 光伏电站低电压穿越技术要求与实现 () 摘要:针对大型光伏电站在电网扰动或故障时突然脱网给电网带来的不利影响,提出了一种基于光伏逆变器的光伏电站低电压穿越控制策略,并进行仿真分析。结果表明该方法能够保证光伏逆变器在电网电压跌落时不过流,同时能够发出一定的无功功率以支撑并网点电压,具备低电压穿越的能力。 关键词:光伏电站;低电压穿越;电压跌落;无功输出 Requirements and Achievements of the Low Voltage Ride Through Technologies for PV Power Station (a) Abstract:A strategy of Low V oltage Ride Through (LVRT) technologies for PV power station based on PV inverter is proposed to solve the negative effect when Large PV power station is disconnected to the grid suddenly under the conditions of grid disturbance or fault. The simulation results show that the strategy can make the AC currents of the PV inverter under maximum value permitted. And the PV inverter can sent out reactive power to support the voltage of PCC, so it possesses the ability of LVRT. Key words: PV power station; LVRT; voltage dip; reactive power output 0 引言 当前光伏发电已成为太阳能资源开发利用的重要形式,其中大型光伏电站的接入,将对电网的安全稳定运行产生深刻影响,特别是在电网故障时光伏电站的突然脱网会进一步恶化电网运行状态,带来更加严重的后果[1-2]。 当光伏电站渗透率较高或出力加大时,电网发生故障引起光伏电站跳闸,由于故障恢复后光伏电站重新并网需要时间,在此期间引起的功率缺额将导致相邻的光伏电站跳闸,从而引起大面积停电,影响电网安全稳定运行[3]。因此,亟须开展大型光伏电站低电压穿越技术的研究,保障光伏电站接入后电网的安全稳定运行。 文献[4-6]主要分析了目前光伏电站实现低电压穿越的重要性和必要性。2010年12月,我国首套用于光伏电站低电压穿越现场测试的检测平台在国网电力科学研究院建成,表明我国重视光伏电站低电压穿越能力的研究与检测工作。然而,目前国内外的光伏电站几乎不具有低电压穿越的能力,对光伏电站低电压穿越关键技术的研究也很少。在新能源并网的低电压穿越方面,风电场的低电压穿越技术可为光伏电站低电压穿越技术提供借鉴。文献[7-9]集中分析了风电机组低电压穿越的结构和控制方法,可以采用增加硬件crowbar卸荷电路和不增加硬件的方式实现风电场低电压穿越。光伏电站与风电场相比,相同的是都通过电力电子器件并网,电力电子器件的耐受能力制约光伏电站的低电压穿越能力;不同的是光伏电站没有转动惯量,直流侧的电压在电网故障时不会像风电机组那样升高很多,制约光伏电站低电压穿越的瓶颈是逆变器交流侧输出电流的大小,若超过额定电流过大,则会损害电力电子器件。因此本文提出了一种基于光伏逆变器的光伏电站低电压穿越技术,在电网故障时能保持并网运行,并向电网输出一定的无功功率以支撑并网点电压,减少了因光伏电站的突然脱网而给电网带来的不利影响。

光伏逆变器低电压穿越技术原理

光伏并网逆变器低电压穿越 低电压穿越:当电网故障或扰动引起逆变器并网点的电压跌落时,在电压跌落的范围内,光伏发电机组能够不间断并网运行。 对专门适用于大型光伏电站的中高压型逆变器应具备一定的耐受异常电压的能力,避免在电网电压异常时脱离,引起电网电源的不稳定。逆变器交流侧电压跌至20%标称电压时,逆变器能够保证不间断并网运行1s;逆变器交流侧电压在发生跌落后3s内能够恢复到标称电压的90%时,逆变器能够保证不间断并网运行。对电力系统故障期间没有切出的逆变器,其有功功率在故障清除后应快速恢复,自故障清除时刻开始,以至少10%额定功率/秒的功率变化率恢复至故障前的值。低电压穿越过程中逆变器宜提供动态无功支撑。 并网点电压在图1中电压轮廓线及以上的区域内时,该类逆变器必须保证不间断并网运行;并网点电压在图1中电压轮廓线以下时,允许停止向电网线路送电。

菊水皇家电网模拟器能协助逆变器厂家研发生产PVS7000电网模拟器

产品特点 ================================================================================= ====

■三相电压独立可调,相位角独立可调; ■LIST,STEP两大模式,可执行30组不同电压、频率、时间的设定,并可连续作循环测试。运行时间最短可以设定10ms,可用于模拟电网测试,实现电压、频率渐变,步阶功能,轻易完成低电压穿越试验;■具有主动式PFC,可做低电压穿越实验, ■具有同步触发功能,可方便精准的进行低电压穿越试验,波形如下图: ■可做过/欠压,过/欠频实验;

风力发电机低压穿越

低电压穿越和电力系统稳定性 风力发电能够顺利地并入一个国家或地区的电网,主要取决于电力系统对供电波动反映的能力。风电机组由于风的随机性,运行时对无功只能就地平衡等原因将对电网造成一定的影响。在过去,我国风力发电所占电力系统供电的比例不大,大型电网具有足够的备用容量和调节能力,风电接入,一般不必考虑频率稳定性问题,当电力系统某处发生电压暂降时风力发电机可以瞬间脱网进行自我保护。但对于先如今,我国风力资源的不断开发。风力发电所占我国电网供电的比例与日俱增就不得不考虑电网电压暂降时风力发电机组脱网给电力系统所带来严重的影响系统的稳定运行这时就需要风电机组具有低电压穿越能力,保证系统发生故障后风电机组不间断并网运行。 电压暂降:供电电压有效值供电电压有效值突然将至额定电压的10%~90%。然后又恢复至正常电压,这一过程的持续时间为10ms~60s。 低电压穿越,指在风力发电机并网点电压跌落的时候,风机能够保持电压跌落会给电机带来一系列暂态过程, 如出现过电压、过电流或转速上升等, 严重危害风机本身及其控制系统的安全运行。一般情况下若电网出现故障风机就实施被动式自我保护而立即解列, 并不考虑故障的持续时间和严重程度, 这样能最大限度保障风机的安全, 在风力发电的电网穿透率(即风力发电占电网的比重) 较低时是可以接受的。然而, 当风电在电网中占有较大比重时, 若风机在电压跌落时仍采取被动保护式解列, 则会增加整个系统的恢复难度, 甚至可能加剧故障, 最终导致系统其它机组全部解列, 因此必须采取有效的措施, 以维护风场电网的稳定。 电网发生故障(尤其是不对称故障) 的过渡过程中, 电机电磁转矩会出现较大的波动, 对风机齿轮箱等机械部件构成冲击, 影响风机的运行和寿命。定子电压跌落时, 电机输出功率降低, 若对捕获功率不控制, 必然导致电机转速上升[5~7]。在风速较高即机械动力转矩较大的情况下, 即使故障切除, 双馈电机的电磁转矩有所增加, 也难较快抑制电机转速的上升, 使双馈电机的转速进一步升高,吸收的无功功率进一步增大, 使得定子端电压下降, 进一步阻碍了电网电压的恢复, 严重时可能导致电网电压无法恢复, 致使系统崩溃[9, 10] , 这种情况与电机惯性、额定值以及故障持续时间有关。

本特利风力发电机状态监测解决方案

本特利风力发电机状态监测解决方案 1

本特利内华达ADAPT.Wind TM风力发电机状态监测解决方案-实现对风电机组产品生命周期的有效延伸 随着中国市场对清洁能源需求的日益增长,在风电行业出现持续增长的同时,如何对制造后的产品实现在运行层面有效监测,提升风机的实际使用寿命周期,从而实现风力发电生产的持续竞争力等一系列需求,也逐渐成为了风机制造商,风场业主与运行人员最为关心的话题之一。 本特利内华达ADAPT.wind TM状态监测系统解决方案提供了从传感器到监测器和软件以及故障诊断服务的一体化可扩展的解决方案,经过主动预防性地检测风电机组传动系统早期的故障和问题,不但帮助风机制造厂商及时对安装机组进行故障预警及诊断,提升售后质保期内的产品安全可靠性,为高效率服务提供更加可视的平台,同时也极大的帮助运营商控制运行维护成本,更加优化管理风电场的资产,提高设备的可利用率并降低维护的费用,提升风场经济效益。ADAPT.wind TM系统不但已作为GE风电机组配置的标准状态监测解决方案在全球使用,同时它还能够根据整机制造商的要求,灵活配置在其它任何整机制造商生产的风电机组上。 为什么要振动状态监测?

风电机组会长期承受诸多无法预知的运行条件,这些都可能会对机组运行造成非常严重的不良影响。如果能尽早地发现这些问题并加以处理,那么必然会提高风机的可利用率,同时也能够降低维护成本。因此先进的状态监测技术与专业经验对于可靠地进行资产设备管理而言至关重要。 齿轮箱是首要问题 行星齿轮箱的故障是风电机组制造商和运行人员主要担心的问题。据统计仅与齿轮箱本身的故障问题直接相关的维护费用就占到了风电场运行与维护费用的25%-30%。本特利内华达风机状态监测系统让运行人员能够远程获知齿轮箱的运行状况。经过该系统获取的齿轮箱早期故障状态数据,使运行人员在齿轮箱出现轻微故障时,能够合理地改变运行方式,延长机组的运行时间,从而保证发电收益,而且能够降低被动式故障检修的风险,避免非计划停机或灾难性事故的发生。 对风场的所有风机实施主动预防性的状态监测还能够帮助运行人员有效地规划和合理地安排机组的停机维护计划。将所有需要停机维护的风机集中安排在一次检修计划中进行检修,只需使用一台吊车,这样便能节省近百万的维护费用。 为什么要使用本特利内华达ADAPT.wind TM系统? 它能使您从使用的第一天就对机组运行状况了如指掌。经过

低电压穿越

低电压穿越:当电网故障或扰动引起风电场并网点的电压跌落时,在电压跌落的范围内,风电机组能够不间断并网运行。 低电压穿越 英文:Low voltage ride through 缩写: LVRT 低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持 低电压穿越 并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。LVRT是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。不同国家(和地区)所

基本要求 对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风电场应具有低电压穿越能力。 风电场低电压穿越要求 右图为对风电场的低电压穿越要求。 a) 风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625ms的能力; b) 风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时,风电场内的风电机组能够保证不脱网连续运行。 不同故障类型的考核要求 对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下: a) 当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。 b) 当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。 c) 当电网发生单相接地短路故障引起并网点电压跌落时,风电场并网点各相电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证

荆竹山风电工程项目部测量方案.doc

临湘荆竹山风电场工程施工测量技术方案 集团有限公司 深能源翰嘎利风电工程项目部 2016年11月

编写:周衍旺 校核:刘强高 审核:柳建军 批准:易美康 目录

1.工程概况 (1) 1.1地形地貌 (1) 1.2交通条件 (1) 2.施工测量准备工作 (1) 2.1资料收集 (1) 2.2现场的勘察 (2) 2.3全面熟悉设计图表 (2) 2.4测量人员及仪器配备 (3) 3.建立测量制度 (3) 4.施工测量的复测和加密 (4) 5.风机中心桩放样、高程获取及预埋件、基础环安装测量 (4) 5.1风机中心桩的放样 (4) 5.2高程测量方法 (5) 5.3预埋件、基础环安装测量 (6) 6.基础土(石)方量的计算 (6) 7. 质量保证措施 (6) 7.1仪器鉴定 (6) 7.2原控制点的复测 (7) 7.3控制测量 (7) 7.4完善测量记录 (7) 8.安全保证措施 (7) 9.工程竣工验收 (7)

1.工程概况 1.1地形地貌 科右中旗东俯东北平原,西临蒙古高原,南通哲里木粮仓,北接呼伦贝尔草原。场址附近属于丘陵区,地表为草地,山头绝对高程多在300~350m间,相对高度多不足百米。山脊普遍较宽,山坡平缓。场址区地面高程约在263~340m之间。风电场的面积大约为25km2。 1.2交通条件 本工程项目位于内蒙古兴安盟科右中旗巴彦呼舒镇北部平原,科尔沁右翼中旗交通便利,目前已有111国道和省级大通道从风电场区附近通过,县级公路有6条,贯穿全旗各地。 2.施工测量准备工作 2.1资料收集 我部在施工复测之前,首先将设计单位移交的有关资料,如科右中旗翰嘎利湖风电场一期工程地形测量技术报告,翰嘎利风电场地形图,25个风机中心坐标,地勘报告等进行室内检核和现场核对。全面了解路线、风机位置及地形情况,以便确定相应的测量方法。对于设计单位提供的以上资料,我项目部工程管理部及测量队要全面的熟悉图纸并进行认真的审核,对于在审核中所发现错误或者表述不清之

风电机组低电压穿越能力一致性评估方法

风电机组低电压穿越能力一致性 评估方法(暂行) 国家风电技术与检测研究中心 2011年11月

目录 1 概述 (1) 2 评估流程 (1) 3 书面材料 (2) 4 现场检查 (3) 4.1 工厂检查 (4) 4.2 风电场检查 (4) 5 平台测试 (4) 5.1 变桨系统平台测试 (4) 5.2 发电机平台测试 (7) 6 模型仿真 (8) 7 其他情况 (9) 8 评估报告及证书 (9)

1 概述 本文件将同一制造商生产的基于相同的类型、设计和容量等级,仅零部件配置不同的风电机组,视为是同系列风电机组。 为了简化同系列风电机组并网检测,按照关键零部件对各项检测内容的影响程度,将风电机组并网检测分为现场测试和评估两种方式,如表 1所示。 表 1 风电机组并网检测与评估 ①电能质量 ②功率调节 ③低电压穿越 ④电网适应性 1.主控制系统 测试 测试 测试 测试 2.变流器 测试 测试 测试 测试 3.发电机 测试 测试 评估 评估 4.叶片 测试 评估 评估 评估 5.变桨系统 评估 评估 评估 评估 本文件规定了某一型号风电机组通过低电压穿越特性检测后,在容量不变或降容使用的情况下,同系列其他型号的风电机组,即风电机组在主控制系统和变流器不变的情况下发电机、变桨系统、叶片中任一变化后的低电压穿越性能评估方法和流程。 除表1中所列部件之外的零部件发生变化的,不需要进行测试和评估确定低电压穿越特性。 2 评估流程 同系列风电机组中的某一机型通过低电压穿越特性检测且满足标准要求后,可以通过提供书面材料、现场检查、平台测试、模型仿真的方式,对其他机型的低电压穿越特性进行评估。同系列风电机组低电压穿越特性评估证书出具的完整流程如图 1所示。流程通过后,可以申请评估机构出具的最终评估报告及证书。

风电叶片监控系统解决方案

风电叶片监控系统解决方案

为什么要对叶片进行状态监测? ?叶片是风机中受压最大的部件之一 -面临着极端的外部条件,而且动态载荷大。 ?叶片更换费用非常昂贵 ?在极端损坏情况下,风机必须立刻停机减少直接或二次损害。 ?如果能提早发现损伤,叶片可以很好地被修复。 ?目前,主要检测手段是视觉,但这种方法时间间隔长,非实时,且花费巨大。 →完全不适用于海上风机 ?状态监测系统的两大功能 -提高可利用小时数 ?覆冰检测 ?静态和动态载荷评估 -叶片损伤检测 ?雷击检测 ?叶片内部和外部损伤

损伤检测 ?更早检测到叶片的损伤 →降低维修成本 ?严重损伤给出自动停机信号→安全操作,避免灾难?经过DNV GL认证 →得到官方认可 覆冰检测 ?精确检测叶片覆冰 →安全操作 ?自动重启 →可获得更高收益 ?经过DNV GL认证 →得到官方认可 改善运营 ?检测动态不平衡 →提高收益 →降低载荷 ?动态载荷配准 →预防过载 ?显著的运行状态检测 →避免额外支出

覆冰检测DNV-GL证书/ 叶片状态监测系统DNV-GL 证书 ?BLADE control?覆冰检测,2008年获得了DNV-GL 的认证。 ?含自动启机功能的认证 ?BLADE control?在2013年获得了首个风机叶片状态监测 系统的GL认证。

BLADEcontrol?检测的叶片故障类型 ?气动表面壳体损伤 -裂痕和分层,尤其是前缘和尾缘 -雷击导致的叶尖开裂 ?结构支撑件的损伤(致命) -腹板分层或断裂 -梁/ 翼梁分层或断裂 -叶片轴承损伤 腹板 翼梁 气动表面 前缘 尾缘 ?松动部件 -叶片内 -轮毂内 -叶片外部 (防损保护层,扰流器)?气动不平衡 -变桨偏差 -变桨传感器故障

简述风电机组低电压穿越技术要求及实现方式

简述风电机组低电压穿越技术要求及 实现方式 (赵矛) 发生在今年的多次风电机组大范围拖网问题引起了电 力行业对于风力发电的稳定性和安全性的重点关注。2月24日,中电酒泉风电公司桥西第一风电场出现电缆头故障,导致16个风电场598台风电机组脱网。国家电监会认为此次事故是近几年中国风电“对电网影响最大的一起事故”;4月17日,甘肃瓜州协合风电公司干河口西第二风电场因电缆头击穿,造成15个风电场702台机组脱网。同日,在河北张家口,国华佳鑫风电场也发生事故,644台风电机组脱网;4月25日,酒泉风电基地再次发生事故,上千台风机脱网。关于事故的原因,主要矛头直指很多风电机组不具备低电压穿越能力。这轮事故频发的几大风电基地更是被指70%的机组不具备低电压穿越能力。本文对风电机组的低电压穿越进行简述。 当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。风电机组应该具有低电压穿越能力,而对于风

电机组的低电压穿越能力具体技术要求指标如下: a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力; b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行; c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。 风电机组低电压穿越能力的深度对机组造价影响很大,这也是之前很多机组不具备低电压穿越能力或者低电压穿越能力技术指标不能达标的原因。通过此次大范围的风电机组拖网事故表明根据实际系统对风电机组进行合理的低电压穿越能力设计很有必要。 结合此轮事故的调查,及行业内通过对变速风电机组低电压穿越原理进行理论分析,对多种实现方案进行比较。在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及电压穿越功能模型。详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组电压穿越能力的电压限值,对风电机组进行合理的电压穿越能力设计等多种技术手段及分析。结果表明,风电机组电压穿越能力的深度主要由系统接线和风电场接入方案决定。设计风电机组电压穿越能力时,机组运行曲线的电

某风电沉降观测方案

****** 风电工程沉降观测方案 一、工程概况: 岚县河口风电工程安装了24 台风机。地质环境属于覆矿风场,风机运行期间,附近矿区采矿,露天挖掘作业将部分风机所在的山体周围挖掘严重。特别是#10 风机,山体周围被挖成断壁状,破坏了山体原来的地貌,严重威胁到风机的安全运行。目前矿区已停止对#10 风机所在山体的挖掘工作。为保障风机的安全运行,防止发生倒塔事故,掌握风机在特种地理环境和地质条件下的基础沉降数据,检修公司试验研究所对该风机进行了跟踪观测。目前已取得第一次观测数据作为后续观测的初始数据。便于进一步比较分析,形成沉降-时间关系曲线。 二、现场实际情况、观测点、基准点的布置 工程上对建筑物的沉降观测一般采用水准测的方法,在建筑物上埋设观测点,沉降观测点应依据建筑物的形状、结构、地质条件、桩形等因素综合考虑,布设在最能敏感反映建筑物沉降变化的地点。一般布设在建筑物四角、差异沉降量大的位置、地质条件有明显不同的区段以及沉降裂缝的两侧。埋设时注意观测点与建筑物的联结要牢靠,使得观测点的变化能真正反映建筑物的变化情况。在建筑物附近并能躲开建筑物影响的范围外(一般取80m-100 m)埋设水准点,水准点可利用已有的、稳定性好的埋石点和墙脚水准点,水准点经过校验是稳定的,利用水准仪测量观测点与水准点之间的高程差,来判断建筑物是否发生沉降。观测点、水准点应不受环境条件及人为损坏。 对于风机基础沉降的观测,《中国大唐集团新能源股份有限公司机务技术监督实施细则》中规定:沿风机基础底座周边与基础底座轴线相交的位置布点,每台风机设置沉降观测点不得少于 4 个,对每个观测点均需观测和记录,水准工作基点应尽量靠近观测点位置,但应在基础沉降影响范围之外,即距风机基础边线至少应大于80m,基准点一般不少于3个。

低电压穿越规范

低电压穿越 当前光伏发电已成为太阳能资源开发利用的重要形式,其中大型光伏电站的接入,将对电网的安全稳定运行产生深刻影响,特别是在电网故障时光伏电站的突然脱网会进一步恶化电网运行状态,带来更加严重的后果。 当光伏电站渗透率较高或出力加大时,电网发生故障引起光伏电站跳闸,由于故障恢复后光伏电站重新并网需要时间,在此期间引起的功率缺额将导致相邻的光伏电站跳闸,从而引起大面积停电,影响电网安全稳定运行[3]。因此,亟须开展大型光伏电站低电压穿越技术的研究,保障光伏电站接入后电网的安全稳定运行。 一、低电压穿越使用条件 1、环境条件 a) 户外环境温度要求:-40℃~ 50℃; b) 户外环境湿度要求:0~90% ; c) 海拔高度: 0~2000米(如果超过2000米,需要提前说明)。 2、低电压穿越安装方式:标准海运集装箱内固定式安装。 3、储存条件 a)环境温度-50℃~50℃; b)相对湿度 0~95% 。 4、低电压穿越工作条件 a) 环境温度-40 oC~40oC; b) 相对湿度 10%~90%,无凝露。

5、低电压穿越电力系统条件 a) 电网电压最高额定值为35kV,电压运行范围为31.5kV~40.5kV;同时也可以同时满足10kV\20kV电网电压的试验检测。 b) 电网频率允许范围:48~52Hz; c) 电网三相电压不平衡度:<= 4%; d) 电网电压总谐波畸变率:<= 5%。 6、低电压穿越负载条件 负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA。其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站的相关测试规程技术要求。 本检测平台能够同时满足同等条件下光伏电站或光伏逆变器的低电压穿越能力测试。 7、低电压穿越接地电阻:<=5Ω。 二、低电压穿越技术要求 光伏电站低电压穿越技术(Low Voltage Ride Through,LVRT)是指当电网故障或扰动引起的光伏电站并网点电压波动时,在一定的范围内,光伏电站能够不间断地并网运行。 2010年底,国家电网公司出台的《光伏电站接入电网技术规定》(企标)明确指出[10],“大中型光伏电站应具备一定的低电压穿越能力;电力系统发生不同类型故障时,若光伏电站并网点考核电压全部在图中电压轮廓线及以上的区域内

风电监测的方法详解

风电监测的方法详解 为了分析和找寻可能的监测方法,需要细剖风力电机的物理现象交互过程:风力(风速、风压)->叶片(应变、振动、转动)->轴(转速、振动、噪音)->齿轮箱(振动、摩擦、发热、噪音)->发电机(振动、摩擦、发热)->电线(发热)。 那么即可以从振动信号(振动、转速)、油液信号(摩擦时交换物质被带入润滑油/液压油中)、应变信号、红外信号(温度)、噪音信号和效能信号(风速、转速、电能质量)六大类进行监测。 (1)油液监测。油液监测是早期预警的重要手段。齿轮间的啮合摩擦会使金属颗粒被带入油液当中,随着时间的推移就会出现磨损、裂痕等状况。大多数的轴承与齿轮老化,都是因为使用润滑油不当而导致进一步损伤风机传动系统。这类监控包含油粒子( Oilparticle) 计数与温度测量。通过如粒子计数器等装置,即可了解润滑油的品质与可能的污染状态。而工业级用油中的水污染物,扮演了极重要的角色。水分过高可能导致元件过热、腐蚀,出现严重故障。 (2)振动监测。油液监测是中期预警的重要手段。通过振动监视可以了解旋转机械设备的状态,因此振动是风电机组监测最重要的方面之一。风电机组都包括主轴承、齿轮箱与发电机,通过振动监测可以有效地了解这些设备的健康状态。根据有效的频率范围,可以使用位置传感器(低频段)、速度传感器(中频段) ,或加速度传感器(高频段)。振动传感器固定在待测部件之上,从而获取与瞬时本地运动相应的模拟信号。针对这类测量,采集设备应具备高采样率、高动态范围与抗混叠等功能。此外,还可以监测风机机舱与塔架的结构振动,从而了解结构弯曲,以及风力的气体动力效应。通过监视这些振动信号,就可以在关键部件发生重大故障之前,先发现部件是否产生任何问题,比如齿轮或轴承的老化/破损。而针对旋转机械,必须对传感器信号进行阶次分析以获取谐波信息。谐波(Harmonics)可以用来判断部件性能,进行早期诊断。 (3)应变监测。油液监测是中期预警的重要手段。应变监测常见于结构健康监测等应用中,且在风力发电领域逐渐凸显其重要性。实验室往往通过应力测量,测试风机叶片的使用寿命。这些测量通常使用金属馅(Metalfoil) 应变计,相应的数据采集装置则需要具备电压激励与桥路补偿等功能。应变计可安装于叶片的任何位置,但根据传感器数目的不同,其分布位置也有所差异。传感器应妥善安

风力发电行业的完整测试解决方案

风力发电行业的完整测试解决方案 新能源又称非常规能源,是指传统能源之外的各种能源形式,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。目前我国新能源利用技术已经取得了长足进展,并在各地形成了一定的规模,尤其在风能领域发展非常迅速。近期国家出台了新能源发展规划,风力发电作为重点扶持行业,拥有了更广阔的发展前景。 风能领域概述 和其他类型的新能源相比,风能的独特优势使其在新能源开发利用中备受青睐。 其一,储量大、分布广。我国探明风能理论储量为32.26×109kW,而可开发利用的为2.53×109kW,近海可利用风 能7.5×109kW。我国东南沿海和内蒙、新疆、甘肃等东北、西北地区是最大风能资源区。 其二,可利用性强,成本相对低。目前风电场造价成本约为8500~9000元/千瓦时,机组(设备)占70%左右,基础设施占25%,其他占5%。风电场运行维护成本费用很低(约占风电机组成本的3%~5%),建设周期短(半年左右)。一旦建成,风电场就是一源源不断的出钱机器。 风力发电的技术核心 风力发电系统作为风能发电领域的核心环节,技术进步也是日新月异。目前主要有恒速恒频风力发电机系统和变速恒频风力发电机系统两大类。 恒速恒频风力发电系统一般使用同步电机或者鼠笼式异步电机,通过定桨距失速控制的风轮机使发电机的转速保持在恒定的数值,从而保证发电机端输出电压的频率和幅值恒定,其运行范围比较窄,只能在一定风速下捕获风能,发电效率较低。 变速恒频风力发电系统一般采用永磁同步电机或者双馈电机作为发电机,通过变桨距控制风轮,使整个系统在很大的速度范围内按照最高的效率运行,这是目前风力发电技术的发展方向。对于风机来说,其调速范围一般在同步速的50%~150%之间,如果采用普通鼠笼异步电机系统或者永磁同步电机系统,变频器的容量要求与所拖动的发电机容量相当,非常不经济。双馈异步风力发电系统定子和电网直接相连接,转子和功率变换器相连接,通过变换器的功率仅仅是转差功率,这是各种传动系统中效率比较高的,该结构适合于调速范围不宽的风力发电系统,尤其是大中容量的风力发电系统。 采用绕线异步电机作为发电机并对其转子电流进行控制,是变速恒频异步风力发电系统的主要实现形式之一。主要的拓扑结构包括交流励磁控制、转子斩波调阻以及由上述两种拓扑结构结合发展而来的混合结构。 1 交流励磁结构 交流励磁控制通过变频装置向转子提供三相滑差频率的电流进行励磁,这种方式的变频装置通常使用交交变频器,矩阵变换器或交直交变频器。 2 斩波调阻结构 这种结构的基本思想是采用一个可控电力电子开关,以固定载波频率的PWM方法控制绕线电机转子回路中附加电 阻接入时间的长短,从而调节转子电流的幅值,控制滑差约在10%的范围之内。该结构依靠外部控制器给出的电流基准值和电流的测量值计算出转子回路的电阻值,通过电力电子器件的导通和关断来调整转子回路的电阻值。这种电力电子装置的结构相对简单,但是其定子侧功率因数比较低,且只能在发电机的同步转速以上运行,是一种受限制的变速恒频系统。 3 混合结构 为了降低变流器的成本并且能够实现风力发电系统的宽转速范围运行,有人提出一种基于双馈电机斩波调阻与交流励磁控制策略多功能变流器拓扑结构,将整流器、斩波器和逆变器结合在一起,该结构的巧妙之处在于斩波器和逆变器共用了一组可控的电力电子开关,但是由于引入了四个接触器型的受控开关,导致该结构的主回路结构复杂,很难

LVRT并网逆变器低电压穿越检测装置

LVRT-2300并网逆变器低电压穿越检测装置 技术规范书 1 总则 1.1本规范书适用于光伏发电站并网验收、风电场接入并网验收、光伏逆变器型式试验、风力 发电机组的低电压穿越检测平台,包括主要设备及其辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2要求该检测平台能够同时满足现场安装在风电场的单台风电机组低电压穿越能力检测,满 足光伏发电站并网接入验收的低电压穿越能力检测,满足光伏逆变器与风电发电机组的型式试验的低电压穿越试验检测。 1.3本规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有 关标准和规范的条文。供方应保证提供符合本规范书和工业标准的优质产品。 2 使用条件 2.1环境条件 a) 户外环境温度要求:-40℃~ 50℃; b) 户外环境湿度要求:0~90% ; c) 海拔高度:0~2000米(如果超过2000米,需要提前说明)。 2.2安装方式:标准海运集装箱内固定式安装。 2.3储存条件 a)环境温度-50℃~50℃; b)相对湿度0~95% 。 2.4工作条件 a) 环境温度-40 oC~40oC; b) 相对湿度10%~90%,无凝露。 2.5电力系统条件

10kV\20kV电网电压的试验检测。 b) 电网频率允许范围:48~52Hz; c) 电网三相电压不平衡度:<= 4%; d) 电网电压总谐波畸变率:<= 5%。 2.6负载条件 负载包括直驱或双馈式等风力发电机组,其总容量不大于6.0MVA。其控制和操作需要满足国家关于风电机组电电压穿越测试与光伏发电站的相关测试规程技术要求。 本检测平台能够同时满足同等条件下光伏电站或光伏逆变器的低电压穿越能力测试。 2.7接地电阻:<=5Ω。 3检测平台的技术要求 3.1 结构及原理要求 根据模拟实际电网短路故障的要求,测试系统须采用阻抗分压方式,原理如下图1所示(以实际为准)。测试系统串联接入风电机组出口变压器高压侧(35kV、20 kV、10 kV侧)。 图1 测试系统原理图 3.2 测试系统功能要求 (1)整体要求

浅谈风电场低电压穿越技术

浅谈风电场低电压穿越技术 摘要:低电压穿越能力:是指在风机并网点电压跌落时,风机能够保持并网, 对过电压、过电流进行抑制技术,甚至向电网提供一定的无功功率,支持电网恢 复正常,从而“穿越”这个低电压时段。 关键词:浅谈;风电场;低电压;穿越技术 一.规程与标准 根据《国家能源局关于加强风电场并网运行管理的通知》(国能新能【2011】182号),风电机组应严格按照《风电机组并网检测管理暂行办法》的要求,具 备低电压穿越的能力,并通过有关机构的检测认证;对于风电装机容量占其他电 源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风电场应具有 低电压穿越能力。《风电场接入电力系统技术规范》(GB/T 19963—2000)中对 风电场低电压穿越能力的基本要求: (1)风电场内的风电机组具有并网点电压跌至20﹪额定电压时能够保证不 脱网连续运行625ms的能力。 (2)风电场发生跌落后2s内能够恢复到额定电压的90﹪时,风电场内的风 电机组能够保证不脱网连续运行。 二.发生低电压穿越的原因 针对电网故障引起的故障,通常可以分为电网单相接地故障、电网两相接地 故障、电网两相相间短路故障以及电网三相相间短路故障引起的电压跌落,根据 电力系统运行经验表明,在各种类型的电网故障中,单相接地故障占大多数,容 易引起不对称故障电路,而对于我们风力发电场,除了考虑电网电压的波动,还 应该分析风电场集电线路和风机所对应的箱变等可以引起风电机组网侧电压波动 的因素。 三.永磁同步风力发电机组实现低电压穿越的原理 1. 永磁直驱同步风力发电系统 永磁直驱同步风力发电系统是一种新型发电系统,采用风轮直接驱动多极低 速永磁同步发电机发电,然后通过全功率变流器变换电路,将电能转换后并入电网。 2.全功率变流器 全功率变流器是由发电机侧变流器和网侧变流器两个三相PWM电压型变流 器构成,发电机侧变流器实现对永磁同步发电机的控制,网侧变流器实现输出并网,输出有功、无功功率的解耦和直流侧电压控制,永磁直驱同步风力发电系统 依靠全功率变流器实现高性能控制。 风电机组利用背靠背全功率变流器实现隔离,低电压运行能力上相对双馈型 风力发电机组有一定优势,但是其直流侧也会存在过电压的问题,当电网电压跌 落时,永磁直驱风力发电机组变流器将增加电流,以便提供同样大小的功率给电网,由于变流器的热容量有限,因此必须对输入电流进行限制。 3.关于耗能Crowbar电路的低电压保护方案 风电机组的卸荷电阻通过功率器件与直流侧相连,当系统正常工作时,保护 电路不起作用,当电网电压发生电压跌落故障时,如果风电机组保持正常运行, 那么直流侧输入功率不变,而输出功率随电网电压的跌落而降低,直流侧输入功 率大于输出功率,如果直流侧不采取措施,将导致直流侧电压上升,导致变流器 损坏,为了消除电网短路时故障对风电机组的影响,在直流侧增加了Crowbar电

常见风电叶片问题及风电叶片检查方案

常见风电叶片问题及风电叶片检查方案

目录catalog 01常见叶片问题及检查方法 Blade inspection methods 02介绍及案例展示 CobotAI-B1 introduce and inspection case

风电叶片容易受到强风、雷击、疲劳的影响,引起风电叶片结 构损伤;且由于出厂质量影响,有些缺陷长期存在,影响叶片的可靠性。 Wind turbine blades easily affected by strong winds, lightning, fatigue, caused blades damage ; And because of the influence of the factory quality, some defects exist for a long time, the influence on the reliability of the blade 随风机运行时间增长,叶片维修需求增加,但普通叶片检查只能查出表面缺陷,存在隐患,所以需要开展叶片无损内部检测。Grow along with the running time, blade repair demand increases, but blade visual inspection only can be found surface defect, so need for a nondestructive internal inspection.

分类人为检测仪器检测 检测方式Inspection way 人工目测、敲击、 单反相机远距拍照 visual inspect , knock, take picture 超声无损检测 Ultrasonic 红外无损检测 infrared 特点Feature 简单,直接,易于操作,成本较低。叶片成 型前缺陷及人不可及处缺陷无法检测,人为 因素影响检验结果Simple, direct, easy to operate, low cost . Blade molding defects and the person before and cannot detect flaw, human factors affect the test result 在工厂针对断层和缺胶检 查,目前无法实现风场实 时检测In view of the faults and short of glue in the factory inspection, at present can't wind field real- time detection 检测灵敏度高、检测速度快,检 测缺陷范围广,实时成像,能够 实现风场实时检测。High detection sensitivity, fast detection, real-time imaging, the testing range of the wind field can be implemented for real-time detection.

光伏低电压穿越

光伏电站低电压穿越测试 大纲: 什么是光伏电站低电压穿越技术 光伏并网低电压穿越的要求及原理 光伏电站低电压穿越测试相关标准 低电压穿越能力测试方法步骤 1什么是光伏电站低电压穿越技术 光伏电站低电压穿越技术(LowVoltageRideThrough,LVRT)是指当电网故障或扰动引起的光伏电站并网点电压波动时,在一定的范围内,光伏电站能够不间断地并网运行。 2光伏并网低电压穿越的要求及原理 2011年,国网公司颁布了2条新准则:《光伏电站接入电网技术规定》(以下简称《规定》)和《光伏电站接入电网测试规程》,要求大型光伏电站必须具备一定的LVRT能力。北京鉴衡认证中心作为一家国内光伏权威认证机构,在其技术规范文件中也指出,用于国内大型光伏电站的并网逆变器必须具备能承受一定异常电压的能力,从而防止在电网电压异常的情况下脱离电网,导致电力系统运行不稳定。 《规定》中的LVRT曲线如图2-4所示,要求若并网点电压(三相、两相跌落故障为线电压,单相跌落故障为相电压)全部在电压轮廓线及以上区域,则光伏电站应保持并网状态;若并网点电压全部在电压轮廓线以下区域,则光伏电站可脱离电网终止向电网送电。图中,UL0和UL1,分别表示LVRT的电压值上限与下限值,在此范围属于LVRT工作区;时间T1表示电网电压跌落到下限值时要求继续保持并网时刻,时间T2表示电压恢复到上限值时要求继续提供无功支撑并保持并网的时刻。参数UL0、UL1、T1、T2的设置需要结合光伏电站继电保护设备的保护和重合闸实际动作时间来确定,可根据电站具体情况在现场通过人机界而

进行修改。标准中推荐的UL0取值为额定电压的90%,UL1取值为额定电压的20%,时间T1设置为1s,时间T2设置为3 s. 图2-4大中型光伏电站LVRT曲线 3光伏电站低电压穿越测试相关标准 NB/T 32005-2013《光伏发电站低电压穿越检测技术规程》 Q/GDW 617-2011《光伏电站接入电网技术规定》 Q/GDW 618-2011《光伏电站接入电网测试规程》 4低电压穿越能力测试方法步骤。 (1)低电压穿越能力测试。通过低电压穿越能力测试装置和数字示波器或其他 记录装置实现。 (2)低电压穿越能力测试装置。具备模拟电压跌落曲线的能力,跌落深度、持续 时间和恢复时间可设定。该装置具备模拟三相电压对称和不对称故障的能力,对电压跌落曲线的拟合误差不大于10%。低电压穿越能力测试装置对电网的安全性不应造成影响。 (3)测试时对公共连接点造成的电压跌落不超过额定电压等级的5%。 (4)低电压穿越能力测试示意图如图4—4所示。

相关文档
最新文档